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MULTI-AGENT MODEL PREDICTIVE CONTROL FOR

TRANSPORTATION NETWORKS:

SERIAL VERSUS PARALLEL SCHEMES

Rudy R. Negenborn ∗,1 Bart De Schutter ∗ Hans Hellendoorn ∗

∗ Delft Center for Systems and Control,

Delft University of Technology, Delft, The Netherlands

http://www.dcsc.tudelft.nl/

Abstract: We consider the control of large-scale transportation networks, like road traffic

networks, power distribution networks, water distribution networks, etc. For control of

these networks, we propose a multi-agent control scheme in which each agent employs

Model Predictive Control. In order to obtain coordination and to improve decision making

agents communicate with each other. We compare two Lagrangian-based communication

and decision making schemes. One scheme is based on serial iterations between agents,

while the other is based on parallel iterations. The schemes are explained theoretically and

assessed experimentally by means of simulations on a particular type of transportation

network, viz., a power distribution network. The serial scheme shows to have preferable

properties compared to the parallel scheme in terms of solution speed and quality.

Keywords: Multi-agent control, model predictive control, transportation networks.

1. INTRODUCTION

Transportation networks, like road traffic networks,

power distribution networks, water distribution net-

works, gas networks, etc. are usually large in size,

consist of multiple subnetworks, have many actuators

and sensors, and therefore show complex dynamics.

These transportation networks can be considered at a

generic level, at which commodity is brought into the

network at sources, flows over links to sinks, and is

influenced in its way of flowing by elements inside

the network. The similarities between several types of

transportation networks are the motivation for study-

ing these networks in a generic way. Results obtained

for generic transportation networks can then be spe-

cialized and fine-tuned for specific domains.

Typical control goals for transportation networks

involve avoiding congestion of links, maximizing

throughput, minimizing costs of control actions, etc.

1 Corresponding author, e-mail: r.r.negenborn@tudelft.nl

In the daily operation of transportation networks, net-

work operators have to adjust the actuators in the net-

work to meet these control objectives. Control from

a single point by a single, centralized, control agent

is often not possible due to technical or commercial

issues. Technical issues arise from, e.g., communica-

tion delays and too high computational requirements.

Some commercial issues are, e.g., unavailability of

information from one network operator to another, re-

stricted control access, and costs of sensors. Also, ro-

bustness and reliability of the network cannot be guar-

anteed when the single control agent breaks down.

For these reasons, large-scale transportation networks

have to be operated using a multi-agent, or distributed,

control approach (Siljak, 1991). In such an approach

the overall network is considered as consisting of mul-

tiple smaller subnetworks. Each of the subnetworks is

controlled by an agent with only limited information

gathering and processing skills and moreover limited

action capabilities.



To determine which actions to take, we propose the

use of multi-agent Model Predictive Control (MPC).

In a single-agent setting, MPC has shown success-

ful application in the process industry over the last

decades (Maciejowski, 2002; Morari and Lee, 1999),

and is now gaining increasing attention in fields like

power networks (Hines et al., 2005), road traffic net-

works (Hegyi et al., 2005), and railway networks (De

Schutter et al., 2002). Two main advantages of MPC

are its explicit way of integrating constraints and its

easy way of integrating forecasts. E.g., for transporta-

tion networks MPC provides a convenient way to in-

clude capacity limits on links, maximums on queue

lengths, measurements from upstream sensors, and

profiles of demands.

In our multi-agent setting we assume that the network

has been divided into subnetworks, and that each

subnetwork has been assigned an agent. Each of the

agents uses MPC to determine its actions. Each agent

performs the following steps:

(1) Make a measurement of the current state of the

subnetwork, and interpret information received

from other agents.

(2) Solve an optimization problem that finds over a

certain horizon the actions that result in the best

subnetwork behavior according to a specified ob-

jective. This typically involves communication.

(3) Implement the found actions until the next step.

(4) Move on to the next decision step.

The challenge in implementing such a scheme comes

from step 2, since the other steps are trivial once step

2 is solved. The actions that an agent takes influence

both the evolution of its own subnetwork, and the evo-

lution of the subnetworks connected to its subnetwork.

Since the agents in a multi-agent setting usually have

no global overview and can only access a relatively

small number of sensors and actuators, predicting the

evolution of a subnetwork over a horizon involves

even more uncertainty than when a single agent is em-

ployed. Communication can reduce this uncertainty,

since it allows agents to inform one another about

their plans (Camponogara et al., 2002; Dunbar and

Murray, 2002). The agents can then take into account

these plans and anticipate any undesirable situation.

Moreover, through communication agents can obtain

agreement on taking actions that give both locally and

overall good performance.

We discuss two schemes for obtaining agreement be-

tween agents: the first involving serial iterations be-

tween agents, the second involving parallel iterations.

To make a well-founded choice for either a serial or

a parallel scheme, it is important to compare these

schemes. To the authors’ best knowledge, such a com-

parison has not been made before in the context of ob-

taining agreement between agents. Although the par-

allel scheme is more frequently used in literature, in

our experiments the serial approach shows preferable

properties in terms of solution speed and quality. The
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Fig. 1. Each subnetwork model has a set of variables.

Internetwork variables form interconnecting con-

straints between variables of two subnetwork.

rest of this paper is organized as follows. In Section 2

we formalize the setup of the transportation network

and the control problem. In Section 3 we give the

underlying principle of the schemes we consider, and

present the implementation of the two schemes. In

Section 4 we experimentally assess the performance of

both schemes on a particular transportation network.

2. CONTROL SETTING

2.1 Generic Transportation Network Model

We consider a transportation network partitioned into

n subnetworks, each controlled by a control agent

that has a model of its subnetwork. Subnetworks are

physically connected to each other. The interconnec-

tions are modeled using so-called internetwork vari-

ables. A variable of the model of subnetwork i is an

internetwork variable with respect to the model of

subnetwork j if it corresponds to a variable in the

model of that subnetwork j. We distinguish two types

of internetwork variables: internetwork input variables

and internetwork output variables. On one side, the

model of subnetwork i contains an internetwork in-

put variable w
ji
in,k that represents the input caused by

subnetwork j on the state of subnetwork i at time

step k. On the other hand, the model of subnetwork

j contains an internetwork output variable w
ij
out,k that

represents the influence that subnetwork j has on sub-

network i. Since the internetwork input to subnetwork

i from j must be equal to the internetwork output from

subnetwork j to i, the interconnecting constraints for

subnetwork i are:

w
ji
in,k = w

ij
out,k, w

ji
out,k = w

ij
in,k,

for all j ∈ Ni, where Ni = {j1, . . . , jmi
} is the

set of indexes of the mi subnetworks connected to

subnetwork i, as illustrated in Fig. 1.

We model the dynamics of subnetwork i by a discrete-

time difference equation:

xi
k+1 = f i(xi

k, u
i
k, d

i
k, w

i
in,k) (1)

w
ji
out,k = Cji[(xi

k)
T (ui

k)
T (dik)

T ]T , (2)

for all j ∈ Ni, where at time step k, for subnetwork i,

xi
k are the dynamic states, ui

k are the inputs, dik are the



local disturbances, wi
in,k = [(wj1i

in,k)
T · · · (w

jmi
i

in,k )T ]T

are the internetwork input variables, and w
ji
out,k are the

internetwork output variables. The function f i repre-

sents the dynamic state transitions, and the matrix Cji

is of appropriate dimensions and contains 0 entries

on each row, except for a single 1 corresponding to a

variable that is an internetwork output of subnetwork

i with respect to subnetwork j. Those elements of

[(xi
k)

T (ui
k)

T (dik)
T ]T that are not also internetwork

output variable are called local variables zik of agent i,

The remaining variables, i.e., w
ji
in,k and w

ji
out,k together,

are called internetwork variables w
ji
k of agent i.

2.2 Distributed Control Problem

All agents have to determine inputs ui
k to their actua-

tors that give the best local and overall performance.

In MPC, the agents do this by determining over a

horizon of N steps optimal inputs according to an

objective function J i
z(z̃

i
k), where the symbol ˜ over

a variable indicates variables over the horizon, e.g.,

z̃ik = [(zik)
T . . . (zik+N−1)

T ]T . We formulate the

overall control problem as:

min
z̃1

k
,w̃1

k
,...,z̃n

k
,w̃n

k

n
∑

i=1

(

J i
z(z̃

i
k)
)

(3)

subject to:

w̃
ji
in,k = w̃

ij
out,k for i = 1, . . . , n, and j ∈ Ni (4)

w̃
ij
in,k = w̃

ji
out,k for i = 1, . . . , n, and j ∈ Ni, (5)

and the dynamics of the subnetworks (1)–(2) over the

horizon, where w̃i
k = [(w̃j1i

k )T · · · (w̃
jmi

i

k )T ]T .

The overall control problem (3) is not separable into

subproblems using only local variables z̃ik and in-

ternetwork variables w̃i
k of one agent i alone due

to the interconnecting constraints (4)–(5). Using an

augmented Lagrangian formulation of the problem

(Bertsekas and Tsitsiklis, 1997), we remove the equal-

ity constraints by adding for each constraint an addi-

tional cost term to the objective function of each agent

based on Lagrangian multipliers (Boyd and Vanden-

berghe, 2004), and a quadratic term involving the dif-

ference between internetwork input and internetwork

output variables between two subnetworks. Through

iterations of solving an optimization problem and do-

ing a Lagrangian multiplier update, a solution to the

original problem may be found. Denoting by subscript

s|k a variable at iteration s of decision step k, the

following steps are made:

(1) Find z̃1
s+1|k, w̃

1
s+1|k, . . . , z̃

n
s+1|k, w̃

n
s+1|k from:

min
z̃1

k
,w̃1

k
,...,z̃n

k
,w̃n

k

n
∑

i=1

[

J i
z(z̃

i
k) +

∑

j∈Ni

(

(λ̃ji
s )

T (w̃ji
in,k − w̃

ij
out,k) +

c

2

∥

∥

∥
w̃

ji
in,k − w̃

ij
out,k

∥

∥

∥

2

+

(λ̃ij
s )

T (w̃ij
in,k − w̃

ji
out,k) +

c

2

∥

∥

∥
w̃

ij
in,k − w̃

ji
out,k

∥

∥

∥

2)]

,

(6)

subject to the dynamics of the subnetworks (1)–

(2) over the horizon.

(2) Compute new Lagrangian multipliers,

λ̃
ji
s+1 = λ̃ji

s + c( ˜̃wji

in,s+1|k − w̃
ij

out,s+1|k) (7)

λ̃
ij
s+1 = λ̃ij

s + c(w̃ij

in,s+1|k − w̃
ji

out,s+1|k). (8)

(3) Move on to the next iteration s+1 and repeat the

cycle. Stop when the Lagrangian multipliers do

not change anymore.

The constant c is a positive scalar (see Section 3

for more details). The Lagrangian multipliers λ̃ji
s

and λ̃ij
s can be initialized arbitrarily. Under convexity

assumptions on the objective functions and constraints

it can be proved that when the Lagrangian multipliers

do not change anymore from one iteration to the next,

a local minimum of the original problem has been

found (Bertsekas and Tsitsiklis, 1997).

Although the new formulation does not have the inter-

connecting constraints explicitly, due to the quadratic

terms in (6) the overall problem is still not separa-

ble. The schemes we discuss next transform the non-

separable problem into a sequence of separable prob-

lems of the form:

min
z̃i
k
,w̃i

k

J i
z(z̃

i
k) +

∑

j∈Ni

J i
w(w̃

ji
k ), (9)

subject to the dynamics of the subnetwork (1)–(2) over

the horizon, where the additional cost term J i
w(w̃

ji
k )

deals with the internetwork variables.

3. SERIAL VERSUS PARALLEL SCHEME

The two schemes that we introduce have the following

intuitive motivation. Since the evolution of a subnet-

work is influenced by neighboring subnetworks, the

actions that an agent computes are best with respect to

the predicted internetwork input variables w̃
ji
in,k for all

j ∈ Ni. To reduce the uncertainty in the predictions of

the internetwork input variables agent i has to come to

an agreement with the agents j ∈ Ni on the values of

their internetwork output variables w̃
ij
out,k. The agents

obtain agreement through iterations that inform the

agents about how the other agents prefer their inter-

network inputs to be. To obtain agreement, an agent i

does not only compute optimal local variables for its

own subnetwork, but also optimal internetwork input

variables w̃
ji
in,k. Moreover, the other agents j ∈ Ni

compute both their optimal local variables and op-

timal internetwork output variables w̃
ij
out,k. Through

exchange of these optimal internetwork variables, the

values of the internetwork output and input variables

have to converge to each other, and a set of actions

that is (perhaps locally) optimal for all agents has to

be found.
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Fig. 2. Considered communication schemes between

two agents. Arrows indicate information ex-

change. Dotted lines are actions being imple-

mented. Horizontal lines are optimization prob-

lems being solved. a) Serial; b) Parallel.

We consider two schemes that implement the above

ideas, see Fig. 2, but that differ in the times at which

the agents solve their problems: they either do this

after serial iterations, or after parallel iterations.

3.1 Serial Implementation

The serial implementation is the result of using a

Block Coordinate Descent (Bertsekas and Tsitsiklis,

1997; Royo, 2001) for dealing with the non-separable

quadratic term of (6). The approach minimizes the

quadratic term directly, in a serial way. One agent after

another minimizes its local and internetwork variables

while the other variables are fixed.

Given the information w̃
ij
prev,k = w̃

ij

s+1|k computed

at the current iteration s for each agent j ∈ Ni

that has solved its problem before agent i in the

current iteration s, and given the previous information

w̃
ij
prev,k = w̃

ij

s|k of the last iteration s − 1 for the other

agents, agent i solves problem (9) using the following

additional objective function:

J i
w(w̃

ji
k ) =

[

(λ̃ji
s )

T (−λ̃ij
s )

T
]

[

w̃
ji
in,k

w̃
ji
out,k

]

+
c

2

∥

∥

∥

∥

∥

[

I 0
0 I

]

[

w̃
ij
in, prev,k

w̃
ij
out, prev,k

]

−

[

0 I

I 0

]

[

w̃
ji
in,k

w̃
ji
out,k

]∥

∥

∥

∥

∥

2

.

The serial implementation consists of the following

steps. At decision step k, iteration s:

(1) For i = 1, . . . , n, one agent after another:

(a) Agent i determines z̃i
s+1|k, w̃

ji

s+1|k by solv-

ing (9).

(b) Agent i sends to agent j ∈ Ni the computed

values w̃
ji

s+1|k.

(2) After all agents have solved their problems at one

iteration, they update their Lagrangian multipli-

ers using (7)–(8).

(3) Each agent moves to the next iteration s + 1,

and the cycle starts over, unless the Lagrangian

multipliers do not change anymore.

The positive scalar c penalizes the deviation from the

internetwork variable iterates that were computed by

the other agents before agent i or during the last deci-

sion step. This makes that the internetwork variables

that agent i computes at the current iteration will stay

close to the internetwork variables of agent j com-

puted earlier if c is chosen larger. With c increasing,

it becomes more expensive for an agent to deviate

from the internetwork-variable values computed by

the other agents. This results in a faster convergence

of the internetwork variables to values that satisfy the

interconnecting constraints. However, it may still take

some iterations to obtain optimal values for the local

variables. In particular, a higher c results in a higher

number of iterations before reaching optimality.

3.2 Parallel Implementation

The parallel implementation is the result of the Auxil-

iary Problem Principle (Batut and Renaud, 1992; Kim

and Baldick, 1997; Royo, 2001) of approximating the

non-separable quadratic term in the augmented La-

grangian (6) with a separable term. In the parallel

scheme, the agents do not wait for each other, but

instead perform a series of parallel iterations in which

all agents are computing at the same time.

Given the previous information w̃
ij
prev,k = w̃

ij

s|k, and

w̃
ji
prev,k = w̃

ji

s|k of the agents j ∈ Ni of the last

iteration s − 1, agent i solves problem (9) using the

following additional objective function term for the

interconnecting constraints:

J i
w(w̃

ji
k ) =

[

(λ̃ji
s )

T (−λ̃ij
s )

T
]

[

w̃
ji
in,k

w̃
ji
out,k

]

+
c

2

∥

∥

∥

∥

∥

[

I 0
0 I

]

[

w̃
ij
in,prev,k

w̃
ij
out,prev,k

]

−

[

0 I

I 0

]

[

w̃
ji
in,k

w̃
ji
out,k

]∥

∥

∥

∥

∥

2

+
b− c

2

∥

∥

∥

∥

∥

[

w̃
ji
in,k

w̃
ji
out,k

]

−

[

w̃
ji
in,prev,k

w̃
ji
out,prev,k

]∥

∥

∥

∥

∥

2

.

Thus, this scheme uses information computed during

the last iteration s − 1 only, contrarily to the serial

scheme.

The parallel implementation then consists of the fol-

lowing steps. At decision step k, iteration s:

(1) For all agents i ∈ {1, . . . , n}, at the same:

(a) Agent i solves the problem (9) to determine

z̃i
s+1|k and w̃

ji

s+1|k for all j ∈ Ni.

(b) Agent i sends to agent j the computed val-

ues w̃
ji

s+1|k for all j ∈ Ni.

(2) After all agents have finished solving their prob-

lem, they update their Lagrangian multipliers us-

ing (7)–(8) and the received information.

(3) Each agent moves to the next iteration s + 1,

and the cycle starts over, unless the Lagrangian

multipliers do not change anymore.

The role of the scalar c is the same as before. As

additional parameter this scheme uses a positive scalar

b. If b = c we obtain the same additional cost function

as in the serial scheme, but now based on information

from the previous iteration alone. If b > c, then the
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term penalizes the deviation between the internetwork

variables of the current iteration and the internetwork

variables of the last iteration of agent i; it thus gives

the agent less incentive to change its internetwork

variables from one iteration to the next. When b ≥ 2c,
and moreover the overall problem is convex, it can

be proved that the iterations converge to the overall

minimum (Bertsekas and Tsitsiklis, 1997; Kim and

Baldick, 1997). In the following, we set b = 2c.

4. EXPERIMENTS

We experiment with the two schemes on a so-called

load-frequency control problem from the domain of

power networks, which involves keeping power gener-

ation equal to power consumption under consumption

disturbances. We consider a network divided into two

subnetworks, each controlled by a control agent, see

Fig. 3. Each agent has to keep the so-called frequency

deviation within its subnetwork close to zero under

minimal control input accessing only local variables.

Each subnetwork i ∈ {1, 2} has as control input

the power generation, ui
k = [∆P i

g,k], and as local

disturbance the power consumption, dik = [∆P i
d,k].

The state of subnetwork i is xi
k = [∆δik, ∆f i

k]
T ,

where ∆δik is the angle deviation and ∆f i
k is the fre-

quency deviation. To keep ∆f i
k close to zero, gener-

ation should equal consumption and export over the

interconnecting line. The power exported over the line

from subnetwork i to j is proportional to ∆δi −∆δj .

Therefore, for subnetwork i, we have internetwork

input variable w
ji
in,k = [∆δ

j
k], and internetwork output

variable w
ji
out,k = [∆δik]. The model of subnetwork i

is a linearized discrete-time state-space model. This

model is a Euler approximation (with a step-size of

τ = 1 s) of the continuous-time model described in

(Camponogara et al., 2002), and can be written as:

xi
k+1 = Aixi

k +Bi
1u

i
k +Bi

2d
i
k +Bi

3w
i
in,k

w
ji
out,k = Cji[(xi

k)
T (ui

k)
T (dik)

T ]T ,

together with interconnecting constraints (4)–(5), where

Ai =





1 τ2π

τ
−KP iKSij

2πTP i

1− τ
1

TP i



Bi
1 =





0

τ
KP i

TP i





serial scheme parallel scheme

# ∆ time # ∆ time

c iterat. costs sec. iterat. costs sec.

0.1 21 0.0004 <1 26 0.0004 <1

10 150 0.0005 1 467 0.0005 4

50 597 0.0005 5 1793 0.0008 15

100 1079 0.0005 9 3130 0.0013 26

200 1934 0.0006 16 5358 0.0030 45

300 2707 0.0007 23 7250 0.0053 61

Table 1. For serial and parallel schemes,

for varying c, the number of iterations re-

quired, additional costs of found solution,

and total time in seconds required.

Bi
2 =





0

−τ
KP i

TP i



Bi
3 =





0

τ
KP iKSij

2πTP i



 ,

and Cji = [1 0 0 0], KP 1 = 1125, KP 2 = 120,

KS12
= KS21

= 0.5, TP 1 = 25, TP 2 = 20.

Agent i uses the following local objective function to

minimize frequency deviation and control input:

J i
z(z̃

i
k) =

N−1
∑

p=0

qi∆f (∆f i
k+p+1)

2 + qi∆Pg
(∆P i

g,k+p)
2,

where qi∆f = 100 and qi∆Pg
= 10 are weight factors.

In the simulations the two subnetworks are in steady-

state, until a consumption disturbance of ∆P 2
d,k = 0.5

occurs in subnetwork 2. At that time the dynamics

of the two subnetworks become highly dependent on

one another, and the agents cannot make adequate

predictions on the evolution of their own subnetworks

without communication. We consider one agreement

making step between the agents, right after the dis-

turbance has taken place. The agents have to obtain

agreement on the values of their internetwork vari-

ables, i.e., ∆δ1 and ∆δ2 over the horizon. We compare

the solution quality of the serial and parallel scheme

with a centralized scheme, and moreover examine the

influence of the c parameter.

The third and sixth columns of Table 1 show for

the serial and parallel scheme the difference between

the optimal costs of the distributed scheme and the

centralized scheme. Since the optimization problem

turns out to be convex, the introduced methods should

converge to the optimal solution. The table shows that

this is indeed the case, although the solutions that

both schemes find have increasingly higher costs than

the centralized optimal solution for increasing c. The

serial scheme shows much slower deviation from the

optimal cost than the parallel scheme.

Fig. 4 shows the convergence of the difference be-

tween two internetwork variables in one of the inter-

connecting constraints under varying c. We see that

when the value of c increases, the difference converges

to zero faster for both the serial and the parallel ap-

proach. This is because with higher c the internetwork

variables are pushed more to attain equal values. This
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Fig. 4. Comparison of convergence of serial and par-

allel implementation for different values of c.

means that the interconnecting constraints are satisfied

after fewer iterations with higher c.

However, simply having satisfied the interconnecting

constraints does not imply that the values computed

for the local variables are optimal under these inter-

network variables. Even when internetwork variables

have been found that satisfy the interconnecting con-

straints, some iterations will be necessary to find the

optimal local variables. The second and fifth columns

in Table 1 show the number of iterations required to

come to optimality. We observe that the serial ap-

proach requires fewer iterations than the parallel ap-

proach under any c. Also in terms of seconds, the

serial approach outperforms the parallel approach, as

we see in the fourth and seventh columns in Table 1.

These preferable characteristics of the serial approach

are due to the fact that the serial approach includes

information from neighboring agents directly when it

comes available, instead of from the next iteration.

5. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have considered multi-agent Model

Predictive Control for the control of large-scale trans-

portation networks, like road traffic networks, power

distribution networks, etc. In particular, we have con-

sidered a serial and a parallel scheme for agents to

obtain agreement on the evolution of the internetwork

variables. Based on a generic transportation-network

model, we have discussed these schemes theoretically

and experimentally.

Although the parallel scheme is more frequently used

throughout the literature, we have not found advan-

tages that make this scheme in particular better than

the serial scheme. In fact, our numerical experiments

show that the serial scheme has more preferable fea-

tures in terms of solution speed and solution quality.

Future research consists of extending the methods to

situations in which the problem of controlling the

transportation network cannot be formulated as a con-

vex problem. In particular we will extend the methods

to deal with networks modeled as hybrid systems in

which both continuous and discrete dynamics appear.
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