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Economic Advantages of Applying Model Predictive Control to

Distributed Energy Resources: The Case of Micro-CHP Systems

Michiel Houwing, Rudy R. Negenborn, and Bart De Schutter

Abstract: The increasing presence of distributed

energy resources, information, and intelligence in

the electricity infrastructure increases the possibil-

ities for larger economic efficiency of power sys-

tems. This work shows the possible cost advantages

of applying a model predictive control (MPC) strat-

egy to residential energy systems. MPC can take fu-

ture information on energy demand and prices into

account and might lead to lower energy costs for

end consumers. The main objective in this paper

is to illustrate the potential for operational cost sav-

ings when adopting MPC in the local control of res-

idential energy systems, thereby mainly focusing on

micro-combined heat and power (micro-CHP) sys-

tems. We conclude that the pricing regime of house-

hold energy has a large influence on potential cost

savings.

Keywords: Demand response; Distributed energy

resources; Energy efficiency; Micro-combined heat

and power; Model predictive control; Smart power

systems.

1 Introduction

1.1 Distributed energy resources

Distributed energy resources (DERs) are expected to

play a significant role in the future electricity sup-
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ply, see e.g., [1,2]. The concept of DERs comprises

distributed electricity generation, distributed energy

storage, and responsive energy loads. DERs can

play a crucial role in supporting key policy objec-

tives such as electricity market liberalization, mit-

igating climate change, increasing the amount of

electricity generated from renewable sources, and

enhancing energy savings.In this paper we focus on

residential or micro (µ) DERs. Households con-

sume final energy mainly in the form of electric-

ity and heat and the domestic sector generally ac-

counts for a large part of a country’s electricity and

natural gas consumption. Specific potential for ap-

plying distributed generators at customer sites lies

in utilizing electricity and heat from combined heat

and power (CHP) systems. This leads to more ef-

ficient energy use and thus to cost savings and car-

bon emission reductions [3]. There has been sig-

nificant progress toward developing kW-scale CHP

applications, so-called micro-CHP or µCHP sys-

tems. These systems can be based on a Stirling en-

gine, an internal combustion engine, a gas turbine,

or fuel cell conversion technology [1,3]. For exam-

ple, Stirling µCHP systems are expected to pervade

the Dutch market substantially in the short- to mid-

term [4]. In the UK, Germany, and Japan µCHP

technology is also expected to play a significant role

[3]. In addition, the introduction of more infor-

mation and communication technology (ICT) facil-

itates the intelligent control of power networks and

DER technologies, thereby creating ‘smart’ power

systems. An ICT-enabled service that utilities could

provide to their residential customers, e.g., is offer-

ing varying electricity tariffs. Residential energy

management systems could then anticipate future

price changes leading to substantial operational cost

savings.

1.2 Paper objective and organization

This paper focuses on the intelligent control of Stir-

ling µCHP technology and connected residential en-

ergy storage systems. Thermal and electric load

shifting is hereby outside the scope of this paper.
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In previous work [5] we have already illustrated the

possibility of achieving operational cost savings by

controlling DERs more sophisticatedly. The cur-

rent work gives more thorough insight in the possi-

ble savings due to the use of a better system model,

substantially better optimization solver algorithms,

and by simulating over longer time periods and with

much longer prediction horizons. We also present

new results on the comparison of flexible µCHP

control with stringent, heat-led, control as well as on

the influence of electricity storage in the controlled

system. In that way we clearly show which elements

of the controlled system are most responsible for the

cost savings. We further also provide an overview

of the incentives for the involved actors to engage in

contracts providing the necessary real-time electric-

ity tariffs for intelligent local control of DERs.

The paper is organized as follows. In Section

II we describe the system under study as well as

the concept of model predictive control (MPC). In

Section III the economic incentives for the involved

actors to apply MPC to residential DERs are ex-

plained. In Section IV the mathematical system

models and control objectives are described. In Sec-

tion V we illustrated the performance of the pro-

posed controller through simulation studies on vari-

ous, increasingly complex systems.

2 System Description and MPC

2.1 System description

The analysis in this paper mainly focuses on the sys-

tem shown in Fig. 1. The household can fulfill its

electricity and heat demand through several alterna-

tive means. The µCHP unit installed in the house-

hold is based on Stirling technology [3]. Such a unit

consists of a Stirling engine prime mover, conver-

sion unit 1, and an auxiliary burner, conversion 2,

which can provide additional thermal power. The

Stirling engine converts natural gas ( f1) into elec-

trical energy (g)and heat (h1). The heat is sup-

plied in the form of hot water to a central heat stor-

age, the energy content of which is indicated by hs.

The auxiliary burner also converts natural gas ( f2)

into additional heat (h2). Heat consumption (hc) is

taken from the heat storage. Electrical energy can

be stored in a battery (es) (e.g., a lithium-ion bat-

tery). Electrical energy can flow to and from the bat-

tery, represented by (si) and (so), respectively. Lo-

cally generated electricity can be used directly by

the household (ec), it can be stored, or it can be

sold to the supplier (eext). Electricity can also be

imported from the supplier (iext). The supplier thus

sells primary fuel ( f1 + f2) as well as electricity to

the household. The supplier receives exported elec-

tricity from the household and possibly pays house-

holds a certain feed-back tariff.

2.2 Model predictive control

To exploit the increased operational freedom in

households with DER systems, we propose a decen-

tralized controller for household energy flows. The

controller uses the control technique Model Predic-

tive Control (MPC) [6] and has the task to auto-

matically determine which actions should be taken

in order to minimize the operational costs of ful-

filling residential electricity and heat requirements

subject to operational constraints. There are dis-

tinct and predictable patterns in residential energy

demand and energy market prices of which predic-

tive control can take advantage. The proposed con-

troller uses MPC to:

• take into account the decision freedom due to

heat and electricity storage possibilities;

• incorporate predictions on residential electric-

ity and heat demands and energy prices;

• incorporate models of the dynamics and con-

straints of installed generators and storages.

MPC is based on solving at each control step an

optimization problem over a prediction horizon sub-

ject to system dynamics, an objective function, and

constraints on states, actions, and outputs. At each

control step the optimization yields a sequence of

actions optimizing expected system behavior over

the prediction horizon. The controller applies the

computed actions (control inputs) to the system un-

til the next control step, after which the procedure is

repeated with new system measurements. Due to the

prediction horizon an MPC controller can take ben-

efit of knowledge that it may have about the future,

such as predicted energy demand or energy prices.

3 Economic Aspects of Applying

MPC to DERs

3.1 Four increasingly complex system

models

To place the potential cost savings of applying MPC

to the system described above in a broader perspec-

tive, we analyze four system models, each represent-

ing less advanced versions of the system of Fig. 1.
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Figure 1: Conceptual overview of the system under

study.

The four systems that we consider with accompa-

nying overviews of the costs for the two actors in-

volved in our analysis are shown in Fig. 2. The ac-

tors are the household with the locally installed and

controlled DERs and an aggregator. We assume the

aggregator to be an energy supply company.

The first and least advanced system consists of

a household with a conventional heating system: a

high-efficiency condensing boiler and a hot-water

storage. The house hold imports all required elec-

tricity. The second and slightly more advanced sys-

tem involves a household with a µCHP unit that

is stringently (i.e., heat-led) controlled. This con-

trol mode is explained further below in the paper.

The third system includes a more flexible MPC-

controlled µCHP system, and the fourth and most

advanced system in addition has a battery to store

electricity. The configuration of the fourth system is

the system depicted in Fig. 1.

3.2 Operational costs in the four sys-

tems

It is now our hypothesis that each subsequent sys-

tem will lead to more operational cost savings for

households as well as for the aggregator. Looking

at the first system, the aggregator and the household

will incur operational revenues and costs over a cer-

tain period of time; the aggregator will incur a net

revenue (profit) and the household a net cost.

The second system involves a household with a

stringently-controlled µCHP system. Deploying the

µCHP will lead to lower CO2 emissions [3,7] and

this alone might be enough reason for some house-

holds to invest in these systems. Another reason

may be the increased reliability of power supply. It

is plausible, however, that a household will only in-

vest in a µCHP system if the additional investment

with respect to a conventional heating system leads

to a positive net present value over a certain ac-

cepted period of time. With regulation in place on

electricity feed-back tariffs and with a possible gov-

ernment investment subsidy the net present value of

the extra investment might turn out to be positive

over a period of about 5 years [7]. Then the invest-

ment in µCHP will provide considerable cost sav-

ings considering a lifetime of the system of some

15-20 years. This is shown by the move downwards

in the household costs in Fig. 2. Due to the de-

crease in primary energy consumption of a house-

hold with µCHP (more gas use, but less electric-

ity imports) the net revenues from µCHP customers

will probably decrease for suppliers. This is even

more so if suppliers will pay households for elec-

tricity that is fed back into the system. Since the

supplier presently makes profit on electricity sold,

he has no direct incentive to reduce the number of

kWhs sold. The supplier could, however, invest in

µCHP himself and then lease µCHPs to households.

In that way he also captures customers in a compet-

itive retail market. Also, new incentive structures,

enforced by regulation, might provide suppliers with

profits that are not solely dependent on the amount

of energy sold. This is represented by the dashed

piece-wise constant decreasing line representing ag-

gregator costs in Fig. 2.

The third system of Fig. 2 might lead to more cost

advantages for households and aggregator due to the

application of MPC in µCHP control. Households

will only apply MPC if this leads to substantial cost

savings. We note that an important requirement for

the potential cost savings with MPC is the presence

of more real-time electricity pricing for household

customers: with a flat rate, anticipative behavior

aimed at cost reductions is useless. Contracts incor-

porating more real-time electricity import and/or ex-

port tariffs for residential customers could be offered

by the supplier and we assume that these contracts

are available. By providing the service of real-time

tariffs to households, a household might be willing

to share in the cost savings that MPC could entail for

him. Sharing in the cost benefits could be contractu-

ally arranged between the supplier and the house-

hold. Also, when the application of µCHP, with

or without MPC, leads to peak load reduction, the

supplier might possibly have to buy less expensive

peak electricity for its customers. Cost savings due

3



household costs

aggregator costs

System

1 2 3 4

MPC battery & MPC
household

conventional household household household

with    CHPµ
with    CHP &µ with    CHP,µ

Figure 2: Four possible configurations of residen-

tial systems (top) and the accompanying costs for

household and supplier (bottom).

to this could then be shared with households (e.g.,

via lower electricity or gas tariffs). Possible peak

load reductions could also make network operators

willing to reward households for applying (MPC-

controlled) µCHPs. These rewards could then flow

to households via their supplier. Because a govern-

ment might want to stimulate µCHP penetration in

society, it could support the technology by provid-

ing subsidies to suppliers promoting µCHP to their

customers or by making it obligatory for suppliers

to provide the service of real-time electricity pricing

to households.

In the fourth system, the addition of a battery for

electricity storage is expected to lead to more flexi-

ble control and therefore to more cost reduction po-

tential for households with MPC. Costs for the sup-

plier may further decrease by leasing batteries to

households.

In the remaining part of the paper we will quantify

the potential cost benefits of the systems described

above.

4 System Model Formulation

4.1 Mathematical system model formu-

lation

Here the mathematical model of the system of Fig.

1 is described. First we define the binary variables

vCHP
k and vaux

k , which indicate whether the installed

µCHP prime mover and auxiliary burner are in oper-

ation at a specific time step k. In addition, the binary

variables uCHP
up,k , uCHP

down,k and uaux
up,k, uaux

down,k are start-

up and shut-down indicators for the µCHP prime

mover and auxiliary burner, respectively, at time

step k.

An electric energy balance has to be satisfied re-

lating the power output of the Stirling engine, the

input and output power flows of the electricity stor-

age, the electricity consumption, and electricity ex-

changed with the energy supplier. This power bal-

ance is given by:

gk + iext,k + so,k − eext,k − si,k − ec,k = 0 , (1)

where gk = ηe · f1,k, with ηe the electric efficiency of

the Stirling engine. The power output of the Stirling

engine can be modulated between part load and full

load, which is modeled by the constraints:

f1,k ≤ vCHP
k · f1,max (2)

f1,k ≥ vCHP
k · f1,part , (3)

where f1,max and f1,part are the fuel consumption at

part and full load. For the Stirling engine there is

also a minimal operation time and a minimum down

time. The constraints that force the prime mover

to stay in operation until this minimum has been

reached are:

vCHP
k+n ≥ uCHP

up,k , n = 0, . . . , tup −1 , (4)

where tup is the minimum number of simulation time

steps that the prime mover has to stay in operation.

The constraints that force the prime mover to stay

out of operation during down-time are:

1− vCHP
k+r ≥ uCHP

down,k, r = 0, . . . , tdown −1 , (5)

where tdown is the minimum number of simulation

time steps that the prime mover has to stay out of

operation.

The fuel consumption of the auxiliary burner is

restricted to lie within:

vaux
k · f2,min ≤ f2,k ≤ vaux

k · f2,max , (6)

where f2,min and f2,max are the minimal and maxi-

mum fuel consumption of the auxiliary burner.

The electrical energy and heat stored should be

between minimum and maximum values:

es,min ≤ es,k ≤ es,max (7)

hs,min ≤ hs,k ≤ hs,max , (8)

where es,min and es,max are minimum and maximum

energy levels of the battery, and hs,min and hs,max are

minimum and maximum energy levels of the heat

storage.

The electricity flows to and from the battery are

limited by an assumed battery charge or discharge

time of half an hour [8]. This means that within one

simulation time step of 15 minutes, the battery could
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be maximally charged or discharged with an amount

equal to half the total storage capacity. Because the

battery could be charged as well as discharged in

one simulation time step, the constraint limiting the

flows to and from the battery is given by:

si,k + so,k ≤ 0.5 · es,max , (9)

where es,max is the maximum energy that can be

stored in the battery. At each time step k electrical

energy can either only be imported from or only be

exported to the external energy supplier. Constraints

on the import and export power flows are therefore:

eext,k ≤ ηe · f1,k + so,k (10)

eext,k ≤ xe,k ·Pmax (11)

iext,k ≤ ec,k + si,k (12)

iext,k ≤ xi,k ·Pmax (13)

xi,k + xe,k ≤ 1 , (14)

where Pmax is the maximum power flow allowed

through the physical connection between the house-

hold and the external network and xe,k and xik are

auxiliary binary variables indicating whether elec-

trical energy is imported or exported

The heat in the heat storage changes over time

depending on the heat consumption and generation.

The dynamics of the heat storage are modeled by:

hs,k+1 = hs,k +h1,k +h2,k −hcp,k , (15)

where h1,k = (ηtot −ηe) · f1,k, h2,k = ηtot · f2,k, and

ηtot is the total efficiency of the µCHP unit. Sim-

ilarly, the dynamics of the electricity storage are

modeled by:

es,k+1 = es,k + si,k − so,k . (16)

In order to let the modeled energy conversion

units function as they should, the binary variables

vCHP
k , uCHP

up,k , and uCHP
down,k on the one hand, and vaux

k ,

uaux
up,k, and uaux

down,k on the other, have to be linked. The

relations between these variables are:

vCHP
k − vCHP

k−1 = uCHP
up,k −uCHP

down,k (17)

vaux
k − vaux

k−1 = uaux
up,k −uaux

down,k (18)

uCHP
up,k +uCHP

down,k ≤ 1 (19)

uaux
up,k +uaux

down,k ≤ 1 . (20)

The first system of Fig. 2 with conventional heat-

ing is described by the equations (1), with only the

electricity consumption and import flows, (6), (8),

(15), (18) and (20). The model of the third system

is identical to the model of the fourth system, ex-

cept for that the equations regarding the battery are

omitted.

Stringent, heat-led, control is envisaged to be

a standard control strategy to be used for µCHPs

when they enter the market. The heuristics under-

lying this control mode are described in detail in

[7]. We briefly explain how the heat-led control was

modeled. The water in the central heat storage is

heated by the Stirling engine from a minimum tem-

perature of Ts,min CHP up to a maximum of Ts,max CHP

and should then stop operating again until Ts,min CHP

is reached again. If the temperature drops below a

certain level, Ts,min aux, the auxiliary burner heats the

water from this Ts,min aux to Ts,max aux. The values of

the temperature levels were set as shown in Fig. 3 af-

ter consulting boiler manufacturers. The Stirling en-

gine can operate at full load capacity in our model.

So the only criterion on which the µCHP is oper-

ated is temperature. Interested readers are advised

to consult [7] for more details.

4.2 MPC control objective

The objective of the MPC controller is to mini-

mize the daily operational costs of residential en-

ergy use. These costs depend on the price pf for gas

consumption, the hourly-varying import electricity

price pi,ext and the (possibly time-varying) price at

which electricity can be sold, pe,ext. The cost func-

tion for control step k with a prediction horizon of N

is therefore defined as

J(·) =
N−1

∑
m=0

(( f1,k+m + f2,k+m) · pf (21)

+ iext,k+m · pi,ext,k+m − eext,k+m · pe,ext) .

At each time step k the controller first measures

or estimates the current state of the system. Then, it

formulates its MPC problem over a prediction hori-

zon of N prediction steps, where the length of one

prediction step is defined as 15 minutes. The result-

ing optimization problem involves minimizing (21)

subject to the equality and inequality constraints

(1)–(20) (or a selection thereof, depending on the

system studied) over the prediction horizon N. Due

to the occurrence of both continuous-valued vari-

ables and binary-valued variables in combination

with a linear objective function and linear equality

and inequality constraints, this optimization prob-

lem is a mixed-integer linear programming problem.

5



,min_aux sT

T ,min_CHP s

s,max_aux T

Ts,max_CHP = 75 °C

= 58 °C

= 55 °C

= 53 °C

Figure 3: Temperature levels of the water in the heat

storage with which the thermal-led control operates.

5 Simulation Results

5.1 Simulation input

Residential electricity and aggregated heat demand

profiles have been created with 2006 data from ‘En-

ergieNed’, the Dutch Federation of Energy Compa-

nies. The profiles represent the consumption for an

average Dutch household. Heat profiles have a reso-

lution of one hour and electricity profiles of 15 min-

utes. We used a gas price of 0.06¤/kWh [9]. The

hourly varying electricity price has been constructed

by substituting the variable supply part of the resi-

dential electricity tariff (0.06¤/kWh on a total vari-

able tariff of about 0.17¤/kWh [10]) with Dutch

power exchange prices of 2006. Because power ex-

change prices are known a day in advance these can

be conveyed to the household and used in the MPC

strategy. We have assumed the predicted residen-

tial heat and electricity demand which the MPC con-

troller uses as being equal to the actual demand. In

calculating the heat storage content we have used a

storage volume of 100 liters and an environmental

temperature of 20 ◦C. In the MPC model minimum

and maximum temperatures for the heat storage of

55 ◦C and 80 ◦C were set, respectively. The battery

has a storage capacity of 2 kWh.

5.2 Results

We have implemented the systems and MPC con-

trollers in Matlab v7.3 [11] using ILOG CPLEX

v10 through the Tomlab interface to Matlab [12].

Various other publicly and commercially available

solvers (such as, e.g., miqp, LP Solve, and MIQPbb)

for mixed-integer optimization problems were not

able to solve the complex mixed-integer optimiza-

tion problems at hand. With a prediction horizon of,

e.g., 96 steps, at each simulation time step an op-

timization problem consisting of around 2000 equa-

tions and 1000 variables (continuous and binary) has

to be solved.

We have simulated system behavior for a three

month winter period with prediction lengths N for

the MPC controller varying between 1 and 96 time

steps. The simulation results are shown in Fig. 4 and

5. Fig. 5 differs from Fig. 4 in that simulations were

done with an electricity export price of 0. In Fig. 4

the feed-back tariff for households was equal to the

variable import tariff.

Looking at the results of Fig. 4 and 5 and com-

paring them with our hypotheses of Section III, the

following insights are gained. The conventional sys-

tem leads to energy costs of around 540¤ in the 3

month period. A household with a heat-led µCHP

will have costs of around 490¤ when there is no

feed-back tariff and 382¤ with the variable tariff.

This shows the savings for µCHP households and

the necessity for a feed-back tariff to make µCHP

really financially attractive to households. The sav-

ings that can be achieved without a feed back tar-

iff are too little to lead to acceptable returns on in-

vestment and therefore will not convince consumers

with average annual heat and electricity demand to

invest in Stirling µCHP.

With the more flexible MPC control applied to

µCHP cost savings can be achieved when compared

to the heat-led system if a sufficiently long predic-

tion horizon is used by the controller. Substantial

cost savings can be achieved when there is no elec-

tricity feed-back tariff. For N = 1 savings are then

around 53¤ and around 64¤ for N = 96. When a

variable feed-back tariff is present, MPC does not

lead to significant savings (around 6¤, for N = 96

when compared to the heat-led system) and will

probably not outweigh the investments in the MPC

controller and additional ICT.

Adding the battery storage of 2 kWh capacity to

an MPC controlled system leads to additional sav-

ings of about 30¤ in 3 months (with feed-back tar-

iff present). These savings are exactly equal when

adding the battery either to the conventional sys-

tem or to the µCHP system. When there is no

feed-back tariff these savings are only around 17¤.

With present investment costs of residential batter-

ies of around 500–1000¤/kWh [8] these savings

will not outweigh the investments in a stand-alone

battery. With possible pluggable hybrid vehicles in

the future, however, using these vehicles as MPC-

controlled electricity storage systems at times when

the user does not drive the car, seems a very inter-

esting option.
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for different systems, with equal electricity import

and export tariffs.
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Figure 5: Full simulation costs, for varying N, and

for different systems, with no export tariff.

6 Conclusions and Further

Study

We have discussed the application of model predic-

tive control (MPC) to various, increasingly complex

configurations of households. Simulation results il-

lustrated that MPC gives better outcomes in terms of

daily energy costs when a larger prediction horizon

is adopted by the controller. We also illustrated that

applying MPC to µCHP does not lead to substantial

energy cost savings in the case where the electricity

feed-back tariff is equal to the import tariff. How-

ever, with a zero feed-back tariff, MPC control of

µCHP is financially very attractive.

We thus showed that MPC control of distributed

energy resources (DERs) can lead to cost savings,

but that these savings are strongly dependent on the

controlled physical systems and their surroundings

in terms of (regulated) energy tariffs. We see MPC

as a means of making DERs more cost effective due

to the possibility of decreasing variable costs, but

recommend MPC controllers to be designed in such

a way that they are flexible and can adjust to evolv-

ing systems and system environments.

Interesting options for further research are to ap-

ply MPC to fuel cell µCHP systems, due to the in-

herent different characteristics of fuel cells as com-

pared to Stirling engines (e.g., the much smaller

heat-to-power ratio for the fuel cell). Also larger

heat storage capacities might improve the benefits

of MPC control of µCHP, due to the increased flex-

ibility in control. Further, virtual power plants, in

which clusters of µCHP households could be cen-

trally controlled using an MPC approach, might also

lead to lower energy costs for a cluster of households

and could further lead to better economies of scale

in terms of information and communication technol-

ogy investments.
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