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Multi-Agent Reinforcement Learning: An

Overview

Lucian Buşoniu1, Robert Babuška2, and Bart De Schutter3

Abstract Multi-agent systems can be used to address problems in a variety of do-

mains, including robotics, distributed control, telecommunications, and economics.

The complexity of many tasks arising in these domains makes them difficult to solve

with preprogrammed agent behaviors. The agents must instead discover a solution

on their own, using learning. A significant part of the research on multi-agent learn-

ing concerns reinforcement learning techniques. This chapter reviews a representa-

tive selection of Multi-Agent Reinforcement Learning (MARL) algorithms for fully

cooperative, fully competitive, and more general (neither cooperative nor competi-

tive) tasks. The benefits and challenges of MARL are described. A central challenge

in the field is the formal statement of a multi-agent learning goal; this chapter re-

views the learning goals proposed in the literature. The problem domains where

MARL techniques have been applied are briefly discussed. Several MARL algo-

rithms are applied to an illustrative example involving the coordinated transporta-

tion of an object by two cooperative robots. In an outlook for the MARL field, a set

of important open issues are identified, and promising research directions to address

these issues are outlined.
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1 Introduction

A multi-agent system is a group of autonomous, interacting entities sharing a com-

mon environment, which they perceive with sensors and upon which they act with

actuators [107, 135, 139]. Multi-agent systems are finding applications in a vari-

ety of domains including robotic teams, distributed control, resource management,

collaborative decision support systems, data mining, etc. [4, 33, 88, 100, 115, 125].

They may arise as the most natural way of looking at a system, or may provide an

alternative perspective on systems that are originally regarded as centralized. For

instance, in robotic teams the control authority is naturally distributed among the

robots [115]. In resource management, while the resources could be managed by

a central authority, identifying each resource with an agent may provide a helpful,

distributed perspective on the system [33].

Although the agents in a multi-agent system can be endowed with behaviors

designed in advance, they often need to learn new behaviors online, such that the

performance of the agent or of the whole multi-agent system gradually improves

[106, 115]. This is usually because the complexity of the environment makes the a

priori design of good agent behaviors difficult or even impossible. Moreover, in an

environment that changes over time, a hardwired behavior may become unappropri-

ate.

A reinforcement learning (RL) agent learns by interacting with its dynamic en-

vironment [58, 106, 120]. At each time step, the agent perceives the state of the

environment and takes an action, which causes the environment to transit into a

new state. A scalar reward signal evaluates the quality of each transition, and the

agent has to maximize the cumulative reward along the course of interaction. The

RL feedback (the reward) is less informative than in supervised learning, where

the agent would be given the correct actions to take [27] (such information is un-

fortunately not always available). The RL feedback is, however, more informative

than in unsupervised learning, where there is no explicit feedback on the perfor-

mance [104]. Well-understood, provably convergent algorithms are available for

solving the single-agent RL task. Together with the simplicity and generality of

the setting, this makes RL attractive also for multi-agent learning.

This chapter provides a comprehensive overview of multi-agent reinforcement

learning (MARL) . We mainly focus on autonomous agents learning how to solve

dynamic tasks online, using algorithms that originate in temporal-difference RL .

We discuss the contributions of game theory to MARL , as well as important algo-

rithms for static tasks.

We first outline the benefits and challenges of MARL . A central challenge in

the field is the definition of an appropriate formal goal for the learning multi-agent

system. We present the different learning goals proposed in the literature, which

consider the stability of the agent’s learning dynamics on the one hand, and its adap-

tation to the changing behavior of the other agents on the other hand. The core of

the chapter consists of a detailed study of a representative selection of MARL algo-

rithms, which allows us to identify the structure of the field and to provide insight

into the state of the art. This study organizes the algorithms first by the type of
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task they address: fully cooperative, fully competitive, and mixed (neither cooper-

ative nor competitive); and then by the type of learning goal they target: stability,

adaptation, or a combination of both. Additionally, we briefly discuss the problem

domains where MARL techniques have been applied, and we illustrate the behav-

ior of several MARL algorithms in a simulation example involving the coordinated

transportation of an object by two cooperative agents. In an outlook for the MARL

field, we identify a set of important open issues and suggest promising directions to

address these issues.

The remainder of this chapter is organized as follows. Section 2 introduces the

necessary background in single-agent RL , multi-agent RL , and game theory. Sec-

tion 3 reviews the main benefits and challenges of MARL , and Section 4 presents

the MARL goals proposed in the literature. In Section 5, MARL algorithms are

classified and reviewed in detail. Section 6 reviews several application domains of

MARL , while Section 7 provides an example involving object transportation. Fi-

nally, Section 8 distills an outlook for the MARL field, Section 9 presents related

work, and Section 10 concludes the chapter.

2 Background: reinforcement learning

In this section, the necessary background on single-agent and multi-agent RL is

introduced. First, the single-agent task is defined and its solution is characterized.

Then, the multi-agent task is defined. Static multi-agent tasks are introduced sepa-

rately, together with necessary game-theoretic concepts. The discussion is restricted

to discrete state and action spaces having a finite number of elements, as a large

majority of MARL results is given for this setting.

2.1 The single-agent case

The formal model of single-agent RL is the Markov decision process.

Definition 1. A finite Markov decision process is a tuple 〈X ,U, f ,ρ〉 where X is the

finite set of environment states, U is the finite set of agent actions, f : X ×U ×X →
[0,1] is the state transition probability function, and ρ : X ×U ×X →R is the reward

function.1

The state xk ∈ X describes the environment at each discrete time step k. The

agent observes the state and takes an action uk ∈ U . As a result, the environment

changes its state to some xk+1 ∈ X according to the transition probabilities given by

1 Throughout the chapter, the standard control-theoretic notation is used: x for state, X for state

space, u for control action, U for action space, f for environment (process) dynamics. We denote

reward functions by ρ , to distinguish them from the instantaneous rewards r and the returns R. We

denote agent policies by h.
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f : the probability of ending up in xk+1 after uk is executed in xk is f (xk,uk,xk+1).
The agent receives a scalar reward rk+1 ∈ R, according to the reward function ρ:

rk+1 = ρ(xk,uk,xk+1). This reward evaluates the immediate effect of action uk, i.e.,

the transition from xk to xk+1. It says, however, nothing directly about the long-term

effects of this action. We assume that the reward function is bounded.

For deterministic systems, the transition probability function f is replaced by a

simpler transition function, f : X ×U → X . It follows that the reward is completely

determined by the current state and action: rk+1 = ρ(xk,uk), ρ : X ×U → R. Some

Markov decision processes have terminal states, i.e., states that once reached, can

no longer be left; all the rewards received from a terminal state are 0. In such a

case, the learning process is usually separated in distinct trials (episodes), which are

trajectories starting from some initial state and ending in a terminal state.

The behavior of the agent is described by its policy, which specifies how the agent

chooses its actions given the state. The policy may be either stochastic, h : X ×U →
[0,1], or deterministic, h : X →U . A policy is called stationary if it does not change

over time. The agent’s goal is to find a policy that maximizes, from every state x,

the expected discounted return:

Rh(x) = E

{
∞

∑
k=0

γkrk+1

∣∣∣x0 = x,h

}
(1)

where γ ∈ [0,1) is the discount factor, and the expectation is taken over the prob-

abilistic state transitions under the policy h. The return R compactly represents the

reward accumulated by the agent in the long run. Other possibilities of defining the

return exist [58]. The discount factor γ can be regarded as encoding an increasing

uncertainty about rewards that will be received in the future, or as a means to bound

the sum which otherwise might grow unbounded.

The task of the agent is therefore to maximize its long-term performance (return),

while only receiving feedback about its immediate, one-step performance (reward).

One way it can achieve this is by computing the optimal state-action value function

(Q-function). The Q-function Qh : X ×U → R gives the expected return obtained

by the policy h from any state-action pair:

Qh(x,u) = E

{
∞

∑
k=0

γkrk+1

∣∣∣x0 = x,u0 = u,h

}

The optimal Q-function is defined as Q∗(x,u) = maxh Qh(x,u). It satisfies the Bell-

man optimality equation:

Q∗(x,u) = ∑
x′∈X

f (x,u,x′)
[
ρ(x,u,x′)+ γ max

u′
Q∗(x′,u′)

]
∀x ∈ X ,u ∈U (2)

This equation states that the optimal value of taking u in x is the expected immediate

reward plus the expected (discounted) optimal value attainable from the next state

(the expectation is explicitly written as a sum since X is finite).
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Once Q∗ is available, an optimal policy (i.e., one that maximizes the return) can

be computed by choosing in every state an action with the largest optimal Q-value:

h
∗
(x) = argmax

u
Q∗(x,u) (3)

When multiple actions attain the largest Q-value, any of them can be chosen and

the policy remains optimal. In such a case, here as well as in the sequel, the ‘arg’

operator is interpreted as returning only one of the equally good solutions. A policy

that maximizes a Q-function in this way is said to be greedy in that Q-function. So,

an optimal policy can be found by first determining Q∗ and then computing a greedy

policy in Q∗.

A broad spectrum of single-agent RL algorithms exists, e.g., model-free methods

based on the online estimation of value functions [6,89,118,120,137], model-based

methods (typically called dynamic programming) [8,96], and model-learning meth-

ods that estimate a model, and then learn using model-based techniques [79, 119].

The model comprises the transition probabilities and the reward function. Many

MARL algorithms are derived from a model-free algorithm called Q-learning2

[137], see e.g., [17, 42, 49, 67, 69, 70].

Q-learning [137] turns (2) into an iterative approximation procedure. Q-learning

starts with an arbitrary Q-function, observes transitions (xk,uk,xk+1,rk+1), and after

each transition updates the Q-function with:

Qk+1(xk,uk) = Qk(xk,uk)+αk

[
rk+1 + γ max

u′
Qk(xk+1,u

′)−Qk(xk,uk)
]

(4)

The term between square brackets is the temporal difference, i.e., the difference

between the current estimate Qk(xk,uk) of the optimal Q-value of (xk,uk) and

the updated estimate rk+1 + γ maxu′ Qk(xk+1,u
′). This new estimate is a sample of

the right-hand side of the Bellman equation (2), applied to Qk in the state-action

pair (xk,uk). In this sample, x′ is replaced by the observed next state xk+1, and

ρ(xk,uk,x
′) by the observed reward rk+1. The learning rate αk ∈ (0,1] can be time-

varying, and usually decreases with time.

The sequence Qk provably converges to Q∗ under the following conditions [53,

129, 137]:

• Explicit, distinct values of the Q-function are stored and updated for each state-

action pair.

• The sum ∑∞
k=0 α2

k is finite, while ∑∞
k=0 αk is infinite.

• Asymptotically, all the state-action pairs are visited infinitely often.

The third requirement can be satisfied if, among others, the agent keeps trying all

the actions in all the states with nonzero probabilities. This is called exploration,

and can be done e.g., by choosing at each step a random action with probability

ε ∈ (0,1), and a greedy action with probability (1− ε). The ε-greedy exploration

procedure is obtained. The probability ε is usually decreased over time. Another

2 Note that algorithm names are shown in italics throughout the chapter, e.g., Q-learning.
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option is to use the Boltzmann exploration procedure, which in state x selects action

u with probability:

h(x,u) =
eQ(x,u)/τ

∑ū eQ(x,ū)/τ
(5)

where τ > 0, the temperature, controls the randomness of the exploration. When

τ → 0, (5) becomes equivalent with greedy action selection (3). When τ →∞, action

selection is purely random. For τ ∈ (0,∞), higher-valued actions have a greater

chance of being selected than lower-valued ones.

2.2 The multi-agent case

The generalization of the Markov decision process to the multi-agent case is the

stochastic game.

Definition 2. A stochastic game is a tuple 〈X ,U1, . . . ,Un, f ,ρ1, . . . ,ρn〉 where n is

the number of agents, X is the finite set of environment states, Ui, i = 1, . . . ,n are

the finite sets of actions available to the agents, yielding the joint action set UUU =
U1 ×·· ·×Un, f : X ×UUU ×X → [0,1] is the state transition probability function, and

ρi : X ×UUU ×X → R, i = 1, . . . ,n are the reward functions of the agents.

We assume that the reward functions are bounded. In the multi-agent case, the

state transitions are the result of the joint action of all the agents, uuuk = [uT
1,k, . . . ,u

T
n,k]

T,uuuk ∈

UUU , ui,k ∈Ui (where T denotes vector transpose). The policies hi : X×Ui → [0,1] form

together the joint policy hhh. Because the rewards ri,k+1 of the agents depend on the

joint action, their returns depend on the joint policy:

Rhhh
i (x) = E

{
∞

∑
k=0

γkri,k+1

∣∣∣x0 = x,hhh

}

The Q-function of each agent depends on the joint action and on the joint policy,

Qhhh
i : X ×UUU → R, with Qhhh

i (x,uuu) = E
{

∑∞
k=0 γkri,k+1 |x0 = x,uuu0 = uuu,hhh

}
.

In fully cooperative stochastic games, the reward functions are the same for all

the agents: ρ1 = · · ·= ρn. It follows that the returns are also the same, Rhhh
1 = · · ·= Rhhh

1 ,

and all the agents have the same goal: to maximize the common return. If n = 2 and

ρ1 = −ρ2, the two agents have opposing goals, and the stochastic game is fully

competitive.3 Mixed games are stochastic games that are neither fully cooperative

nor fully competitive.

3 Competition can also arise when more than two agents are involved. However, the literature on

RL in fully-competitive games typically deals with the two-agent case only.
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2.3 Static, repeated, and stage games

Many MARL algorithms are designed for static (stateless) games, or work in a

stage-wise fashion, i.e., separately in the static games that arise in every state of

the stochastic game. Next, we introduce some game-theoretic concepts regarding

static games that are necessary to understand such algorithms [3, 39].

A static (stateless) game is a stochastic game with no state signal and no dynam-

ics, i.e., X = /0. A static game is described by a tuple 〈U1, . . . ,Un,ρ1, . . . ,ρn〉, with

the rewards depending only on the joint actions ρi : UUU → R. When there are only

two agents, the game is often called a bimatrix game, because the reward functions

of each of the two agents can be represented as a |U1|× |U2| matrix with the rows

corresponding to the actions of agent 1, and the columns to the actions of agent 2,

where |·| denotes set cardinality. Fully competitive static games are also called zero-

sum games, because the sum of the agents’ reward matrices is a zero matrix. Mixed

static games are also called general-sum games, because there is no constraint on

the sum of the agents’ rewards.

A stage game is the static game that arises in a certain state of a stochastic game.

The reward functions of the stage game in state x are the Q-functions of the stochas-

tic game projected on the joint action space, when the state is fixed at x. In general,

the agents visit the same state of a stochastic game multiple times, so the stage

game is a repeated game. In game theory, a repeated game is a static game played

repeatedly by the same agents. The main difference from a one-shot game is that

the agents can use some of the game iterations to gather information about the other

agents’ behavior or about the reward functions, and make more informed decisions

thereafter.

In a static or repeated game, the policy loses the state argument and transforms

into a strategy σi : Ui → [0,1]. An agent’s strategy for the stage game arising in some

state x of the stochastic game is the projection of its policy hi on its action space Ui,

when the state is fixed at x. MARL algorithms relying on the stage-wise approach

learn strategies separately for every stage game. The agent’s overall policy is then

the aggregate of these strategies.

An important solution concept for static games is the Nash equilibrium. First,

define the best response of agent i to a vector of opponent strategies as the strategy

σ∗
i that achieves the maximum expected reward given these opponent strategies:

E{ri |σ1, . . . ,σi, . . . ,σn} ≤ E{ri |σ1, . . . ,σ
∗
i , . . . ,σn} ∀σi (6)

A Nash equilibrium is a joint strategy [σ∗
1 , . . . ,σ

∗
n ]

T such that each individual

strategy σ∗
i is a best-response to the others (see e.g., [3]). The Nash equilibrium

describes a status quo, from which no agent can benefit by changing its strategy as

long as all the other agents keep their strategies constant. Any static game has at

least one (possibly stochastic) Nash equilibrium; some static games have multiple

Nash equilibria. Many MARL algorithms reviewed in the sequel strive to converge

to Nash equilibria.
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Stochastic strategies (and consequently, stochastic policies) are of a more imme-

diate importance in MARL than in single-agent RL , because they are necessary to

express certain solution concepts, such as the Nash equilibrium described above.

3 Benefits and challenges in multi-agent reinforcement learning

In addition to benefits owing to the distributed nature of the multi-agent solution,

such as the speedup made possible by parallel computation, multiple RL agents can

harness new benefits from sharing experience, e.g., by communication, teaching, or

imitation. Conversely, besides challenges inherited from single-agent RL , includ-

ing the curse of dimensionality and the exploration-exploitation tradeoff, several

new challenges arise in MARL : the difficulty of specifying a learning goal, the

nonstationarity of the learning problem, and the need for coordination.

3.1 Benefits of MARL

Experience sharing can help RL agents with similar tasks learn faster and reach

better performance. For instance, the agents can exchange information using com-

munication [123], skilled agents may serve as teachers for the learner [30], or the

learner may watch and imitate the skilled agents [95].

A speed-up can be realized in MARL thanks to parallel computation, when the

agents exploit the decentralized structure of the task. This direction has been inves-

tigated in e.g., [21, 38, 43, 61, 62].

When one or more agents fail in a multi-agent system, the remaining agents

can take over some of their tasks. This implies that MARL is inherently robust.

Furthermore, by design most multi-agent systems also allow the easy insertion of

new agents into the system, leading to a high degree of scalability.

Existing MARL algorithms often require some additional preconditions to theo-

retically guarantee and to exploit the above benefits [67, 95]. Relaxing these condi-

tions and further improving the performance of MARL algorithms in this context is

an active field of study.

3.2 Challenges in MARL

The curse of dimensionality is caused by the exponential growth of the discrete

state-action space in the number of state and action variables (dimensions). Be-

cause basic RL algorithms like Q-learning estimate values for each possible dis-

crete state or state-action pair, this growth leads directly to an exponential increase

of their computational complexity. The complexity of MARL is exponential also in
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the number of agents, because each agent adds its own variables to the joint state-

action space. This makes the curse of dimensionality more severe in MARL than in

single-agent RL .

Specifying a good MARL goal in the general stochastic game is a difficult chal-

lenge, because the agents’ returns are correlated and cannot be maximized indepen-

dently. Several types of MARL goals have been proposed in the literature, which

consider stability of the agent’s learning dynamics [50], adaptation to the changing

behavior of the other agents [93], or both stability and adaptation [14,16,17,26,70].

A detailed analysis of this open problem is given in Section 4.

Nonstationarity arises in MARL because all the agents in the system are learning

simultaneously. Each agent is therefore faced with a moving-target learning prob-

lem: the best policy changes as the other agents’ policies change.

The exploration-exploitation trade-off requires online (single-agent as well as

multi-agent) RL algorithms to strike a balance between the exploitation of the

agent’s current knowledge, and exploratory, information-gathering actions taken to

improve that knowledge. For instance, the Boltzmann policy (5) is a simple way of

trading off exploration with exploitation. The exploration procedure is crucial for

the efficiency of RL algorithms. In MARL , further complications arise due to the

presence of multiple agents. Agents explore to obtain information not only about

the environment, but also about the other agents in order to adapt to their behavior.

Too much exploration, however, can destabilize the other agents, thereby making

the learning task more difficult for the exploring agent.

The need for coordination stems from the fact that the effect of any agent’s action

on the environment depends also on the actions taken by the other agents. Hence,

the agents’ choices of actions must be mutually consistent in order to achieve their

intended effect. Coordination typically boils down to consistently breaking ties be-

tween equally good joint actions or strategies. Although coordination is typically

required in cooperative settings, it may also be desirable for self-interested agents,

e.g., if the lack of coordination negatively affects all the agents. Consider, as an

example, that a number of countries have interconnected electricity networks, and

each country’s network is managed by an agent. Although each agent’s primary goal

is to optimize its own country’s energy interests, the agents must still coordinate on

the power flows between neighboring countries in order to achieve a meaningful

solution [84].

4 Multi-agent reinforcement learning goal

In fully cooperative stochastic games, the common return can be jointly maximized.

In other cases, however, the agents’ returns are typically different and correlated,

and they cannot be maximized independently. Specifying a good general MARL

goal is a difficult problem.

In this section, the learning goals proposed in the literature are reviewed. These

goals incorporate the stability of the learning dynamics of the agent on the one
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hand, and the adaptation to the changing behavior of the other agents on the other

hand. Stability essentially means the convergence to a stationary policy, whereas

adaptation ensures that performance is maintained or improved as the other agents

are changing their policies.

The goals typically formulate conditions for static games, in terms of strategies

and rewards. Some of the goals can be extended to dynamic games by requiring

that conditions are satisfied stage-wise for all the states of the dynamic game. In

this case, the goals are formulated in terms of stage strategies and expected returns

instead of strategies and rewards.

Convergence to equilibria is a basic stability requirement [42, 50]. It means the

agents’ strategies should eventually converge to a coordinated equilibrium. Nash

equilibria are most frequently used. However, concerns have been raised regarding

their usefulness [108]. For instance, one objection is that the link between stage-wise

convergence to Nash equilibria and performance in the dynamic stochastic game is

unclear.

In [16, 17], convergence is required for stability, and rationality is added as an

adaptation criterion. For an algorithm to be convergent, the authors of [16, 17] re-

quire that the learner converges to a stationary strategy, given that the other agents

use an algorithm from a predefined, targeted class of algorithms. Rationality is de-

fined in [16,17] as the requirement that the agent converges to a best-response when

the other agents remain stationary. Though convergence to a Nash equilibrium is not

explicitly required, it arises naturally if all the agents in the system are rational and

convergent.

An alternative to rationality is the concept of no-regret, which is defined in [14]

as the requirement that the agent achieves a return that is at least as good as the

return of any stationary strategy, and this holds for any set of strategies of the other

agents. This requirement prevents the learner from ‘being exploited’ by the other

agents. Note that for certain types of static games, no-regret learning algorithms

converge to Nash equilibria [54, 143].

Targeted optimality/compatibility/safety are adaptation requirements expressed

in the form of bounds on the average reward [93]. Targeted optimality demands

an average reward, against a targeted set of algorithms, which is at least the aver-

age reward of a best-response. Compatibility prescribes an average reward level in

self-play, i.e., when the other agents use the learner’s algorithm. Safety demands

a safety-level average reward against all other algorithms. An algorithm satisfying

these requirements does not necessarily converge to a stationary strategy.

Other properties of (but not necessarily requirements on) MARL algorithms can

also be related to stability and adaptation. For instance, opponent-independent learn-

ing is related to stability, whereas opponent-aware learning is related to adapta-

tion [15, 70]. An opponent-independent algorithm converges to a strategy that is

part of an equilibrium solution regardless of what the other agents are doing. An

opponent-aware algorithm learns models of the other agents and reacts to them us-

ing some form of best-response. Prediction and rationality as defined in [26] are

related to stability and adaptation, respectively. Prediction is the agent’s capability
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to learn accurate models of the other agents. An agent is called rational in [26] if it

maximizes its expected return given its models of the other agents.

Table 1 summarizes these requirements and properties of MARL algorithms. The

names under which the authors refer to the stability and adaptation properties are

given in the first two columns. Pointers to some relevant literature are provided in

the last column.

Table 1 Stability and adaptation in MARL. Reproduced from [20], © 2008 IEEE.

Stability property Adaptation property Some relevant work

convergence rationality [17, 31]

convergence no-regret [14]

— targeted optimality, compatibility, safety [93, 108]

opponent-independent opponent-aware [15, 70]

equilibrium learning best-response learning [13]

prediction rationality [26]

4.0.1 Remarks and open issues

Stability of the learning process is needed, because the behavior of stable agents

is more amenable to analysis and meaningful performance guarantees. Moreover, a

stable agent reduces the nonstationarity in the learning problem of the other agents,

making it easier to solve. Adaptation to the other agents is needed because their

behavior is generally unpredictable. Therefore, a good MARL goal must include

both components. Since ‘perfect’ stability and adaptation cannot be achieved simul-

taneously, an algorithm should guarantee bounds on both stability and adaptation

measures. From a practical viewpoint, a realistic learning goal should also include

bounds on the transient performance, in addition to the usual asymptotic require-

ments.

Convergence and rationality have been used in dynamic games in the stage-wise

fashion already explained [16, 17]. No-regret has not been used in dynamic games,

but it could be extended in a similar way. It is unclear how targeted optimality,

compatibility, and safety could be extended.

5 Multi-agent reinforcement learning algorithms

This section first provides a taxonomy of MARL algorithms, followed by a detailed

review of a representative selection of algorithms.

MARL algorithms can be classified along several dimensions, among which

some, such as the task type, stem from properties of multi-agent systems in general.

Others, like the awareness of the other agents, are specific to learning multi-agent
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systems. The proposed classifications are illustrated using the set of algorithms se-

lected for review. All these algorithms will be discussed separately in Sections 5.1–

5.4.

The type of task considered by the learning algorithm leads to a corresponding

classification of MARL techniques into those addressing fully cooperative, fully

competitive, or mixed stochastic games. A significant number of algorithms are

designed for static (stateless) tasks only. Figure 1 summarizes the breakdown of

MARL algorithms by task type.

Single-agent RL

Nash-Q

CE-Q

Asymmetric-Q

NSCP

WoLF-PHC

PD-WoLF

EXORL

Fictitious Play

MetaStrategy

IGA

WoLF-IGA

GIGA

GIGA-WoLF

AWESOME

Hyper-Q

Static Dynamic

Mixed

JAL

FMQ

Team-Q

Distributed-Q

OAL

Static Dynamic

Fully cooperative

Minimax-Q

Fully competitive
[29]

[59]

[70]

[67]

[136]

[69]

[19]

[93]

[109]

[17]

[144]

[14]

[31]

[124]

[32, 75, 105]

[49]

[42]

[64]

[138]

[17]

[5]

[116]

Fig. 1 Breakdown of MARL algorithms by the type of task they address. Reproduced from [20],

© 2008 IEEE.

The degree of awareness of other learning agents exhibited by MARL algorithms

is strongly related to the learning goal that the agents aim for. Algorithms focused

on stability (convergence) only are typically unaware and independent of the other

learning agents. Algorithms that consider adaptation to the other agents clearly need

to be aware to some extent of their behavior. If adaptation is taken to the extreme

and stability concerns are disregarded, algorithms are only tracking the behavior of

the other agents. The degree of agent awareness exhibited by the algorithms can

be determined even if they do not explicitly target stability or adaptation goals.

All agent-tracking algorithms and many agent-aware algorithms use some form of

opponent modeling to keep track of the other agents’ policies [25, 49, 133].

The field of origin of the algorithms is a taxonomy axis that shows the variety

of research inspiration contributing to MARL . MARL can be regarded as a fusion

of temporal-difference RL (especially Q-learning), game theory, and more general

direct policy search techniques. Figure 2 presents the organization of the MARL

algorithms considered by their field of origin.
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single-agent RL

JAL

Distributed-Q

EXORL

Hyper-Q

FMQ

minimax-Q

Nash-Q

team-Q

NSCP

CE-Q
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OAL

WoLF-PHC

PD-WoLF

Direct Policy Search

Temporal-
Difference RL

Game Theory

AWESOME

MetaStrategy

IGA

WoLF-IGA

GIGA
GIGA-WoLF

fictitious play

[29]

[59]

[70]

[67]

[136]

[69]

[19]

[93]

[109]

[17]

[144]

[14]

[31]

[124]

[32, 75, 105] [49]

[42]

[64]

[138]

[17]

[5]

[116]

Fig. 2 MARL encompasses temporal-difference reinforcement learning, game theory and direct

policy search techniques. Reproduced from [20], © 2008 IEEE.

Other classification criteria include the following:

• Homogeneity of the agents’ learning algorithms: the algorithm only works if all

the agents use it (homogeneous learning agents, e.g., team-Q, Nash-Q), or other

agents can use other learning algorithms (heterogeneous learning agents, e.g.,

AWESOME, WoLF-PHC).

• Assumptions on the agent’s prior knowledge about the task: a task model is

available to the learning agent (model-based learning, e.g., AWESOME) or not

(model-free learning, e.g., team-Q, Nash-Q, WoLF-PHC). The model consists of

the transition function (unless the game is static) and of the reward functions of

the agents.

• Assumptions on the agent’s inputs. Typically the inputs are assumed to exactly

represent the state of the environment. Differences appear in the agent’s obser-

vations of other agents: it might need to observe the actions of the other agents

(e.g., team-Q, AWESOME), their actions and rewards (e.g., Nash-Q), or neither

(e.g., WoLF-PHC).

The remainder of this section discusses in detail the MARL algorithms selected

for review. The algorithms are grouped first by the type of task they address, and then

by the degree of agent awareness, as depicted in Table 2. So, algorithms for fully co-

operative tasks are presented first, in Section 5.1. Explicit coordination techniques

that can be applied to algorithms from any class are discussed separately in Sec-

tion 5.2. Algorithms for fully competitive tasks are reviewed in Section 5.3. Finally,

Section 5.4 presents algorithms for mixed tasks. Algorithms that are designed only

for static tasks are discussed in separate paragraphs in the text. Simple examples are

provided to illustrate several central issues that arise.
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5.1 Fully cooperative tasks

In a fully cooperative stochastic game, the agents have the same reward function

(ρ1 = · · · = ρn) and the learning goal is to maximize the common discounted re-

turn. If a centralized controller were available, the task would reduce to a Markov

decision process, the action space of which would be the joint action space of the

stochastic game. In this case, the goal could be achieved e.g., by learning the optimal

joint-action values with Q-learning:

Qk+1(xk,uuuk) = Qk(xk,uuuk)+α
[
rk+1 + γ max

uuu′
Qk(xk+1,uuu

′)−Qk(xk,uuuk)
]

(7)

and then using a greedy policy. However, the agents are independent decision mak-

ers, and a coordination problem arises even if all the agents learn in parallel the

common optimal Q-function using (7). It may seem that the agents could use greedy

policies applied to Q∗ to maximize the common return:

h
∗
i (x) = argmax

ui

max
u1,...,ui−1,ui+1,...,un

Q∗(x,uuu) (8)

However, in certain states, multiple joint actions may be optimal. In the absence of

additional coordination mechanisms, different agents may break these ties among

multiple optimal joint actions in different ways, and the resulting joint action may

be suboptimal.

Example 1. The need for coordination. Consider the situation illustrated in Figure 3:

two mobile agents need to avoid an obstacle while maintaining formation (i.e., main-

taining their relative positions). Each agent i has three available actions: go straight

(Si), left (Ri), or right (Li).

For a given state (position of the agents), the Q-function can be projected on the

joint action space. For the state represented in Figure 3 (left), a possible projection

is represented in the table on the right. This table describes a fully cooperative static

(stage) game. The rows correspond to the actions of agent 1, and the columns to the

actions of agent 2. If both agents go left, or both go right, the obstacle is avoided

while maintaining the formation: Q(L1,L2) = Q(R1,R2) = 10. If agent 1 goes left,

Table 2 Breakdown of MARL algorithms by task type and degree of agent awareness. Reproduced

from [20], © 2008 IEEE.

Task type →
↓ Agent awareness

Cooperative Competitive Mixed

Independent coordination-free
opponent-

independent
agent-independent

Tracking coordination-based — agent-tracking

Aware indirect coordination
opponent-

aware
agent-aware
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1
R2

S2

obstacle

2
L2R1

S1

L1

R2S2L2

R1

S1

L1

Q

10 -5 0

-5 -10 -5

-10 -5 10

Fig. 3 Left: two mobile agents approaching an obstacle need to coordinate their action selection.

Right: the common Q-values of the agents for the state depicted to the left. Reproduced from [20],

© 2008 IEEE.

and agent 2 goes right, the formation is broken: Q(L1,R2) = 0. In all other cases,

collisions occur and the Q-values are negative.

Note the tie between the two optimal joint actions: (L1,L2) and (R1,R2). Without

a coordination mechanism, agent 1 might assume that agent 2 will take action R2,

and therefore it takes action R1. Similarly, agent 2 might assume that agent 1 will

take L1, and consequently takes L2. The resulting joint action (R1,L2) is severely

suboptimal, as the agents collide.

5.1.1 Coordination-free methods

The Team Q-learning algorithm [70] avoids the coordination problem by assuming

that the optimal joint actions are unique (which is not always the case). Then, if all

the agents learn the common Q-function in parallel with (7), they can safely use (8)

to select these optimal joint actions and maximize their return.

The Distributed Q-learning algorithm [67] solves the cooperative task without

assuming coordination and with limited computation (its computational complex-

ity is similar to that of single-agent Q-learning, see Section 5.4). However, the al-

gorithm only works in deterministic problems with non-negative reward functions.

Each agent i maintains a local policy hi(x), and a local Q-function Qi(x,ui), depend-

ing only on its own action. The local Q-values are updated only when the update

leads to an increase in the Q-value:

Qi,k+1(xk,ui,k) = max
{

Qi,k(xk,ui,k),rk+1 + γ max
u′i

Qi,k(xk+1,u
′
i)
}

(9)

This ensures that the local Q-value always captures the maximum of the joint-action

Q-values: Qi,k(x,ui) = max
u1,...,ui−1,ui+1,...,un

Qk(x,uuu) at all k, where uuu= [u1, . . . ,un]
T with

ui fixed. The local policy is updated only if the update leads to an improvement in

the Q-values:

hi,k+1(xk) =

{
ui,k if maxūi

Qi,k+1(xk, ūi)> maxūi
Qi,k(xk, ūi)

hi,k(xk) otherwise
(10)
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This ensures that the joint policy [h1,k, . . . ,hn,k]
T is always optimal with respect to

the global Qk. Under the condition that Qi,0 = 0 ∀i, the local policies of the agents

provably converge to an optimal joint policy.

5.1.2 Coordination-based methods

Coordination graphs [43] simplify coordination when the global Q-function can be

additively decomposed into local Q-functions that only depend on the actions of

subsets of agents. For instance, in a stochastic game with 4 agents, the decompo-

sition might be Q(x,uuu) = Q1(x,u1,u2)+Q2(x,u1,u3)+Q3(x,u3,u4). The decom-

position might be different for different states. The local Q-functions have smaller

dimensions than the global Q-function. The maximization of the joint Q-value is

done by solving simpler, local maximizations in terms of the local Q-functions, and

aggregating their solutions. Under certain conditions, the coordinated selection of

an optimal joint action is guaranteed [43, 61].

In general, all the coordination techniques described in Section 5.2 below can

be applied to fully cooperative MARL tasks. For instance, a framework to explicitly

reason about possibly costly communication is the communicative multi-agent team

decision problem [97].

5.1.3 Indirect coordination methods

Indirect coordination methods bias action selection toward actions that are likely to

result in good rewards or returns. This steers the agents toward coordinated action

selections. The likelihood of obtaining good rewards (returns) is evaluated using

e.g., models of the other agents estimated by the learner, or statistics of the rewards

observed in the past.

Static tasks. Joint Action Learners (JAL) learn joint-action values and empirical

models of the other agents’ strategies [29]. Agent i learns models for all the other

agents j 6= i, using:

σ̂ i
j(u j) =

Ci
j(u j)

∑ū j∈U j
Ci

j(ū j)
(11)

where σ̂ i
j is agent i’s model of agent j’s strategy and Ci

j(u j) counts the number of

times agent i observed agent j taking action u j. Note that agent i has to observe the

actions taken by the other agents. Several heuristics are proposed in [29] to increase

the learner’s Q-values for the actions with high likelihood of getting good rewards

given the models.

The Frequency Maximum Q-value (FMQ) heuristic is based on the frequency

with which actions yielded good rewards in the past [59]. Agent i uses Boltzmann

action selection (5), plugging in modified Q-values Q̄i computed with the formula:
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Q̄i(ui) = Qi(ui)+ν
Ci

max(ui)

Ci(ui)
rmax(ui) (12)

where rmax(ui) is the maximum reward observed after taking action ui, Ci
max(ui)

counts how many times this reward has been observed, Ci(ui) counts how many

times ui has been taken, and ν is a weighting factor. Increasing the Q-values of ac-

tions that frequently produced good rewards in the past steers the agent toward coor-

dination. Compared to single-agent Q-learning, the only additional computational

demands of FMQ come from maintaining and using the counters. However, FMQ

can fail in some problems with strongly stochastic rewards [59], and the weighting

parameter ν must be tuned in a problem-specific fashion, which may be difficult to

do.

Dynamic tasks. In Optimal Adaptive Learning (OAL), virtual games are constructed

on top of each stage game of the stochastic game [136]. In these virtual games,

optimal joint actions are rewarded with 1, and the rest of the joint actions with 0. An

algorithm is introduced that, by biasing the agent towards recently selected optimal

actions, guarantees convergence to a coordinated optimal joint action for the virtual

game, and therefore to a coordinated joint action for the original stage game. Thus,

OAL provably converges to optimal joint policies in any fully cooperative stochastic

game. This however comes at the cost of increased complexity: each agent estimates

empirically a model of the stochastic game, virtual games for each stage game,

models of the other agents, and an optimal value function for the stochastic game.

5.1.4 Remarks and open issues

All the methods presented above rely on exact measurements of the state. Some

of them also require exact measurements of the other agents’ actions. This is most

obvious for coordination-free methods: if at any point the perceptions of the agents

differ, this may lead different agents to update their Q-functions differently, and the

consistency of the Q-functions and policies can no longer be guaranteed.

The algorithms discussed above also suffer from the curse of dimensionality.

Distributed Q-learning and FMQ are exceptions in the sense that they do not need to

take into account the other agents’ actions (but they only work in restricted settings:

Distributed Q-learning only in deterministic tasks, and FMQ only in static tasks).

5.2 Explicit coordination mechanisms

A general approach to solving the coordination problem is to make sure that any

ties are broken by all the agents in the same way, using explicit coordination or

negotiation. Mechanisms for doing so based on social conventions, roles, and com-
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munication, are described next [135]. These mechanisms can be used for any type

of task.

Both social conventions and roles restrict the action choices of the agents. An

agent role restricts the set of actions available to that agent prior to action selection,

as in e.g., [112]. This means that some or all of the ties in (8) are prevented. So-

cial conventions encode a priori preferences toward certain joint actions, and help

break ties during action selection. If properly designed, roles or social conventions

eliminate ties completely. A simple social convention relies on a unique ordering of

the agents and actions [11]. These two orderings must be known to all the agents.

Combining them leads to a unique ordering of the joint actions, and coordination is

ensured if in (8) the first joint action in this ordering is selected by all the agents.

Communication can be used to negotiate action choices, either alone or in com-

bination with the above coordination techniques, as in [37, 135]. When combined

with the above techniques, communication can relax their assumptions and simplify

their application. For instance, in social conventions, if only an ordering between

agents is known, they can select actions in turn, in that order, and broadcast their

selection to the remaining agents. This is sufficient to ensure coordination.

Besides action choices, agents can also communicate various other types of in-

formation, including partial or complete Q-tables, state measurements, rewards,

learning parameters, etc. For example, the requirements of complete and consis-

tent perception among all the agents (discussed under Remarks in Section 5.1) can

be relaxed by allowing agents to communicate interesting data (e.g., partial state

measurements) instead of relying on direct measurement [123].

Learning coordination approaches have also been investigated, where the coordi-

nation mechanism is learned, rather than being hardwired into the agents. The agents

learn social conventions in [11], role assignments in [81], and the structure of the

coordination graph (see Section 5.1) together with the local Q-functions in [60].

Example 2. Coordination using social conventions in a fully-cooperative task. In

Example 1 above (see Figure 3), suppose the agents are ordered such that agent 1 <
agent 2 (a < b means that a precedes b in the chosen ordering), and the actions of

both agents are ordered in the following way: Li < Ri < Si, i ∈ {1,2}. To coordinate,

the first agent in the ordering of the agents, agent 1, looks for an optimal joint action

such that its action component is the first in the ordering of its actions: (L1,L2). It

then selects its component of this joint action, L1. As agent 2 knows the orderings,

it can infer this decision, and appropriately selects L2 in response. If agent 2 would

still face a tie (e.g., if (L1,L2) and (L1,S2) would both be optimal), it could break

this tie by using the ordering of its own actions (which because L2 < S2 would also

yield (L1,L2)).
If communication is available, only the ordering of the agents has to be known.

Agent 1, the first in the ordering, chooses an action by breaking ties in some way

between the optimal joint actions. Suppose it settles on (R1,R2), and therefore se-

lects R1. It then communicates this selection to agent 2, which can then select an

appropriate response, namely the action R2.
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5.3 Fully competitive tasks

In a fully competitive stochastic game (for two agents, when ρ1 = −ρ2), the mini-

max principle can be applied: maximize one’s benefit under the worst-case assump-

tion that the opponent will always endeavor to minimize it. This principle suggests

using opponent-independent algorithms.

The minimax-Q algorithm [69, 70] employs the minimax principle to compute

strategies and values for the stage games, and a temporal-difference rule similar to

Q-learning to propagate the values across state transitions. The algorithm is given

here for agent 1:

h1,k(xk, ·) = argm1(Qk,xk) (13)

Qk+1(xk,u1,k,u2,k) = Qk(xk,u1,k,u2,k)+α
[
rk+1 + γm1(Qk,xk+1)−Qk(xk,u1,k,u2,k)

]

(14)

where m1 is the minimax return of agent 1:

m1(Q,x) = max
h1(x,·)

min
u2

∑
u1

h1(x,u1)Q(x,u1,u2) (15)

The stochastic strategy of agent 1 in state x at time k is denoted by h1,k(x, ·), with

the dot standing for the action argument. The optimization problem in (15) can be

solved by linear programming [82]. The Q-table is not subscripted by the agent

index, because the equations make the implicit assumption that Q = Q1 =−Q2; this

follows from ρ1 =−ρ2.

Minimax-Q is truly opponent-independent, because even if the minimax opti-

mization has multiple solutions (strategies), any of them will achieve at least the

minimax return regardless of what the opponent is doing. However, if the opponent

is suboptimal (i.e., does not always take the action that is the worst for the learner),

and the learner has a model of the opponent’s policy, it can actually do better than

the minimax return (15). An opponent model can be learned using e.g., the M* al-

gorithm described in [25], or a simple extension of (11) to multiple states:

ĥi
j(x,u j) =

Ci
j(x,u j)

∑ū j∈U j
Ci

j(x, ū j)
(16)

where Ci
j(x,u j) counts the number of times agent i observed agent j taking action

u j in state x.

Such an algorithm then becomes opponent-aware. Even agent-aware algorithms

for mixed tasks (see Section 5.4.4) can be used to exploit a suboptimal opponent. For

instance, in [17] WoLF-PHC was used with promising results in a fully competitive

task.

Example 3. The minimax principle. Consider the situation represented in the left

part of Figure 4: agent 1 has to reach the goal in the middle while still avoiding

capture by its opponent, agent 2. Agent 2 on the other hand, has to prevent agent 1
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from reaching the goal, preferably by capturing it. The agents can only move to the

left or to the right.

2
L2R1 R2

R2L2

R1

L1

Q

0 1

-10 10
1

L1

Fig. 4 Left: an agent (◦) attempting to reach a goal (×) while avoiding capture by another agent

(•). Right: the Q-values of agent 1 for the state depicted to the left (Q2 = −Q1). Reproduced

from [20], © 2008 IEEE.

For this situation (state), a possible projection of agent 1’s Q-function on the

joint action space is given in the table on the right. This represents a zero-sum static

game involving the two agents. If agent 1 moves left and agent 2 does likewise,

agent 1 escapes capture, Q1(L1,L2) = 0; furthermore, if at the same time agent 2

moves right, the chances of capture decrease, Q1(L1,R2) = 1. If agent 1 moves right

and agent 2 moves left, agent 1 is captured, Q1(R1,L2) = −10; however, if agent 2

happens to move right, agent 1 achieves the goal, Q1(R1,R2) = 10. As agent 2’s

interests are opposite to those of agent 1, the Q-function of agent 2 is −Q1. For

instance, when both agents move right, agent 1 reaches the goal and agent 2 is

punished with a Q-value of −10.

The minimax solution for agent 1 in this case is to move left, because for L1,

regardless of what agent 2 is doing, it can expect a return of at least 0, as opposed

to −10 for R1. Indeed, if agent 2 plays well, it will move left to protect the goal.

However, it might not play well and move right instead. If this is true and agent 1

can find it out (e.g., by learning a model of agent 2) it can take advantage of this

knowledge by moving right and achieving the goal.

5.4 Mixed tasks

In mixed stochastic games, no constraints are imposed on the reward functions of

the agents. This model is most for self-interested (but not necessarily competing)

agents. The influence of game-theoretic equilibrium concepts is the strongest in

MARL algorithms for mixed stochastic games. When multiple equilibria exist in a

particular state of a stochastic game, the equilibrium selection problem arises: the

agents need to consistently pick their part of the same equilibrium.

A significant number of algorithms in this category are designed only for static

tasks (i.e., repeated, general-sum games). Even in repeated games, the learning prob-

lem is still nonstationary due to the dynamic behavior of the agents playing the re-

peated game. This is why most of the methods in this category focus on adaptation

to the other agents.

Besides agent-independent, agent-tracking, and agent-aware techniques, the ap-

plication of single-agent RL methods to multi-agent learning is also presented here.
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That is because single-agent RL methods do not make any assumption on the type

of task, and are therefore applicable to general stochastic games, although without

guarantees of success.

5.4.1 Single-agent RL

Single-agent RL algorithms like Q-learning can be directly applied to the multi-

agent case [105]. They learn Q-functions that only depend on the current agent’s

action, using the basic Q-learning update (4), and without being aware of the other

agents. The nonstationarity of the MARL problem invalidates most of the single-

agent RL theoretical guarantees. Despite its limitations, this approach has found a

significant number of applications, mainly because of its simplicity [32, 73–75].

One important step forward in understanding how single-agent RL works in

multi-agent tasks was made in [130]. The authors of [130] applied results in evo-

lutionary game theory to analyze the learning dynamics of Q-learning with Boltz-

mann policies (5) in repeated games. It appeared that for certain parameter settings,

Q-learning is able to converge to a coordinated equilibrium in particular games. In

other cases, unfortunately, Q-learners exhibit non-stationary cyclic behavior.

5.4.2 Agent-independent methods

Many algorithms that are independent of the other agents share a common struc-

ture based on Q-learning, where policies and state values are computed with game-

theoretic solvers for the stage games arising in the states of the stochastic game

[13,42]. This structure is similar to that of (13)–(14); the difference is that for mixed

games, solvers are usually different from minimax.

Denoting by
{

Q·,k(x, ·)
}

the stage game arising in state x and given by all the

agents’ Q-functions at time k, learning takes place according to:

hi,k(x, ·) = solvei

{
Q·,k(xk, ·)

}
(17)

Qi,k+1(xk,uuuk) = Qi,k(xk,uuuk)+α
[
ri,k+1 + γ · evali

{
Q·,k(xk+1, ·)

}
−Qi,k(xk,uuuk)

]

(18)

where solvei returns agent i’s part of some type of equilibrium (a strategy), and evali
gives the agent’s expected return given this equilibrium. The goal is to converge to

an equilibrium in every state.

The updates use the Q-tables of all the agents. So, each agent needs to replicate

the Q-tables of the other agents. It can do that by applying (18). This requires that all

the agents use the same algorithm and can measure all the actions and rewards. Even

under these assumptions, the updates (18) are only guaranteed to maintain identical

results for all the agents if solve returns consistent equilibrium strategies for all the

agents. This means the equilibrium selection problem arises when the solution of

solve is not unique.
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A particular instance of solve and eval for Nash Q-learning [49, 50] is:

{
evali

{
Q·,k(x, ·)

}
=Vi(x,NE

{
Q·,k(x, ·)

}
)

solvei

{
Q·,k(x, ·)

}
= NEi

{
Q·,k(x, ·)

} (19)

where NE computes a Nash equilibrium (a set of strategies), NEi is agent i’s strat-

egy component of this equilibrium, and Vi(x,NE
{

Q·,k(x, ·)
}
) is the expected return

for agent i from x under this equilibrium. The algorithm provably converges to Nash

equilibria for all the states if either: (a) every stage game encountered by the agents

during learning has a Nash equilibrium under which the expected return of all the

agents is maximal; or (b) every stage game has a Nash equilibrium that is a saddle

point, i.e., not only does the learner not benefit from deviating from this equilib-

rium, but the other agents do benefit from this [12,49]. This requirement is satisfied

only in a small class of problems. In all other cases, some external mechanism for

equilibrium selection is needed to guarantee convergence.

Instantiations for correlated equilibrium Q-learning (CE-Q) [42] or asymmet-

ric Q-learning [64] can be performed in a similar fashion, by using correlated or

Stackelberg (leader-follower) equilibria, respectively. For asymmetric Q-learning,

the follower does not need to model the leader’s Q-table; however, the leader must

know how the follower chooses its actions.

Example 4. The equilibrium selection problem. Consider the situation illustrated in

Figure 5, left: two cleaning robots (the agents) have arrived at a junction in a build-

ing, and each needs to decide which of the two wings of the building it will clean. It

is inefficient if both agents clean the same wing, and both agents prefer to clean the

left wing because it is smaller, and therefore requires less time and energy.

1

R2

2
L2

R1L1
Left

Wing
Right
Wing

R2L2

R1

L1 0 3

2 0

R2L2

R1

L1

Q1

Q2

0 2

3 0

Fig. 5 Left: two cleaning robots negotiating their assignment to different wings of a building.

Both robots prefer to clean the smaller left wing. Right: the Q-values of the two robots for the state

depicted to the left. Reproduced from [20], © 2008 IEEE.

For this situation (state), possible projections of the agents’ Q-functions on

the joint action space are given in the tables on the right. These tables represent

a general-sum static game involving the two agents. If both agents choose the

same wing, they will not clean the building efficiently, Q1(L1,L2) = Q1(R1,R2) =
Q2(L1,L2) = Q2(R1,R2) = 0. If agent 1 takes the (preferred) left wing and agent 2

the right wing, Q1(L1,R2) = 3, and Q2(L1,R2) = 2. If they choose the other way

around, Q1(R1,L2) = 2, and Q2(R1,L2) = 3.
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For these returns, there are two deterministic Nash equilibria4: (L1,R2) and

(R1,L2). This is easy to see: if either agent unilaterally deviates from these joint

actions, it can expect a (bad) return of 0. If the agents break the tie between these

two equilibria independently, they might do so inconsistently and arrive at a sub-

optimal joint action. This is the equilibrium selection problem, corresponding to

the coordination problem that arises in fully cooperative tasks. Its solution requires

additional coordination mechanisms, e.g., social conventions.

5.4.3 Agent-tracking methods

Agent-tracking algorithms estimate models of the other agents’ strategies or policies

(depending on whether static or dynamic games are considered) and act using some

form of best-response to these models. Convergence to stationary strategies is not a

requirement. Each agent is assumed capable to observe the other agents’ actions.

Static tasks. In the fictitious play algorithm [19], agent i acts at each iteration ac-

cording to a best-response (6) to models σ̂ i
1, . . . , σ̂

i
i−1, σ̂

i
i+1, . . . , σ̂

i
n learned with(11).

Fictitious play converges to a Nash equilibrium in certain restricted classes of

games, among which are fully cooperative, repeated games [29].

The MetaStrategy algorithm, introduced in [93], combines modified versions of

fictitious play, minimax and a game-theoretic strategy called Bully [71] to achieve

the targeted optimality, compatibility, and safety goals (see Section 4).

To compute best-responses, the fictitious play and MetaStrategy algorithms re-

quire a model of the static task, in the form of reward functions.

The Hyper-Q algorithm uses the other agents’ models as a state vector and

learns a Q-function Qi(σ̂1, . . . , σ̂i−1, σ̂i+1, . . . , σ̂n,ui) with an update rule similar to

Q-learning [124]. By learning values of strategies instead of only actions, Hyper-Q

should be able to adapt better to nonstationary agents. One inherent difficulty is that

the action selection probabilities in the models increase the dimensionality of the

state space and therefore the severity of the curse of dimensionality. Additionally,

the probabilities are continuous variables, which means that the classical, discrete-

state Q-learning algorithm cannot be used. Approximate versions of Q-learning are

required instead.

Dynamic tasks. The Non-Stationary Converging Policies (NSCP) algorithm [138]

computes a best-response to the models and uses it to estimate state values. This

algorithm is very similar to (13)–(14) and (17)–(18); this time, the stage game solver

gives a best-response:

4 There is also a stochastic (mixed) Nash equilibrium, where each agent goes left with probability

3/5. This is because the strategies σ1(L1) = 3/5,σ1(R1) = 2/5 and σ2(L2) = 3/5,σ2(R2) = 2/5

are best-responses to one another. The expected return of this equilibrium for both agents is 6/5,

worse than for any of the two deterministic equilibria.
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hi,k(xk, ·) = argbri(Qi,k,xk) (20)

Qi,k+1(xk,uuuk) = Qk(xk,uuuk)+α
[
ri,k+1 + γbri(Qi,k,xk+1)−Qk(xk,uuuk)

]
(21)

where the best-response value operator br is implemented as:

bri(Qi,x) = max
hi(x,·)

∑
u1,...,un

hi(x,ui) ·Qi(x,u1, . . . ,un)
n

∏
j=1, j 6=i

ĥi
j(x,u j) (22)

The empirical models ĥi
j are learned using (16). In the computation of br, the value

of each joint action is weighted by the estimated probability of that action being

selected, given the models of the other agents (the product term in (22)).

5.4.4 Agent-aware methods

Agent-aware algorithms target convergence, as well as adaptation to the other

agents. Some algorithms provably converge for particular types of tasks (mostly

static), others use heuristics for which convergence is not guaranteed.

Static tasks. The algorithms presented here assume the availability of a model of

the static task, in the form of reward functions. The AWESOME algorithm [31] uses

fictitious play, but monitors the other agents and, when it concludes that they are

nonstationary, switches from the best-response in fictitious play to a centrally pre-

computed Nash equilibrium (hence the name: Adapt When Everyone is Stationary,

Otherwise Move to Equilibrium). In repeated games, AWESOME is provably ratio-

nal and convergent [31] according to the definitions from [16,17] given in Section 4.

Some methods in the area of direct policy search use gradient update rules that

guarantee convergence in specific classes of static games: Infinitesimal Gradient

Ascent (IGA) [109], Win-or-Learn-Fast IGA (WoLF-IGA) [17], Generalized IGA

(GIGA) [144], and GIGA-WoLF [14]. For instance, IGA and WoLF-IGA work in

two-agent, two-action games, and use similar gradient update rules:





αk+1 = αk +δ1,k
∂E{r1 |α,β}

∂α

βk+1 = βk +δ2,k
∂E{r2 |α,β}

∂β

(23)

The strategies of the agents are represented by the probability of selecting the

first out of the two actions, denoted by α for agent 1 and by β for agent 2. IGA

uses constant gradient steps δ1,k = δ2,k = δ . For an infinitesimal step size, i.e., when

δ → 0, the average rewards achieved by the IGA policies converge to Nash rewards.

In WoLF-IGA, δi,k switches between a smaller value when agent i is winning, and

a larger value when it is losing (hence the name, Win-or-Learn-Fast). WoLF-IGA

is rational by the definition in Section 4, and convergent for an asymptotically in-

finitesimal step size [17] (i.e., if δi,k → 0 when k → ∞).
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Dynamic tasks. Win-or-Learn-Fast Policy Hill-Climbing (WoLF-PHC) [17] is a

heuristic algorithm that updates Q-functions with the Q-learning rule (4), and poli-

cies with a WoLF rule inspired from (23):

hi,k+1(xk,ui) = hi,k(xk,ui)+





∑ūi 6=ui
δ ūi

i,k if ui = argmax
u′i

Qi,k+1(xk,u
′
i)

−δ ui

i,k otherwise

(24)

where δ ui

i,k = min

{
hi,k(xk,ui),

δi,k

|Ui|−1

}
(25)

and δi,k =

{
δwin if winning

δlose if losing
(26)

The probability decrements for the sub-optimal actions are bounded in (25) to ensure

that all the probabilities remain non-negative, while the probability increment for

the optimal action in (24) is chosen so that the probability distribution remains valid.

The gradient step δi,k is larger when agent i is losing than when it is winning: δlose >
δwin. For instance, in [17] δlose is 2 to 4 times larger than δwin. The rationale is that

the agent should escape quickly from losing situations, while adapting cautiously

when it is winning, in order to encourage convergence. The win/lose criterion in (26)

is based on a comparison of an average policy with the current one in the original

version of WoLF-PHC, and on the second-order difference of policy elements in

PD-WoLF [5].

The Extended Optimal Response (EXORL) heuristic [116] applies a complemen-

tary idea in two-agent tasks: the policy update is biased in a way that minimizes

the other agent’s incentive to deviate from its current policy. Thus, convergence to a

coordinated Nash equilibrium is encouraged.

5.4.5 Remarks and open issues

Static, repeated games represent a limited set of applications. Algorithms for static

games provide valuable theoretical insight; these algorithms should however be ex-

tended to dynamic stochastic games in order to become interesting for more gen-

eral classes of applications (e.g., WoLF-PHC [17] is such an extension). Many al-

gorithms for mixed stochastic games, especially agent-independent algorithms, are

sensitive to imperfect observations.

Game theory induces a bias toward static, stage-wise solutions in the dynamic

case, as seen e.g., in the agent-independent Q-learning template (17)–(18). How-

ever, the suitability of such state-wise solutions in the context of the dynamic task

is not always clear [86, 108].

One important research direction is understanding the conditions under which

single-agent RL works in mixed stochastic games, especially in light of the prefer-

ence towards single-agent techniques in practice. This direction was pioneered by

the analysis in [130].
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6 Application domains

MARL has been applied to a variety of problem domains, mostly in simulation

but also in some real-life tasks. Simulated domains dominate for two reasons. The

first reason it is easier to understand and to derive insight from results in simpler

domains. The second reason is that scalability and robustness to imperfect observa-

tions are necessary in real-life tasks, and few MARL algorithms exhibit these prop-

erties. In real-life applications, more direct derivations of single-agent RL (see Sec-

tion 5.4.1) are preferred [73–75, 113].

In this section, several representative application domains are reviewed: dis-

tributed control, multi-robot teams, trading agents, and resource management.

6.1 Distributed control

In distributed control, a set of autonomous, interacting controllers act in parallel on

the same process. Distributed control is a meta-application for cooperative multi-

agent systems: any cooperative multi-agent system is a distributed control system

where the agents are the controllers, and their environment is the controlled pro-

cess. For instance, in cooperative robotic teams the control algorithms of the robots

identify with the controllers, and the robots’ environment together with their sensors

and actuators identify with the process.

Particular distributed control domains where MARL is applied are process con-

trol [113], control of traffic signals [4, 141], and control of electrical power net-

works [100].

6.2 Robotic teams

Robotic teams (also called multi-robot systems) are the most popular application do-

main of MARL , encountered under the broadest range of variations. This is mainly

because robotic teams are a very natural domain for multi-agent systems, but also

because many MARL researchers are active in the robotics field. The robots’ envi-

ronment is a real or simulated spatial domain, most often having two dimensions.

Robots use MARL to acquire a wide spectrum of skills, ranging from basic behav-

iors like navigation to complex behaviors like playing soccer.

In navigation, each robot has to find its way to a fixed or changing goal position,

while avoiding obstacles and harmful interference with other robots [17, 50].

Area sweeping involves navigation through the environment for one of several

purposes: retrieval of objects, coverage of as much environment surface as possible,

and exploration, for which the robots have to bring into sensor range as much of the

environment surface as possible [73–75].
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Multi-target observation is an extension of the exploration task, where the robots

have to maintain a group of moving targets within sensor range [35, 128].

Pursuit involves the capture of moving targets by the robotic team. In a popular

variant, several ‘predator’ robots have to capture a ‘prey’ robot by converging on

it [52, 60].

Object transportation requires the relocation of a set of objects into a desired final

configuration. The mass or size of some of the objects may exceed the transportation

capabilities of one robot, thus requiring several robots to coordinate in order to bring

about the objective [74]. Our example in Section 7 belongs to this category.

Robot soccer is a popular, complex test-bed for MARL , that requires most of

the skills enumerated above [77, 114, 115, 131, 142]. For instance, intercepting the

ball and leading it into the goal involve object retrieval and transportation skills,

while the tactical placement of the players in the field is an advanced version of the

coverage task.

6.3 Automated trading

Software trading agents exchange goods on electronic markets on behalf of a com-

pany or a person, using mechanisms such as negotiations and auctions. For instance,

the Trading Agent Competition is a simulated contest where the agents need to ar-

range travel packages by bidding for goods such as plane tickets and hotel book-

ings [140]. Multi-agent trading can also be applied to modeling electricity mar-

kets [117].

MARL approaches to automated trading typically involve temporal-difference

[118] or Q-learning agents, using approximate representations of the Q-functions to

handle the large state space [48,68,125]. In some cases, cooperative agents represent

the interest of a single company or individual, and merely fulfill different functions

in the trading process, such as buying and selling [68]. In other cases, self-interested

agents interact in parallel with the market [48, 98, 125].

6.4 Resource management

In resource management, the agents form a cooperative team, and they can be one

of the following:

• Managers of resources, as in [33]. Each agent manages one resource, and the

agents learn how to best service requests in order to optimize a given performance

measure.

• Clients of resources, as in [102]. The agents learn how to best select resources

such that a given performance measure is optimized.
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A popular resource management domain is network routing [18, 28, 126]. Other

examples include elevator scheduling [33] and load balancing [102]. Performance

measures include average job processing times, minimum waiting time for re-

sources, resource usage, and fairness in servicing clients.

6.5 Remarks

Though not an application domain per se, game-theoretic, stateless tasks are often

used to test MARL approaches. Not only algorithms specifically designed for static

games are tested on such tasks (e.g., AWESOME [31], MetaStrategy [93], GIGA-

WoLF [14]), but also others that can, in principle, handle dynamic stochastic games

(e.g., EXORL [116]).

As an avenue for future work, note that distributed control is poorly represented

as a MARL application domain. This includes systems such as traffic, power, or

sensor networks.

7 Example: coordinated multi-agent object transportation

In this section, several MARL algorithms are applied to an illustrative example.5

The example, represented in Figure 6, is an abstraction of a task involving the co-

ordinated transportation of an object by two agents. These agents (represented by

numbered disks) travel on a two-dimensional discrete grid with 7 × 6 cells. The

agents have to transport a target object (represented by a small rectangle) to the

home base (delimited by a dashed black line) in minimum time, while avoiding

obstacles (shown by gray blocks).

home base

object

Fig. 6 The object transportation problem.

5 A MARL software package written by the authors in MATLAB was used for this example. This

package can be downloaded at http://www.dcsc.tudelft.nl/ l̃busoniu, and includes the coordinated

object transportation example.
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The agents start from the positions in which they are shown in Figure 6, and

can move at each time step by one cell to the left, right, up, or down; they can also

stand still. If the target cell is not empty, the agent does not move; similarly, if both

agents attempt to move to the same cell, neither agent moves. In order to transport

the target, the agents first have to grasp it. When an agent reaches a cell immediately

to the left or right of the target, it automatically grasps the target; once the target is

grasped, it cannot be released. Only when the two agents have grasped either side

the target, they can move it. The target only moves when both agents coordinately

pull in the same direction. As soon as the target has reached the home base, the trial

terminates, and the agents and target are reinitialized for a new trial.

The state variables describing each agent i are its two position coordinates, pi,X ∈
{1,2, . . . ,7}, pi,Y ∈ {1,2, . . . ,6}, and a variable indicating if the agent is currently

grasping the target, and if yes, to which side: gi ∈{FREE,GRASPING-LEFT,GRASPING-RIGHT}.

Therefore, the complete state vector is x= [p1,X, p1,Y,g1, p2,X, p2,Y,g2]
T. The grasp-

ing variables are needed to ensure that the state vector has the Markov property (see

Section 2). Each agent’s action ui belongs to the set Ui = {LEFT,RIGHT,UP,DOWN, STAND-STILL}.

So, the state space contains |X |= (7 ·6 ·3)2 = 15876 elements, and the joint action

space contains 52 = 25 elements. Not all the states are valid, e.g., collisions prevent

certain combinations from occurring.

The task is fully cooperative, so both agents have the same reward function,

which expresses the goal of grasping the target and transporting it to the home base:

rk+1 =





1 if an agent has just grasped the target

10 if the target has reached the home base

0 in all other conditions

The discount factor is γ = 0.98. The minimum-time character of the solution results

from discounting: it is better to receive the positive rewards as early as possible,

otherwise discounting will decrease their contribution to the return.

The agents face two coordination problems. The first problem is to decide which

of them passes first through the narrow lower passage. The second problem is to

decide whether they transport the target around the left or right side of the obstacle

just below the home base.

We apply three algorithms to this problem: (i) single-agent Q-learning, which is

a representative single-agent RL algorithm, (ii) team Q-learning, a representative

MARL algorithm for fully cooperative tasks, and (iii) WoLF-PHC, a representa-

tive MARL algorithm for mixed tasks. An algorithm for competitive tasks (such as

minimax-Q) is unlikely to perform well, because the object transportation problem

is fully cooperative. In any given experiment, both agents use the same algorithm,

so they are homogeneous. For all the algorithms, a constant learning rate α = 0.1 is

employed, together with an ε-greedy exploration procedure. The exploration proba-

bility ε is initialized at 0.8, is constant within a trial, and decays exponentially with

a factor 0.9 after every trial. For WoLF-PHC, the policy step sizes are δwin = 0.1
and δlose = 0.4. Note that the Q-tables of Q-learning or WoLF-PHC agents contain

|X |× 5 = 79380 elements, because they only depend on that single agent’s action,
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whereas the Q-tables of team Q-learning agents depend on the joint action and

therefore contain |X |×52 = 396900 elements.

Figure 7 shows the mean learning performance of the three algorithms across 100

independent runs, together with 95% confidence intervals on this mean. Each graph

shows the evolution of the number of steps taken to reach the home base, as the

number of learning trials grows. The performance is measured while the agents are

learning, and the effects of exploration are included. All the algorithms quickly con-

verge to a good performance, usually after 20 to 30 trials. Remarkably, Q-learning

performs very well, even though a Q-learner is unaware of the other agent except

through its state variables. While team Q-learning and WoLF-PHC agents do take

each other into account, they do not use explicit coordination. Instead, all three al-

gorithms achieve an implicit form of coordination: the agents learn to prefer one of

the equally good solutions by chance, and then ignore the other solutions. The fact

that explicit coordination is not required can be verified e.g., by repeating the team

Q-learning experiment after adding social conventions. Indeed, such an algorithm

produces nearly identical results to those in Figure 7. Single-agent Q-learning is

preferable in this problem, because it provides the same performance as the other

two algorithms, but requires smaller Q-tables than team Q-learning and has simpler

update formulas than WoLF-PHC.
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Fig. 7 Learning performance of single-agent Q-learning, team Q-learning, and WoLF-PHC. Note

the logarithmic scale of the vertical axes.

Figure 8 shows a trajectory taken by the agents, after a representative run with

team Q-learning (the trajectories followed by Q-learning and WoLF-PHC agents are

similar). Agent 2 waits for agent 1 to go through the passage. Next, agent 1 grasps

the target waiting for agent 2, and after agent 2 also arrives, they transport the target

to the home base around the right of the obstacle.



Multi-Agent Reinforcement Learning 31

Fig. 8 A solution obtained with team Q-learning. Agent 1 travels along the thick gray line, and

agent 2 along the thin black line. Dots mark the states where the agents stand still; the size of each

dot is proportional with the time spent standing still in that cell.

8 Outlook

In this section, we discuss some general open issues in MARL , concerning the

suitability of MARL algorithms in practice, the choice of the multi-agent learning

goal, and the study of the joint environment and learning dynamics.

8.1 Practical MARL

MARL algorithms are typically applied to small problems only, like static games

and small grid-worlds (like the grid-world of Section 7). As a consequence, it is

unclear whether these algorithms scale up to realistic multi-agent problems, where

the state and action spaces are large or even continuous. Few algorithms are able

to deal with incomplete, uncertain observations. This situation can be explained

by noting that scalability and dealing with imperfect observations are also open

problems in single-agent RL . Nevertheless, improving the suitability of MARL

to problems of practical interest is an essential research step. Below, we describe

several directions in which this research can proceed, and point to some pioneering

work done along these directions.

Scalability is a central concern for MARL . Most algorithms require explicit tab-

ular storage of the agents’ Q-functions and possibly of their policies. This means

they only work in problems with a relatively small number of discrete states and

actions. When the state and action spaces contain a large or infinite number of el-

ements (e.g., when they are continuous), the tabular storage of the Q-function be-

comes impractical or impossible. Instead, the Q-function must be represented ap-

proximately. Approximate MARL algorithms have been proposed e.g., for discrete,

large state-action spaces [1], for continuous states and discrete actions [22, 52], and

for continuous states and actions [35,122]. Unfortunately, many of these algorithms

only work in restricted classes of problems and are heuristic in nature. Significant

advances in approximate MARL can be made by putting to use the extensive results

on single-agent approximate RL , which are outlined next.
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While offline, batch algorithms have been very successful in single-agent ap-

proximate RL [34,66,80,83,85,99], they are impractical in MARL , because an of-

fline solution can become inappropriate as the behavior of the other agents changes.

Instead, online approximate RL algorithms are required, such as approximate vari-

ants of Q-learning. Q-learning has been combined with Q-function approximators

relying on, e.g., basis-function representations [110,121], neural networks and self-

organizing maps [127], and fuzzy rule bases [41, 47, 56]. Approximate Q-learning

is provably convergent if a linearly parameterized approximator is employed, and

under the restrictive condition that the agent’s policy is kept fixed while learn-

ing [76]. Linearly parameterized approximators include basis-function representa-

tions, as well as certain classes of neural networks and fuzzy rule bases. An alterna-

tive to using Q-learning is to develop online, incremental versions of the successful

offline, batch algorithms, see e.g., [57]. Another promising category of algorithms

consists of actor-critic techniques, many of which are specialized for continuous

state and action spaces [7, 10, 63, 90]. The reader interested in approximate RL is

referred to [9, 23, 92], to Chapter 8 of [120], and to Chapter 6 of [8].

A complementary avenue for improving scalability is the discovery and exploita-

tion of decentralized, modular structure in the multi-agent task [21, 38, 43].

Incomplete, uncertain state measurements could be handled with techniques re-

lated to partially observable Markov decision processes [72], as in [44, 51].

Providing domain knowledge to the agents can greatly help them to learn solu-

tions of realistic tasks. In contrast, the large size of the state-action space and the

delays in receiving informative rewards mean that MARL without any prior knowl-

edge is very slow. Domain knowledge can be supplied in several forms. Informative

reward functions, also rewarding promising behaviors rather than just the achieve-

ment of the goal, can be provided to the agents [74,75]. Humans or skilled agents can

teach unskilled agents how to solve the task [94]. Shaping is a technique whereby

the learning process starts by presenting the agents with simpler tasks, and progres-

sively moves toward complex ones [24]. Preprogrammed reflex behaviors can be

built into the agents [74, 75]. Knowledge about the task structure can be used to de-

compose it in subtasks, and learn a modular solution with e.g., hierarchical RL [40].

If approximate solutions are used, a good way to incorporate domain knowledge

is to structure the approximator in a way that ensures high accuracy in important

regions of the state-action space, e.g., close to the goal. Last, but not least, if a (pos-

sibly incomplete) task model is available, this model can be used with model-based

RL algorithms to initialize Q-functions to reasonable, rather than arbitrary, values.

8.2 Learning goal

Defining a suitable MARL goal for general, dynamic stochastic games is a difficult

open problem. MARL goals are typically formulated in terms of static games. Their

extension to dynamic tasks, as discussed in Section 4, is not always clear or even

possible.
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Stability of the learning process is needed, because the behavior of stable agents

is more amenable to analysis and meaningful performance guarantees. Adaptation to

the other agents is needed because their behavior is generally unpredictable. There-

fore, a good multi-agent learning goal must include both components. This means

that MARL algorithms should not be totally independent of the other agents, nor

just track their behavior without concern for convergence.

Moreover, from a practical viewpoint, a realistic learning goal should include

bounds on the transient performance, in addition to the usual asymptotic require-

ments. Examples of such bounds include maximum time constraints for reaching

a desired performance level, or a lower bound on the instantaneous performance.

Some steps in this direction have been taken in [14, 93].

8.3 Joint environment and learning dynamics

So far, game-theory-based analysis has only been applied to the learning dynam-

ics of the agents [130, 132, 134], while the dynamics of the environment have not

been explicitly considered. Tools developed in the area of robust control can play

an important role in the analysis of the learning process as a whole, comprising

the interacting environment and learning dynamics. In addition, this framework can

incorporate prior knowledge about bounds on imperfect observations, such as noise-

corrupted variables; and can help study the robustness of MARL algorithms against

uncertainty in the other agents’ dynamics.

9 Related work

Besides its heritage relationship with single-agent RL , the MARL field has strong

connections with game theory, evolutionary computation, and more generally with

the direct optimization of agent policies. These relationships are described next.

Game theory [3] and especially the theory of learning in games [39] make an

essential contribution to MARL . In this chapter, we have reviewed relevant game-

theoretic algorithms for static and repeated games, and we have investigated the

contribution of game theory to MARL algorithms for dynamic tasks. Other authors

have investigated more closely the relationship between game theory and MARL .

For instance, Bowling and Veloso [17] have discussed several MARL algorithms,

showing that these algorithms combine temporal-difference RL with game-theoretic

solvers for the static games that arise in each state of the dynamic stochastic game.

Shoham et al. [108] have critically examined the focus of MARL research on game-

theoretic equilibria, using a selection of MARL algorithms to illustrate their argu-

ments.

Rather than estimating value functions and using them to derive policies, it is

also possible to directly explore the space of agent behaviors using, e.g., nonlinear
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optimization techniques. Evolutionary multi-agent learning is a prominent exam-

ple of such an approach. Evolutionary computation applies principles of biological

evolution to the search for solutions (agent behaviors) of the given task [2, 55].

Populations of candidate behaviors are maintained. Candidates are evaluated us-

ing a fitness function related to the return, and selected for breeding or mutation

on the basis of their fitness. Panait and Luke [86] have offered a comprehensive

survey of evolutionary learning and MARL for cooperative agent teams. For the

interested reader, examples of co-evolution techniques, where the behaviors of the

agents evolve in parallel, can be found in [36, 87, 91]. Complementary, team learn-

ing techniques, where the entire set of agent behaviors is discovered by a single

evolution process, can be found e.g., in [45, 78, 101]. Besides evolutionary compu-

tation, other approaches to the direct optimization of agent behaviors are gradient

search [65], probabilistic hill-climbing [46], as well as more general behavior modi-

fication heuristics [103]. Because direct behavior optimization cannot readily benefit

from the structure of the RL task, we did not focus on it in this chapter. Instead, we

have mainly discussed the contribution of direct behavior optimization to MARL

algorithms based on temporal-difference RL .

Evolutionary game theory sits at the intersection of evolutionary learning and

game theory [111]. Tuyls and Nowé [132] have investigated the relationship be-

tween MARL and evolutionary game theory, focusing on static tasks.

10 Conclusions

Multi-agent reinforcement learning (MARL ) is a young, but active and rapidly

expanding field of research. MARL aims to provide an array of algorithms that

enable multiple agents to learn the solution of difficult tasks, using limited or no

prior knowledge. To this end, MARL integrates results from single-agent RL , game

theory, and direct policy search.

This chapter has provided an extensive overview of MARL . First, we have pre-

sented the main benefits and challenges of MARL , as well as the different view-

points on defining the MARL learning goal. Then, we have discussed in detail

a representative set of MARL algorithms for fully cooperative, fully competitive,

and mixed tasks. We have focused on autonomous agents that learn how to solve dy-

namic tasks online, with algorithms originating in temporal-difference RL , but we

have also investigated techniques for static tasks. Additionally, we have reviewed

some representative problem domains where MARL techniques have been applied,

and we have illustrated the behavior of several MARL algorithms in a simulation

example involving multi-agent object transportation.

Many avenues for MARL are open at this point, and many research opportuni-

ties present themselves. We have provided an outlook synthesizing these open issues

and opportunities. In particular, approximate RL is needed to apply MARL to re-

alistic problems, and control theory can help analyzing the learning dynamics and

assessing the robustness to uncertainty in the observations or in the other agents’
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behavior. In our view, significant progress in the field of multi-agent learning can

be achieved by a more intensive cross-fertilization between the fields of machine

learning, game theory, and control theory.
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