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1
INTRODUCTION

1.1. MOTIVATION

Wind energy offers a potential to reduce carbon emissions and mitigate worldwide cli-
mate change, although a faster wind energy deployment is needed in order to avoid dan-
gerous global warming (Barthelmie et al., 2014). Also, a further growth of wind energy of-
fers political and economical advantages for countries, by having the potential to reduce
their reliance on the import of energy.1

While on a global level, there are no insurmountable technical constraints hindering
a further growth of wind energy (Edenhofer et al., 2011), on a local level, policy makers
are faced with growth-limiting factors that include limited financial means of private
and public parties after the recent global economic crisis, the competitive cost-levels
of energy from fossil fuels, and in many areas, limitations on the available appropriate
locations for the placement of large wind turbines.

The Netherlands is a country where each of these growth-limiting factors play a role.
After the recent financial crisis, it became more difficult to develop wind energy projects
in The Netherlands, since external investors demand a higher investment participation
from project owners, and the focus of government subsidy programs shifted towards
reducing the cost of energy before making large investments in wind energy capacity.
While the cost of energy generated with onshore wind turbines is becoming competitive
with that from fossil fuel-fired plants, the available locations for onshore wind turbines
are becoming scarce. The future development of Dutch wind energy will therefore for
a large part take place in the sea: the government plans to realize an offshore wind en-
ergy capacity of 3,450MW, by 2023. Currently however, offshore wind energy is about

1The European Union’s (EU’s) import of energy currently amounts to 53% of its consumption, and this import
represents a value of more than 1 billion euros a day. This makes the EU economy vulnerable to fuel-price
volatility and disruptions of the supply, which may have natural or political causes. In order to reduce this
vulnerability, the European Commission recommends the EU member states to increase their own energy
production, pointing out wind energy as a form of renewable energy that is increasingly competitive with
other energy sources (European Commission, 2014).

1
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60% more expensive than onshore wind energy, and in the heavily-used Dutch part of
the North Sea, the space available for wind energy is limited. The general policy, both
offshore and onshore, is that new wind turbines are placed in clusters (wind plants).
(De Boer, 2013; Int. Energy Agency, 2014; Ministerie IenM, 2014; Littel, 2014)

Grouping the turbines in wind plants helps to reduce land- or sea-area use and land-
scape impact, and reduces the costs of installation and maintenance, and of connecting
the turbines to the grid through cabling. A downside of placing wind turbines in larger
plants, is that the aerodynamic interaction between the turbines may have a negative ef-
fect on the total electrical power production of the wind turbines, and may increase the
loads experienced by turbines. The aerodynamic interaction effects are caused by the
turbine wakes, which are the flow structures that form behind each turbine (cf. Figure 1.1
for an illustration). The negative effects of this aerodynamic interaction can be mitigated
by placing the turbines further away from each other in the more prevailing wind direc-
tion, resulting in a lay-out optimization step in the design of the wind plant (Mosetti
et al., 1994; Samorani, 2013), and/or by using wind plant control techniques during the
operation of the wind plant (this thesis).

Figure 1.1: Clouds forming in the Horns Rev offshore wind plant in Denmark, showing the flow structures
behind each turbine (the wind turbine wakes), that cause interaction with the turbines downstream. Source:
Christian Steiness. See also Hasager et al. (2013) for more information on the picture.

The concept of wind plant control, that was first proposed in Steinbuch et al. (1988),
aims at improving the performance of the wind plant as a whole, through coordinating
the control operations across the wind turbines. Wind plant control has the possibil-
ity to reduce wind energy costs both by maximizing the power output of the plant as a
whole (instead of each individual turbine, which can be suboptimal), as well as by help-
ing to reduce the loads experienced by turbines. Also, through combined optimization
of wind plant control and wind plant lay-out, a further increase of the power density
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(generated electrical power per land area) of new wind plants can be achieved (Fleming
et al., 2014c).

As part of the Dutch program for wind energy, researchers in industry and academia
participating in the Far and Large Offshore Wind (FLOW) research program aim to real-
ize a cost of energy reduction in 2015 of 20% for offshore wind energy compared to 2010,
through various innovations (FLOW, 2010a). In the area of controls engineering, this re-
search has aimed at innovations in the field of wind plant controls, and consist of the
work in FLOW (2010b), and this thesis.

In this thesis, we specifically focus on improving the wind plant performance by tak-
ing into account the aerodynamic interaction between the turbines in the wind turbine
control algorithm. When considering the optimization of the plant performance, we
specifically aim at maximizing the power output and/or mitigating the loads on the wind
turbines, rather than regulating their output towards certain set-point in order to main-
tain the balance between generation and demand on the electricity grid (cf. Aho et al.
(2012)), although this may be a possible extension of some of the work.

1.2. BACKGROUND AND STATE-OF-THE-ART

In the previous section, we argued that wind plant control that takes into account wake
interaction effects, can enhance the performance of the wind plant. In this section, we
will provide background information on the characteristics of the wakes (Section 1.2.1),
and on the state-of-the-art of individual wind turbine control (Section 1.2.2), before dis-
cussing the current work in wind plant control research (Section 1.2.3). Because most
of the state-of-the-art wind plant control methods are model-based, also background
information on wind plant models is provided in Section 1.2.4.

1.2.1. WIND TURBINE WAKES

The wind turbine wake is the flow structure downstream of a wind turbine, that is char-
acterized by:

• a reduced flow velocity caused by the extraction of energy from the flow by the
turbine,

• an expansion of the wake cross-sectional area: as the flow decelerates under the
influence of the blade forces, the streamtube of the wake will expand as an effect
of the principle of conservation of mass,

• an increased turbulence intensity caused by the obstruction of the flow by the tur-
bine, and the resulting velocity gradients in the flow (shear),

The properties of the wake have been studied extensively, see Crespo et al. (1999); Ver-
meer et al. (2003); Sanderse et al. (2011) for literature overviews. The above character-
istics are of interest for the control of wind turbines in wind plants, since the velocity
deficits will cause a decrease of power production of turbines standing in the path of a
wake of another turbine, and the increased turbulence and shear in the wake may in-
crease the loads on those downstream turbines.
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The amount of wake interaction between turbines is not only dependent on the over-
lap area of the wake of the upstream turbine with the rotor of the downstream turbine,
but also on the distance between the turbines. This is because as the flow in the wake
moves downstream, it will recover to the surrounding flow conditions (turbulence inten-
sity, speed and main direction) through convection and diffusion. The turbulence in the
flow promotes this process of wake recovery by mixing of the flow in the wake and the
surrounding stream. Apart from the above-mentioned turbulence and shear caused by
turbine, also the roughness of the Earth’s surface, and thermal effects in the atmosphere
cause turbulence and (vertical) shear in the inflow and downstream in the wake and the
surrounding flow. Therefore, the ambient atmospheric conditions, consisting of the in-
flow turbulence intensity and the atmospheric thermal stability conditions, influence
the amount of wake recovery (Abkar et al., 2014; Barthelmie et al., 2010), and thereby
also the amount of interaction between turbines in a wind plant.

In descriptions in literature, wakes are often subdivided in a near wake region (close
to the rotor) and a far wake region (further downstream). In the near wake, the tur-
bine geometry directly affects the flow. In this region, vortices (rotating flow structures)
caused by the tips and roots of the blades are present, that are characterized by a high
turbulence intensity and large velocity gradients. In the far wake, the flow velocity pro-
file has evened out more, and the effect of the rotor is only seen through more large-scale
effects of velocity deficit, and increased turbulence intensity.

Another effect observed in wakes structures, called wake meandering, consists of
large oscillating movements of the velocity deficit area in the lateral and vertical direc-
tion (see Aubrun et al. (2012), for example). Suggested causes for wake meandering are
the large-scale turbulent structures in the atmosphere perturbing the flow direction of
the wake (España et al., 2011; Larsen et al., 2007, 2008), and the regular formation and
shedding (releasing) of vortices at the turbine rotor blades (Medici et al., 2006).

The concept of wind plant controls relies on the fact that the amount of wake in-
teraction, i.e., the effect that one turbine has on another turbine through its wake, is
dependent on the control settings of the turbines, since they influence the forces that
the wind turbine exerts on the wind flow. In the next section, it is explained what the
control degrees-of-freedom of a modern turbine are, and how they are used to control
the power conversion of the turbine, as well as the loads on the system.

1.2.2. INDIVIDUAL WIND TURBINE CONTROL

In Figure 1.2 the main components of a horizontal-axis wind turbine2 are shown, as well
as a subsystems-level model scheme for the power conversion in the wind turbine, and
the control of this process. The wind turbine consists of a rotor, most often with three
rotor blades, that is attached to a generator through a drive-train. The generator and
drivetrain are housed in a nacelle, which is supported by a tower. The nacelle can be
rotated around the tower axis by a yaw mechanism. The rotor blades convert the mo-
mentum from the wind field passing the rotor-swept plane, into forces driving the rotor.

2Although there exist numerous architectures for wind turbines (see Hau (2013b) for an overview), this thesis
focuses on horizontal-axis wind turbines, currently the most-used architecture in the wind industry.
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The drive-train transfers the aerodynamic torque on the rotor, Tr , to the generator shaft,
either directly (which is referred to as direct-drive), or through a transmission (a gear-
box). The generator converts the rotational kinetic power into electrical power P , and
generates a reactive torque on the shaft, Tg .

The efficiency of the power conversion from wind field kinetic power to wind turbine
electrical power production in steady-state, is referred to as the power coefficient CP .
With this definition, the steady-state electrical power production of the wind turbine is
(Molenaar, 2003):

P =
1

2
ρAU 3CP (1.1)

where ρ is the air density, and A the rotor-swept area. Scalar U is the effective speed
of the wind field passing through the rotor, being the averaged wind speed that would
be measured if the rotor was not present. The state-of-the-art power and rotor speed
control mechanism of a horizontal wind turbine is the variable-speed, variable-pitch
control concept. It makes use of the fact that the effectiveness of the rotor to generate
torque on the generator, and thus the CP -factor, is dependent on the inclination angle
of the wind on the rotor blades, that can be adjusted by changing the pitch angle of the
blades (rotating the blade around its longitudinal axis) and/or the tip-speed-ratio of the
rotor, defined as:

λ=
ωR

U
(1.2)

where ω is the rotational speed and R the radius of the rotor. In Figure 1.2 an exam-
ple CP -curve is shown, showing the dependence of this factor on tip-speed ratio λ, and
blade pitch β. Also, an expression for the aerodynamic torque Tr on the rotor is given, in
which ηg is the efficiency of the conversion of the rotor rotation kinetic power to gener-
ated electrical power. Together, these relations are used to characterize the steady-state
rotor aerodynamics. To regulate the amount of power conversion and the rotor speed,
a controller sets a desired generator torque Td , tracked by an internal controller of the
generator, and a desired pitch angle of the blades βd , a signal that is tracked by a pitch
servo motor on each blade.

A simplified objective power curve for the controller is shown in Figure 1.3. For wind
speeds below a certain threshold Ucut−in, the generation of electrical energy is not worth-
while, this range of wind speeds is referred to as Region 1. In the range between the cut-
in wind speed Ucut−in and the rated wind speed Urated (Region 2), the controller aims
to have the power conversion at maximum efficiency, by choosing the pitch at the set-
ting βopt, and regulating the tip-speed-ratio towards λopt, an operating point that corre-
sponds to the maximum CP value, CP,opt (see the CP -surface in Figure 1.2). The optimal
tip-speed-ratio λopt is reached in steady-state if the generator torque is set as:

Tg ,opt = Kω2 with K =
ρAR3CP,optr

2λopt
3

(1.3)

where r = ω/ωg is the gearbox ratio. The above control law follows from substituting
the optimal operating point in the relation for Tr in Figure 1.2, and removing the ex-
plicit dependency on the effective wind speed (that is not directly measurable) using the
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Figure 1.2: Subsystems-level model scheme for power conversion in a three-bladed horizontal-axis variable-
speed, variable-pitch wind turbine. The forces exerted by the wind on the rotor blades generate a torque on
the rotor Tr . This torque Tr is dependent on the effective wind speed U , the rotor speed ω and the pitch angle
of the blades β. The rotor torque is transferred by the drive-train to a generator producing electrical energy.
The internal controller of the pitch actuator tracks a desired pitch angle βd . The power generating unit has an
internal controller tracking a desired generator speed ωd . These control inputs are used by a power and speed
controller to regulate the electrical power produced by the wind turbine and the rotor speed.
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Figure 1.3: A possible objective power curve for the controller of an individual wind turbine. In Region 2, the
turbine controller tracks the maximum power generation, while for higher wind speeds it tracks a rated power
Prated. Note that while the objective power generation varies with the wind speed, the control commands itself
are mostly based on rotor speed measurements, rather than the (less reliable) wind speed measurements.
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tip-speed ratio. Above the rated wind speed Urated, in Region 3, the objective of the con-
troller is to keep the electric power production, as well as the rotor speed and generator
torque, below a certain maximum allowed (rated) value, in order to avoid overload of the
mechanical structure and the power electronics. This is done by keeping the generator
torque constant to the rated value, and adjusting the pitch angle of the blades to track
the rated rotor speed. Thereby the pitch is increased with the wind speed to reduce the
rotor efficiency. An often-used strategy to track the maximum rotor speed, is by using
a Proportional-Integral (PI) control law for the pitch angle. In this strategy, each of the
blades have the same pitch angle β, therefore this control loop is referred to as collective
pitch control.

In individual wind turbine control, the yaw mechanism is mainly used to keep the
rotor faced into the wind, which maximizes the energy extraction. In order to reduce
actuator usage, the yaw reference is only updated when a certain threshold offset of the
yaw with the wind direction is measured. The minimum time between yaw reference
updates on a wind turbine may be in the order of tens of seconds to minutes (examples
are discussed in Hau (2013a) and Kragh et al. (2013b)). The tilt angle is not actuated, a
small constant offset of the rotor axis with the horizontal plane is often used to prevent
the blades hitting the tower in high winds.

The power and speed control strategies described above are somewhat simplified.
Between the different control regions shown in Figure 1.3, additional transition regions
are defined in order to improve start-up behavior or to avoid high rotor speeds (see
Jonkman et al. (2009) for an example). Further, the power and speed control scheme
described above may be extended with additional control loops. Most often, load con-
trol is the goal of these extensions. Controls reducing fatigue and extreme loads will
reduce damage to components and lengthen the turbine lifetime, and will possibly al-
low the use of lighter designs (e.g. more slender blades and lighter support structures),
enabling a reduction of the manufacturing and operational costs of wind turbines (Lantz
et al., 2012). The rotor blades experience a spatially- and time-varying wind field, caus-
ing vibrational loads on the blades that also propagate to the drive-train and the support
system. Because the blades rotate through the field, the experienced loads have large
periodic components. Control measures to reduce these vibrational loads include:

• Adjustments of the control laws to avoid certain rotor speeds at which periodic
loads due to rotational sampling of the wind field would excite resonances of the
system (Bossanyi, 2003b).

• Using the generator torque or the collective pitch for feedback control to dampen
dynamic loads on the tower and drive-train (Bossanyi, 2003b).

• Using individual pitch control (IPC) techniques, where the forces on each rotor
blade are individually controlled using different blade pitch offsets for each blade.
By feeding back measured loads (e.g. strain of the blade roots), and transforming
them to a non-rotating reference frame, the periodic loads on the blades and sup-
port structure can be reduced, at the cost of more high-frequent use of the pitch
actuator (Bossanyi, 2003a).

• Using local actuation on the blades (e.g. using flaps) to locally affect the forces of
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the wind field on the system (van Wingerden et al., 2008).

The above technologies are ordered, in an arguable way, by their maturity in develop-
ment. While the first ones are more common in industrial practice, the latter are in re-
search and development stages. Apart from the trend towards increasing the number of
control loops in the turbine for load reduction, also there is a trend towards using sys-

tem identification (using measured input-output data to derive models to be used con-
trols development) and advanced data-driven techniques (in a more general sense, using
measured data to perform control actions). These techniques can be used to adjust con-
trol laws to time-varying dynamics of the wind turbine, or to possible errors between
the real wind turbine and theoretical models. Examples are found in Houtzager (2011);
van der Veen (2013).

1.2.3. WIND PLANT CONTROL

In the previous section, we have described how individual wind turbines are controlled.
When applying wind plant control for optimization of plant-wide electrical power pro-
duction and wind turbine load reduction, some of the turbine controllers may need to
deviate from the locally optimal control settings for the wind turbine. For example, an
upstream turbine may need to reduce its power production in order to reduce the wake
effects on downstream turbines, and increase the total power production of the wind
plant. In this wind plant control approach, the control settings of the individual turbines
are optimized with a global objective (e.g., total power production of the wind plant).
Hence, in the context of this thesis, wind plant control consist of cooperative control of
the turbines: the turbines exchange information which each other, or with a supervisory
controller, and act on this information in order to reach a global objective (Bai et al.,
2011).

Wind plant control strategies have different ways of using the controls degrees-of-
freedom (DOFs) of the turbine. In Section 1.2.2 the conventional control DOFs were
identified as the pitch angles of the blades, the generator torque, and the yaw angle.
Since each of these control DOFs affect the power extraction of the wind turbine, they
also affect the velocity deficit in the wake. When we only use the control DOFs to affect
the wake velocity deficit, we refer to this as axial-induction-based control. Most wind
plant control approaches in literature use this strategy, using generator torque and blade
pitch as control DOF. Further, the direction of the wake can be changed using control,
such that the overlap of the wake with downstream rotors can be avoided or reduced.
This type of control is referred to as wake redirection control. Wake redirection can be
achieved using the yaw DOF (Dahlberg et al., 2003) and by using individual pitch control
(this thesis, Section 2.4.2).

For both wake-redirection and axial-induction based wind plant control, most cur-
rent research studies on wind plant control methods take a model-based approach. In
these studies the optimal control settings in wind plants are found, using models of wake
effects in wind plants that range from simplified engineering models (e.g. Horvat et al.
(2012), Heer et al. (2014) for axial-induction-based control, and Park et al. (2013) for wake
redirection control) to mid- and high-fidelity simulations tools (Soleimanzadeh et al.
(2013), Schepers et al. (2007), Annoni et al. (2014b), Goit et al. (2014) for axial-induction-



1.2. BACKGROUND AND STATE-OF-THE-ART

1

9

based control).

In the model-based control approach, a computationally-efficient engineering model
of the wake effects in a wind plant is useful for quickly finding optimized control settings
using iterative algorithms, while a more high-fidelity wind plant model, that tends to be
more computationally complex, may be used for validation (before final tests on a real
wind plant). In the next Section 1.2.4, we will provide an overview of wind plant mod-
els. A challenge for model-based strategies is that the optimal settings are dependent on
the wake recovery properties, and that those properties are affected by the atmospheric
conditions that are varying with time (cf. Section 1.2.1). Therefore, if model-based opti-
mization is used to find the optimal settings for a wind plant at a particular time instant,
the model parameters should match the specific atmospheric conditions at that time.

With this in mind, a model-free data-driven optimization method has been proposed
in Marden et al. (2013) that tests the control settings, evaluates the effect on the total
wind plant performance, and reiterates. Similar data-driven control methods, based on
extremum-seeking control techniques, are presented in Johnson et al. (2012). A chal-
lenge with data-driven approaches, is that within the wind plant, there are significant
delays between a control settings change on one turbine, and the effect on downstream
turbines, since the wake effects have to propagate through the flow field. Therefore, the
time-efficiency of data-driven methods depends strongly on the efficiency of the opti-
mization.

1.2.4. WIND PLANT MODELING

In the context of this thesis, a wind plant model describes the interaction of a wind tur-
bine with the atmospheric boundary layer. This interaction with the atmosphere also
includes the interaction that the turbines may have with each other, through the wakes
that form in the atmosphere behind each turbine. In recent years, a large number of
wake models have been presented in literature. These models have different levels of
complexity and fidelity, and may have different purposes, e.g., wind plant performance
evaluation, lay-out optimization or controls development. A short recent overview of
wind plant models can be found in Moriarty et al. (2014). In Table 1.1 some examples are
given to illustrate the variety of models.

A wind plant model for use in wind plant control includes the following elements (as
also illustrated in Figure 1.4):

• A model describing the flow characteristics in the wind field around the tur-

bines. These flow field models range from simplified heuristic or analytic models
consisting of explicit expressions describing the properties of the flow field (e.g.,
the velocity, turbulence intensity, direction) as a function of a limited number of
input parameters (we refer to them as parametric models), to computational fluid
dynamics (CFD) models that rely on solving the Navier-Stokes equations of mo-
tion in the flow field to predict its physics, cf. Table 1.1. Within these categories,
several levels of fidelity for the prediction of different properties of the flow field
can be distinguished, e.g., static (steady) versus dynamic (unsteady) models, two-
dimensional (2D) versus three-dimensional (3D) models, etc.
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model name flow field submodel rotor submodel turbine submodel
←
−

le
v

el
o

f
fi

d
el

it
y

p
a

ra
m

e
tr

ic
m

o
d

e
ls

Jensen model
(Jensen, 1984)

v© static parametric descrip-
tion of steady-state wake
velocity profile

actuator disk • CP , CT relations
for power and
thrust (eq. 1.1, 1.4)

Frandsen model
(Frandsen et al.,
2006)

v© static parametric descrip-
tion of steady-state wake
velocity profile

actuator disk • CP , CT relations for
power and thrust

quasi-steady
wind farm flow
model (Brand
et al., 2010)

v© static parametric descrip-
tion of steady-state wake
velocity profile

t© parametric description
of standard deviation ac-
counting for turbulence

actuator disk • CP , CT relations for
power and thrust

• relations for static
bending loads

C
F

D
m

o
d

e
ls

wind farm state-
space model (So-
leimanzadeh
et al., 2014, 2012)

v© linearized 2D unsteady
NS

t© no additional turbulence
model

actuator disk • CP , CT relations for
power and thrust

• relations for static
bending loads

• relations for effect of
yaw on wake veloc-
ity (deflection effects
not included)

dynamic wake
meandering
model (Larsen
et al., 2008; Hao
et al., 2014)

v© 2D (radial) simplified
steady NS (Ainslie, 1988)

t© mixing-length turbulence
model

c© corrections for wake me-
andering and vertical
shear

actuator disk • FAST aero-elastics
dynamics model
(Jonkman et al.,
2005)

FarmFLOW
(Schepers et al.,
2007)

v© 3D simplified (parabo-
lized) steady NS

t© k −ε turbulence model
c© corrections in near wake

actuator disk • CP , CT relations for
power and thrust

ActiveWindFarms
LES model (Goit
et al., 2014)

v© 3D unsteady NS
t© LES

actuator disk • CP , CT relations for
power and thrust

SOWFA (Church-
field et al.,
2012b)

v© 3D unsteady NS with
thermal buoyancy effects

t© LES

actuator line • FAST aero-elastics
dynamics model
(Jonkman et al.,
2005)

v© main model for wake velocity profile
t© additional model for small-scale turbulence effects
c© additional heuristic corrections

Table 1.1: Overview of a selection of wind plant models, ordered, in an arguable way, by their level of fidelity
(level of realism). Flow field submodels that describe the velocity profile of the wake ( v©), vary from simplified
static parametric descriptions, to CFD simulations based on Navier-Stokes (NS), with several levels of fidelity.
The parametric models are all static relations, and in the CFD models there are some models that describe the
steady-state flow field, based on (quasi-)steady NS, while there are other models that describe the dynamics
of the wind flow based on unsteady NS. The methods used for including effects of (small-scale, unresolved)
turbulence ( t©) are varying from the more simplified models (k − ǫ, mixing length) to more advanced Large
Eddy Simulation (LES) methods. In some of the CFD models, additional heuristic corrections ( c©) are applied
to compensate for simplifications of the Navier-Stokes flow model. Also in the turbine model, there are several
levels of fidelity of the models; from static relations based on the CP , CT relations, with several augmentations
to predict load effects, to an aero-elastics dynamics model of the turbine.
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flow field
model

turbine model
flow velocities at rotor

turbine forces on flow at rotor

electrical power

loads

wind plant
controller

(not in al models)

turbine model

flow velocities at rotor

turbine forces on flow at rotor

electrical power

loads

turbine model

flow velocities at rotor

turbine forces on flow at rotor

electrical power

loads

etc.

Figure 1.4: A generalized model scheme for wind plant models. A wind plant model includes a flow field model
that predicts the wind velocity field in the wind plant, and a wind turbine model (one for each turbine in the
flow). Based on the predicted velocity field at the rotor, a turbine model predicts the forces of the rotor on the
flow, that are fed back to the flow field model, as well as the electrical power production and the structural
loads on the wind turbine. Each turbine communicates with a wind plant controller. In this case, the flow field
model is visualized by the results of the 3D large-eddy simulations in SOWFA (picture from Lee et al. (2012)),
but in many other wake interaction models more simplified flow field models are used.

• A model of the forces of the wind turbine on the flow and the reactive forces of

the flow on the wind turbine. If the wake model has the purpose of being used
for control development, the effect of the control degrees-of-freedom (pitch, rotor
speed and possibly yaw or tilt) on the rotor forces are to be included in this part
of the model. The exact representation of the blade bodies in the flow is gener-
ally too computationally costly for the simulation of wind plants, therefore mod-
eling methods with simplified rotor representations are used. In the actuator disk

method, the rotor is modeled as a disk of distributed forces exerted on the flow. As
an example, in its most simple form, the thrust force FT of the rotor on the flow
is assumed to be uniformly distributed over the rotor disk, and modeled using a
static relation:

FT =
1

2
ρACT U 2 (1.4)

where, as before, A is the rotor area and ρ the air density, and CT is the thrust co-
efficient that, similar to the CP factor, is dependent on the control settings, and U

is the effective wind speed estimated with the flow characteristics model. A more
detailed representation is the actuator line method, introduced by Sørensen et al.
(2002), where each blade is represented as a distribution of forces along a moving
line, and at a number of points of the blade, these forces on the flow are calculated
from the local flow velocities using the local lift and drag characteristics of the air-
foil. An even more accurate, but also more computationally costly representation
is one in which the blades are represented as planes of distributed forces (the ac-
tuator surface method). Refer to Sanderse et al. (2011) for a more comprehensive
overview of rotor modeling methods.

• A model describing the effect of the flow forces on the performance of the wind
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turbine system, in terms of power production and, in some but not all models,
loads on the system. This part of the model may range from a simplified static
model describing the turbine performance as a function of the effective wind speed,
to more comprehensive models describing the full structural dynamics. An exam-
ple of a simplified steady-state power production model was given previously in
Section 1.2.2 (eq. 1.1), and an example of a simplified structural loads model is
the one presented in Soleimanzadeh et al. (2012), which relates the steady-state
thrust (predicted by eq. 1.4) to the tower and blade bending loads. A comprehen-
sive wind turbine structural dynamics model that has been included in wake in-
teraction models is the FAST model (see below in SOWFA description).

• If the model is to be used for evaluating wind plant control models, a wind plant

controls structure needs to be emulated. The wind plant controller communi-
cates with each of the wind turbines, collecting local measurements at the turbine
sensors and sending information or commands to each of the turbines.

In the context of this thesis, it is important to note that not all wind plant models
are able to predict the effect of all the control DOFs on the flow field. More specifi-
cally (cf. Table 1.1), while the high-fidelity LES wind plant model SOWFA contains all
the physics models to able to predict the effects of the yaw DOF and individual pitch
control on the flow field in terms of the wake redirection, the simplifications in the wind
plant state-space model (Soleimanzadeh et al., 2014) and the dynamic wake meandering
model (Hao et al., 2014) make that these wake redirection effects are not captured in the
model. Also the parametric models in Table 1.1 do not contain relations to predict the
wake redirection effects of control3.

Below, we will discuss SOWFA in more detail, as it will be used in different parts of
this thesis to evaluate wind plant controls concepts.

1.2.4.1. THE SOWFA WIND PLANT MODEL

One of the more comprehensive wind plant models available is the Simulator for On-
shore/Offshore Wind Farm Applications (SOWFA). It is explained in more detail in Church-
field et al. (2012b). Here, a summary of the main features relevant for this thesis is given.

SOWFA’s wind field model consists of a CFD simulation of the 3-dimensional wind
flow around the turbine rotors in the atmospheric boundary layer, using a large-eddy
simulation (LES) method (example results are shown in Figure 1.4 and 1.5). In the LES
method, in order to limit the computational cost of the simulation, the larger scales of
the flow field are resolved by solving the temporally and spatially discretized unsteady
Navier-Stokes equations with additional stress terms that empirically model the effect of
the turbulence in the smaller unresolved (subgrid) scales. In the Navier-Stokes model,
Coriolis forces that account for the Earth’s rotation are included in the momentum equa-
tions, as well as a buoyancy term that models the combination of gravitational and ther-
mal effects on the flow. To generate the buoyancy term, also the advection-diffusion
equations for temperature need to be resolved. The rotors are represented by rotating

3The parametric model used in (Park et al., 2013) for yaw-based wake redirection was left out of the overview,
since it is not validated with high-fidelity simulations or measured wind plant data.
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Figure 1.5: A vertical cut-through of the wind velocity field around two turbines as simulated by SOWFA. Note
that while wind turbines are visualized in the flow, in the SOWFA simulation only the effect of the rotor forces
are included in the flow simulation, through the actuator line method. Source: Churchfield et al. (2012b).

actuator lines in the flow field simulation (the nacelle and tower of the turbine are not
represented). The local velocity vectors at points along the actuator line are sampled
from the flow field. From these, the FAST wind turbine aero-elastic multibody dynamics
simulation (Jonkman et al., 2005) then calculates at each simulation time-step:

• the blade forces on the flow distributed along the actuator lines, using the local lift
and drag properties of the blade airfoil,

• the structural loading responses induced by the aerodynamic forces (e.g., blade,
tower, and drive-train loads),

• the resulting rotor acceleration, speed, and position,

• the displacements of the actuator line caused by blade and tower bending, rotor
rotation, and yaw,

• the electrical power production of the turbine.

Apart from the velocity field samples from the CFD simulation, inputs to the FAST
aero-elastics simulation are control settings (reference signals for blade pitch, generator
torque, and yaw angle) and the turbine design properties. A controller algorithm can
be included in FAST to provide the control settings. Further, in Fleming et al. (2013a,b)
a wind plant controls structure was introduced in the SOWFA simulation framework,
that can send and receive measurements and commands from and to each wind turbine
in simulation. This controller can be used to implement and test plant-wide control
strategies in the SOWFA simulation environment.

Prerequisites for a wind plant simulation experiment in SOWFA are the initial condi-
tions for the flow field, as well as the inflow to the simulated domain. These should rep-
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resent the ambient atmospheric conditions that a researcher is interested in testing in
simulation. They are generated by running a so-called precursor simulation. In this pre-
cursor simulation, there are no turbines present. The outflow properties are measured,
and the boundary conditions on the inflow side of the domain are set the same, such
that the flow is cycling through the domain. A pressure gradient over the domain is set to
control the mean velocity and direction at hub-height to a certain desired value for the
following simulation experiment. At the bottom of the domain, a ground surface rough-
ness is set, that will cause turbulence to be generated, i.e., with this surface roughness, a
desired turbulence intensity can be set. Further, a surface temperature flux is set, which
also affects the turbulence intensity by imposing a certain atmospheric stability condi-
tion. The simulation is started with an initial velocity, pressure and temperature profile,
and once the turbulence structures reach a quasi-steady state, they are sampled for the
duration of the following simulation experiment, and stored. This stored flow field is
then prescribed as the inflow for the simulation experiment with the turbine present in
the flow.

If SOWFA is used for high-fidelity predictions of the wake interaction and the atmo-
spheric effects on the wind turbine performance, a detailed representation of the flow
field dynamics needs to be calculated. This includes resolving the blade-induced vor-
tices in the near wake, as well as the turbulence properties in the far wake and the up-
stream induction zone (the part of the flow field upstream of the turbine that is affected
by the rotor, cf. Simley et al. (2014)). To do this, a spatial discretization with relatively
small dimensions (typically around 3 meters) is used around the turbines and in the
wake. Also, the effects of larger turbulent structures in the atmosphere on the wake
need to be included (in order to predict wake meandering, for example), resulting in
a large simulated domain. Therefore, for these high-fidelity simulations, the computa-
tional complexity of SOWFA is rather large. A typical calculation will take tens of hours
of distributed computation on clusters with a few hundred processors.

Validation of the SOWFA tool is an ongoing process. In Churchfield et al. (2012a),
SOWFA was used to simulate the 48-turbine Lillgrund wind plant, and the results were
then compared with field data, with good agreement throughout the first five rows.

1.3. THESIS OBJECTIVES

With the objective to contribute to the reduction of the cost of energy of offshore and
onshore wind energy (cf. Section 1.1), this thesis aims to further develop control tech-
niques that improve the performance of the wind plant, by taking into account wake
interaction effects.

In Section 1.2.1 it was explained that the wake interaction is influenced by the atmo-
spheric conditions. A wind plant control strategy that is to be applied on a real wind plant
in changing atmospheric conditions, should therefore be able to adapt the control set-
tings of the turbines to these time-varying conditions in real-time. In order to optimize
the wind plant performance, it can make use of all of the control degrees-of-freedom of
the turbine.

In existing work in wind plant controls research (cf. Section 1.2.3), we see develop-
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ments of wind plant controls that mainly focus on axial-induction-based control (using
generator torque or pitch). In most of this work, use is made of a model-based approach
to perform the offline optimization of control settings. Generally, in the model-based
approaches, and in the proposed model-free approaches, the time-efficiency of the op-
timization on the wind plant in real-time is not fully taken into account.

In this thesis, we contribute to the existing body of work, by:

Thesis Objective 1 Evaluating the potential of each of the currently-used control degrees-
of-freedom of the wind turbine (generator torque, collective and individual blade
pitch and rotor yaw) to affect the wake interaction effects between the turbines.

Thesis Objective 2 Developing methods to optimize the different control settings of the
wind turbines in order to improve overall wind plant performance (in terms of
power production and/or loads on the turbines), taking into account the time-
efficiency of the optimization in real-time implementation on the wind plant.

In the next Section 1.4, we will go into the general methodologies used in this the-
sis to fulfill the above objectives. Then, in Section 1.5 we will further specify the thesis
contributions in the thesis outline.

1.4. METHODOLOGIES

In the proposed wind plant control methods in this thesis, a data-driven approach is
taken. By basing the optimization of the control settings on measured data, the wind
plant controller is able to adapt to the time-varying atmospheric conditions (e.g., wind
velocity, turbulence intensity and atmospheric stability), which influence the wake prop-
erties and therefore the optimal point of operation of the turbines.

In this section, we introduce the basic approaches for data-driven wind plant con-
trol taken in this thesis: a direct data-driven optimization approach, and a data-driven

model-based approach, both illustrated in Figure 1.6.

In the direct data-driven optimization approach (Figure 1.6a), measured data is di-
rectly used in the optimization algorithm to find the optimal operation point, based on a
memory of previously tested settings. In this approach, the efficiency of the optimization
algorithm (in terms of the number of iterations) is of importance, since the optimization
algorithm aims to quickly adapt the control settings to time-varying atmospheric condi-
tions. Notice that while there is no model included in the scheme in Figure 1.6a, here we
do not use the term model-free to describe the approach, because to perform the opti-
mization in a time-efficient manner, some inherent assumptions on the behavior of the
wind plant are taken based on physical reasoning, which can be viewed as a qualitative
model.

In the data-driven model-based approach (Figure 1.6b), from the measured data, the
parameters of a wind plant model are estimated in an identification procedure, and the
state of the model (representing, for example the properties of the wind field) is updated
using an observer. Then the optimization algorithm can iteratively test control settings
on this model to find the model-predicted optimal operation point, before applying the
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optimized control settings on the real wind plant. For the wind plant controls develop-
ment using this model-based control strategy, not only the accuracy of the predictions,
but also the computational complexity is a relevant property of the wind plant model.
In case the optimization is taking place on-line in time-varying atmospheric conditions,
it is required that the control updates take place in a relatively short time, therefore the
computational complexity of evaluating the predictions of model should be low enough.
Therefore, a high-complexity model like SOWFA is not suited for online optimization,
and in this thesis more computationally efficient control-oriented parametric models
are developed for which the parameters can be found from measured data. Control-
oriented, in this context, means that the effects of the wind turbine control DOFs on the
wake interaction that are relevant for the wind plant performance, can be predicted by
the model.

control
inputs

measurements

optimizer

past inputs/
outputs

optimization memory

wind plant

(a) The direct data-driven optimization approach

control
inputs

measurements

optimizer

wind plant

identification

model
parameters

wind plant model + observer

test
inputs

predicted
outputs

(b) The data-driven model-based approach

Figure 1.6: Block schemes illustrating the two basic approaches for data-driven wind plant control in this thesis

In this thesis, we provide proof-of-concepts of control approaches, both in terms of
the effect of control DOFs on interaction effects (Thesis Objective 1), as well as the ef-
fectiveness of the associated algorithms for optimization of the control settings (Thesis
Objective 2). At several points we use SOWFA high-fidelity simulation to provide these
proof of concepts, since so far, we have not had the ability to test control concepts on a
real wind plant. The SOWFA simulator includes relevant dynamics and is one of the more
comprehensive CFD models available, but like any model it contains simplifications (e.g.
in the discretization of the spatial domain). By not basing the control algorithm on the
specific model formulation in SOWFA, but taking a more generic approach where data is
extracted from SOWFA for use in data-driven control concepts, using the measurements
that are also available on current wind plants (e.g., local wind direction at the turbines,
and turbine power productions), we aim to develop procedures and control algorithms
that can also be applied on real wind plants using readily available measurement data.

1.5. THESIS CONTRIBUTIONS AND OUTLINE

In this thesis, different aspects of the proposed data-driven control schemes as explained
in the previous Section 1.4, are developed, in order to meet the objectives formulated in
Section 1.3. We have presented the work in different chapters, that each stand on their
own in the sense that they can be read independently, so some of the introductions and
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definitions are repeated in the different chapters.

• In Chapter 2, the potential of the different control degrees-of-freedom of the wind
turbine to affect the wake interaction effects in the wind plant in SOWFA hight-
fidelity simulations are evaluated, and the results are discussed.
Parts of this chapter have been published in Fleming, Gebraad, Lee, van Wingerden, John-

son, Churchfield, Michalakes, Spalart, and Moriarty (2014b,d); Annoni, Gebraad, Schol-

brock, Fleming, and van Wingeren (2014a).

• In Chapter 3, a time-efficient direct data-driven optimization approach for axial-

induction-based control is developed.
This chapter has been published in Gebraad and van Wingerden (2014b).

• In Chapter 4, a time-efficient data-driven model-based approach for yaw-based

wind plant control is developed, in which the wake is redirected using yaw offsets.
A control-oriented, data-driven, parametric model is developed for this approach,
predicting the wake-redirection effects of yaw.
This chapter will appear as a journal publication in Gebraad, Teeuwisse, van Wingerden,

Fleming, Ruben, Marden, and Pao (2014d).

• In Chapter 5, a data-driven control-oriented model is developed, that takes into ac-
count specific dynamics of the wake interaction. A Kalman filter for updating the
flow predictions of the model using measured data is developed, and the model is
used in a model-based wind plant control example.
This chapter has been published in Gebraad and van Wingerden (2014a).

Finally, in Chapter 6, the conclusions of this thesis are presented.
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EVALUATION OF CONTROL

DEGREES-OF-FREEDOM FOR WIND

PLANT CONTROL

In this chapter the different wind turbine control degrees-of-freedom (DOFs) that can be

used to affect the wake interaction effects in a wind plant, are evaluated. For each of the

concepts, we explain the mechanism by which the wakes and the wake interaction effects

are affected by a certain wind turbine DOF, present case studies using high-fidelity SOWFA

simulations and discuss their results in terms of the effect of a DOF on turbine-to-turbine

wake interaction. First we study the axial-induction-based concept, that consist of using

pitch and/or generator torque control to adjust the power production on upstream tur-

bines to increase the total electrical energy yield of the wind plant. From the simulation

results combined with earlier results from literature, we can conclude that the effectiveness

of the axial-induction-based control is dependent on the specific inflow and atmospheric

conditions, and the turbine characteristics. The results even suggest that there are circum-

stances in which the concept of total wind plant power increase through axial-induction-

based control is infeasible. Another concept in which the yaw DOF is used to induce wake

redirection, is shown to be effective at reducing the wake interaction effects and increasing

the power production of a simulated two-turbine setup. Other less conventional strategies

that affect the wake interaction in the wind plant, being individual pitch control based

wake redirection, rotor tilt wake redirection, and repositioning of floating turbines, are

also tested in SOWFA simulations.

Parts of this chapter have been published in Fleming, Gebraad, Lee, van Wingerden, Johnson, Church-
field, Michalakes, Spalart, and Moriarty (2014b,d); Annoni, Gebraad, Scholbrock, Fleming, and van Wingeren
(2014a).
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2.1. INTRODUCTION

In this chapter we evaluate the different control degrees-of-freedom (DOFs) that can be
used to affect the wake interaction effects in a wind plant. We study:

• conventional control DOFs on modern wind turbines (collective blade pitch and
generator torque) that affect the flow mainly by influencing the axial induction of
the rotor and thereby the velocity deficit in the wake,

• turbine DOFs that change the direction of the wake, being rotor yaw, individual
blade pitch control, and the tilt of the rotor (an unconventional DOF),

• repositioning techniques to move floating turbines out of the wake.

For each of the concepts, we explain the mechanism by which the wakes and the wake
interaction effects are affected by a certain control DOF, show simulation case studies in
which the settings for the DOF are varied, and discuss the results of these simulations.
Each of the concepts is studied in SOWFA simulations of setups with either one or two
turbines. These simulation scenarios are explained in more detail in Section 2.2. Then,
axial-induction-based techniques are discussed in Section 2.3, and wake redirection and
turbine repositioning techniques are discussed in Section 2.4. Summarizing conclusions
are provided in Section 2.5.

2.2. SIMULATION SCENARIOS

In the next two Sections 2.3 and 2.4, SOWFA simulations are used to study how the afore-
mentioned control DOFs affect the wakes and the wake interaction effects. Two scenar-
ios are simulated: a single turbine scenario and a scenario with two turbines aligned
in the flow. The scenarios are explained in more detail in this section. An introductory
explanation on the SOWFA simulator was given in Section 1.2.4.1.

2.2.1. SINGLE-TURBINE SIMULATION SCENARIO

In this scenario, we simulate an NREL 5-MW baseline turbine (described in Jonkman
et al. (2009)) in turbulent inflow, in a domain that is 3 km by 3 km in the horizontal and
1 km in height. Details on the positioning of the turbine and meshing of the domain are
given in Figure 2.1. It is shown that the mesh is refined in two steps in a rectangular re-
gion. The smallest mesh cells for the CFD calculation contain the turbine rotors, the axial
induction zones of the rotor and a large part of the wake. Further away from the turbines
the mesh is coarsened in order to reduce the computational cost of the simulation.

By studying the wake properties with different settings of the control DOF, we can in-
vestigate how these DOFs affect the wake. In the baseline case against which we compare
the different DOF settings, the turbine is operating at a nominal below-rated (Region 2)
tip-speed ratio of 7.55, with a zero yaw offset of the rotor with the mean wind direction.

The conditions simulated, which are based on the study in Churchfield et al. (2012b),
are that of a neutral atmospheric boundary layer (ABL), with a low aerodynamic surface
roughness value of 0.001 m that is typical for offshore conditions. The inflow is generated



2.2. SIMULATION SCENARIOS

2

21

in a precursor simulation of the same domain, but without the turbines present, without
the mesh refinements, and with periodic boundary conditions. In this precursor simu-
lation the turbulent structures develop in the flow, and the horizontally averaged wind
speed is driven to 8 m/s at the turbine hub height, controlled through a time-varying
mean driving pressure gradient. Finally, after a total of 17,000s of simulated time, the
turbulence intensity of the inflow develops to 6%, and the vertical change in mean wind
velocity across the rotor disk to 1.46 m/s. The wind comes from the southwest (300◦). In
the final 1,000s of the precursor simulation, the full flow field is sampled and stored. This
stored flow field is then prescribed as inflow for the simulations with the turbine present
in the flow.

SOWFA requires significant computational power in order to run high-fidelity simu-
lations: using a sample time of 0.02 s, the time steps take an average 2.5 s to calculate on
the Sandia National Laboratories/NREL Red Mesa supercomputer (National Renewable
Energy Laboratory, 2012), using distributed computation with 256 processors. In most
of the simulations, we use a simulated time length of 1,000s in order to let the wakes de-
velop through the domain and collect data in a fully developed flow, which thus yields
an execution time of 34.4 h for each simulation.

Figure 2.3 shows the time-averaged flow field in contour planes taken from the sim-
ulation of the single turbine in the baseline case, with the rotor tilted up 5◦ to prevent
blade strikes on the tower (the default tilt setting for the NREL 5-MW, Jonkman et al.
(2009)). The vertical slices through the wake at various downstream locations, shown
in the bottom two rows of Figure 2.3, show the mean wake as viewed from upstream
looking downstream. Note that the wake moves to the right with increasing downstream
distance, even though there is no yaw misalignment. This deflection can be explained
by vertical shear in the boundary layer and wake rotation: in reaction to a rotor rotating
clockwise, low speed flow in the lower part of the boundary layer will be rotated up and
to the right, and high speed flow in the upper part of the boundary layer will be rotated
down and to the left, and as a result the wake deflects to the right.

2.2.2. TWO TURBINE SIMULATION SCENARIO

To study the wake interaction effects between turbines, a second scenario was devel-
oped to simulate two NREL 5-MW baseline turbines in turbulent inflow, with a down-
wind spacing of 7 rotor diameters (7D), a typical turbine spacing. Details on positioning
of the turbines are given in Figure 2.2. The same domain and meshing properties are
used as in the single-turbine simulation scenario described in Section 2.2.1 and shown
in Figure 2.1. Also the same ABL properties, boundary conditions and inflow properties
are used as in the single-turbine simulation. The computational cost of each case is ap-
proximately the same as for the single-turbine cases described in Section 2.2.1. Conser-
vatively assuming the wake convection speed to be one-half the mean hub-height wind
speed, and setting a length scale equal to the turbine-to-turbine spacing of 7 rotor diam-
eters, then the 1000 s simulation time can be expressed as at least 4.5 wake flow-through
periods.
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Figure 2.1: Overview of the simulation setup in the single-turbine baseline case.
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2.3. EVALUATION OF AXIAL-INDUCTION-BASED METHODS

In this section we study the collective pitch and generator torque control DOFs of the
turbine, that affect the flow mainly by influencing the axial induction of the rotor and
thereby the velocity deficit in the wake. First the mechanism is explained in more detail
in Section 2.3.1. Then in Section 2.3.2, a short literature overview is given of different
studies investigating the potential benefit of the axial-induction in terms of potential
power production increase. In Section 2.3.3, a simulation example is provided, showing
some of the difficulties arising in the axial-induction control concept. A discussion of
the results follows in Section 2.3.4.

2.3.1. THE MECHANISM OF AXIAL-INDUCTION-BASED WIND PLANT CON-

TROL METHODS

In this thesis, the wind plant control concepts are aimed at improving the overall wind
plant performance by controlling the wake interaction effects in the wind plant. Most of
literature on this type of wind plant control has focused on adjusting the power extrac-
tion of some of the turbines in the wind plant, in order to influence the velocity deficit in
the wakes (Knudsen et al. (2014)). The power extraction can be adjusted by using con-
ventional control DOFs on a turbine, such as blade pitch angle and generator torque.
In this thesis, we refer to this type of control as axial-induction-based control methods,
because the generator torque and blade pitch are adjusted to influence the axial induc-
tion factor of the rotor. The axial induction factor a is the fractional decrease in wind
velocity between the free stream and the turbine rotor (see also Figure 2.4). The gen-
erator torque and blade pitch influence the axial induction of the rotor, and therefore
also affect the velocity deficit in the wake the rotor generates. In the wake behind the ro-
tor, the flow expands, and as the flow moves downstream, it recovers to the free-stream
conditions because it extracts momentum from the surrounding flow through diffusion
and convection. The rotor distorts the inflow, which, together with surface roughness
thermal effects and velocity gradients in the wake, creates turbulence in the wake that
acts as a ‘mixer’ of the free-stream and the wake, advancing the wake recovery (Sanderse
et al., 2011). If another turbine downstream is standing in the path of the wake that is
not yet fully recovered to the free-stream conditions, it experiences the reduced wind
speed in the wake, which results in a lower electrical power production of the down-
stream turbine. Therefore in wind plants, in which turbines are placed relatively close to
each other, the wake effect causes a coupling between the control settings of upstream
turbines and the power productions of downstream turbines.

The amount of total power production gain that can be achieved from optimizing the
control settings of the turbines, is dependent on the aerodynamic characteristics of the
turbine, as well as on the atmospheric conditions. Two important characteristics of the
turbine are the power coefficient CP and the thrust coefficient CT , both of which are a
function of the tip-speed ratio (TSR) and the pitch of the blades (Bianchi et al., 2007).
The TSR is given by:

λ=
ωR

U
(2.1)

where R is the rotor radius, ω the rotor speed, and U the free-stream wind speed (i.e.
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Figure 2.3: Averaged velocity profiles of the wake forming behind the NREL 5-MW turbine with no pitch or yaw
control as calculated in the SOWFA simulation. D is rotor diameter. The x-y plane is a view from above and
the downstream planes are as viewed from upwind looking downwind.
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the wind speed not disturbed by the rotor, see Figure 2.4). The rotor speed, and thus
the TSR, can be influenced by adjusting the generator torque or changing the lift forces
on the rotor blades by adjusting the blade pitch. The power coefficient determines the
efficiency of the rotor in power extraction; the steady-state power extraction of the rotor,
P , is given by:

P =
1

2
ρACP

(
β,λ

)
U 3 (2.2)

with A the total area swept by the rotor, ρ the air density and CP the power coefficient
expressed as a function of the TSR λ and the collective blade pitch β. The thrust coef-
ficient determines the thrust force of the rotor on the flow. The total thrust force of the
rotor directed opposite of the flow, FT , is given by:

FT =
1

2
ρACT

(
β,λ

)
U 2 (2.3)

The thrust of the rotor determines the reduction of velocity over the rotor plane, i.e. the
axial induction a (see also Figure 2.4). From actuator disc momentum theory it follows
that if we assume that there is no recovery of the wake, the extraction of energy over the
rotor makes that velocity in the wake behind the rotor drops to:

Uwake,min =U (1−2a) (2.4)

with axial induction a being related to the thrust factor as follows:

a =
1

2

(
1+

√
1−CT

)
(2.5)

In reality, there is wake recovery through convection and diffusion of momentum, there-
fore Uwake,min can be considered to be a lower bound on the wind velocity in the wake.

rotor disk
mixing

rotor streamtube

free stream

wind direction

wind velocity
U

U (1−a)

U (1−2a)

A

wake

FT

Figure 2.4: Simplified representation of the wake and upstream induction zone of the wind turbine rotor. The
blue solid line is a possible time-averaged profile of the wind velocity, averaged over the cross-section of the
streamtube of the flow that passes through the rotor. In the induction zone in front of the rotor, the flow velocity
is already reduced, then there is a minimum of the velocity in the wake behind the rotor, after which the flow
recovers to the free-stream conditions. U is the free-stream velocity, a the axial induction factor, FT the rotor
thrust force, and A the area of the rotor disk.

In below-rated wind conditions, the axial-induction wind plant control concept re-
lies on the fact that at the operation point of maximum extraction of a single turbine,
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the sensitivity of the power production to the pitch and generator torque is small, since
the surface describing the dependence of CP on TSR and pitch is flat around its opti-
mum, while the thrust force is more sensitive to the pitch and TSR, since the CT surface
is not flat at the same pitch and TSR operation point (see the CP and CT surface in Fig-
ure 2.5 as an example). This means that by deviating a small amount from the point of
maximum CP by adjusting pitch and/or generator torque on an upstream turbine, the
power production of that turbine will reduce only a small amount, while the axial induc-
tion will reduce enough to significantly increase the velocity in the wake (Schaak, 2006).
Under the right circumstances, this increase in velocity downstream of the rotor will in-
crease the power of a downstream turbines more than the loss in power production on
the upstream turbine. Factors affecting the amount of production increase that can be
achieved through axial-induction-based wind plant control techniques include:

• The specific rotor characteristics: the ratio of the gradients of the CT -surface and
the CP -surface around optimum operation determine how much the velocity in
the wake can be increased by a certain amount of reduction of the power produc-
tion on the turbine creating the wake.

• The overlap of the wakes with the downstream turbine. If the overlap of the wake
is small, the relative gain in power production that can be achieved is small. The
wake overlap is affected by the wind direction, the expansion of the wake and the
relative positioning of the turbines. Also the overlap changes over time under in-
fluence of vertical and horizontal movements of the wake (wake meandering).

• The amount of wake velocity recovery of the wake having taken place at the lo-
cation of the downstream turbine through mixing. More mixing takes place if
the turbulence intensity in the inflow is high. Also, the amount of turbulent mix-
ing is dependent on the atmospheric thermal stability conditions. The effects of
inflow turbulence intensity and atmospheric stability on wake recovery are dis-
cussed in Abkar et al. (2014) (a CFD simulation study) and Barthelmie et al. (2010)
(a study of wind plant field data). If there is more turbulent mixing in the wake,
the velocity in the wake recovers to the velocity of surrounding flow over a shorter
distance, and the relative gain in power production that can be achieved through
the axial-induction-based wind plant control is smaller.

2.3.2. OVERVIEW OF AXIAL-INDUCTION-BASED WIND PLANT CONTROL STUD-

IES

Several studies investigate the beneficial effect of axial-induction-based control for the
optimization of wind plant total power production:

• Several simulation studies have shown a beneficial effect of axial-induction-based
control on power production, using wake models that range from engineering
models (e.g. Horvat et al. (2012), Johnson et al. (2012), Marden et al. (2013) and
the study in Chapter 3) to more high-fidelity CFD simulations tools (e.g. Schepers
et al. (2007), Annoni et al. (2014b), Goit et al. (2014)), with a wide range of reported
potential increases (Knudsen et al. (2014) gives an overview). However, not all the
simulation studies report a beneficial effect: such a counterexample is the LES
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Figure 2.5: Power and thrust coefficient of the NREL 5MW reference turbine Jonkman et al. (2009) as a function
of blade pitch and TSR. In both surfaces, the cross (+) indicates the operation point of maximum CP . The CP

surface is smooth so around the maximum, there is a small sensitivity of the power with respect to the TSR and
pitch. At the same operation point, the gradient of the CT is larger, and thereby also the sensitivity of the thrust
is larger. Data from Soltani et al. (2010).

study of the Lillgrund wind plant in Nilsson et al. (2014), where axial-induction
control using a range of pitch offsets on the front turbines is tested, and a produc-
tion increase on the downstream turbines is reported, but an increase of the total
power production is not achieved since the gain in production on the downstream
turbines does not exceed the loss on the front turbines.

• Also, wind tunnel experiments have been performed with scaled turbines. In the
two-turbine tests in Adaramola et al. (2011) and the scaled wind plant test in Ma-
chielse et al. (2007), the results from such tests are an increase in total power pro-
duction of turbine rows when reducing the power extraction of the front turbines
using pitch control.

• Experimental data from wind plants with full-scale industrial wind turbines is scarce,
as the overview in Knudsen et al. (2014) shows. A relevant analysis is found in Ma-
chielse et al. (2007), where a systematic increase of power production is reported
on the first two turbines of a row of 2.5 MW turbines with 3.8 rotor diameter spac-
ing when applying the axial-induction-based control by applying a pitch offset on
the front turbine.

In general, one notices a wide range of reported production increases through axial-
induction-based control, including a case where no increase can be found.

2.3.3. EVALUATION OF AXIAL-INDUCTION-BASED CONTROL STRATEGIES US-

ING SOWFA

In this section, we present a simulation counterexample to the examples of successful
implementation of axial-induction-based wind plant control for wind plant electrical
power production increase listed in the previous section, in order to demonstrate some
of the difficulties arising in this type of control. In this example it is shown that even
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when two turbines are aligned in the wind direction at a relatively short distance, un-
der certain realistic inflow conditions there may not be a significant increase in power
achievable by deviating from the turbine-level optimal control settings.

In Figure 2.6a the results are shown of applying different pitch offsets on the front
turbine of the wind-aligned two-turbine setup with 7 rotor diameter spacing described
in Section 2.2.2. It shows that the turbine-level power optimal setting (zero pitch offset)
also yields maximum power production for the total wind plant. Although the effect of
reduction of the axial induction on the front rotor causes an increase on power of the
second turbine in the row, the power lost on the first turbine by offsetting the pitch is not
regained on the second turbine. Note that a pitch offset also influences the tip-speed
ratio, but the sensitivity of the CP and CT on the tip-speed-ratio is small relative to the
sensitivity to pitch (see Figure 2.5).

In Figure 2.6b, the results are shown of simulation cases in which there is a deviation
from the turbine-level optimal generator torque settings by applying a scaling factor α
on the regular below-rated rotor speed control law (Jonkman et al., 2009) of the front tur-
bine, so that the applied generator torque is T =α∗K ∗ω2 with K = 0.0179 N m/RPM2 the
turbine-level optimal gain for maximum power production1. A decrease in tip-speed-
ratio is needed to decrease CT and thereby the axial induction factor of the front rotor,
which can be seen in the CT -surface in Figure 2.5. This decrease in tip-speed-ratio is
achieved when the generator torque of the upstream turbine is increased (α > 1). As
mentioned before, the CT -coefficient is not very sensitive with respect to the tip-speed-
ratio, and the possibility to increase the generator torque is limited by the fact that the
rotor may stall when a temporary reduction of wind speed occurs, therefore the amount
by which axial induction can be affected by adjusting torque is limited. When increas-
ing torque on the upstream turbine, an increase of power at the downstream turbine
can be observed. However, as in the pitch case, there is not enough power increase on
the downstream turbine to compensate for the loss on power production on the front
turbine, and a decrease in electrical power production on the total two-turbine setup
results.

In Figure 2.7 the results are shown of a study to investigate the reason why in this
particular two-turbine case the axial induction control concept does not yield a wind
plant power production increase. For a single turbine setup, we compare a two degree
pitch offset on the turbine to the baseline case with no offset. From the results of the flow
simulation, the kinetic energy added to the wake by pitching the turbine is calculated.
In Figure 2.7a the differences are shown between the pitch offset case and the baseline
case, in the kinetic power density Pdensity of the wind flowing through cut-through planes
downstream of the rotor, calculated as:

Pdensity = uaxial

(
1

2
ρ~U ~U T

)
(2.6)

where uaxial is the axial component of the velocity (along the rotor axis), and ~U is the
flow velocity vector, and ρ is the air density. When visualizing the rotor plane of a ‘vir-

1We found that the generator torque gain K to reach optimal tip-speed ratio for maximum power production in
SOWFA simulations deviates from the optimal value K = 0.0256 N m/RPM2 in Aerodyn simulations reported
in Jonkman et al. (2009)
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tual’ downstream rotor of equal size placed downstream aligned in the wind direction in
Figure 2.7a, it can be seen that the kinetic energy conserved in the flow by using a sub-
optimal pitch angle on the turbine, is mostly going outside of that rotor plane. Therefore,
the power reduction on the front turbine would mostly be ‘lost’ to speeding up the flow
surrounding a downstream rotor, rather than increasing the power production of down-
stream turbine. The associated energy balance is made in Figure 2.7b, where the added
power flow through a potential downstream turbine is summed over the ‘virtual’ rotor
plane and compared to the power lost at the upstream turbine by pitching. When con-
sidering that the downstream turbine can operate at a maximum CP,max = 0.48, this bal-
ance predicts that it would not be possible to recover the energy lost by placing a turbine
of equal size downstream at a realistic spacing (at least more than one rotor diameter).
A second cause for a limited ability to improve production at the downstream turbine
through control offsets on the upstream turbine, is suggested in Annoni et al. (2014a): a
reduction in thrust force on the front turbine may reduce turbulence in the wake, and
thereby the wake recovery, which has a negative effect on the velocity at the downstream
turbine.

In this particular simulation case, the results suggest that the combination of the CP

and CT turbine characteristics and the expansion and recovery properties of the wake in
the simulated flow make the concept of power increase through axial-induction-based
control optimization through adjusting pitch or generator torque infeasible.

2.3.4. DISCUSSION

The examples of successful implementation of the axial-induction-based wind plant
control concept in simulation and scaled, and full-scale experiments, listed in the lit-
erature overview in Section 2.3.2, combined with the high-fidelity simulation counterex-
ample in Section 2.3.3, show that the plant-level optimal settings and the potential gain
from plant-wide instead of turbine-level optimized control are dependent on the par-
ticular inflow conditions, the wind plant configuration and the turbine characteristics.
Plant-wide axial induction control for power optimization will only have potential if
there is enough wake overlap and the wake recovery and expansion is small enough so
that the energy ‘sacrificed’ by the upstream turbines to the downstream flow will not
be lost to the flow passing the downstream turbines. Also, the limited efficiency of the
downstream turbine in converting the increase in kinetic energy of the inflow to elec-
trical energy (the power coefficient), has to be taken into account when evaluating the
potential of axial-induction control methods.

We conclude that for the axial induction control concept to be applied, an optimiza-
tion strategy for the control settings on the turbines is needed that is adaptive to the
particular atmospheric circumstances and the turbine characteristics at a certain oper-
ating point. In Chapter 3 we present such an adaptive approach (a direct data-driven
approach) that is based on the available measured data, and knowledge of the lay-out of
the wind plant.

An alternative control method is to use data-driven model-based wind plant con-
trol methods, in which control-oriented engineering models are used to perform the
optimization (as proposed in Section 1.4). Although engineering wake models, such
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as the Jensen (Jensen, 1984; Katić et al., 1986), or the Frandsen model (Frandsen et al.,
2006), take into account wake expansion and the turbine efficiency, the particular pa-
rameters used in these models will affect the predicted results in terms of power pro-
duction increase potential. These parameters need to be adapted to the atmospheric
conditions and the turbine characteristics. Comparing the simulation results presented
in Section 2.3.3 and 2.3.2, however, suggest that there is some discrepancy between high-
fidelity models and the engineering-type models in the prediction of the effect of axial-
induction based control. Based, in part, on the simulation results in this section, and the
engineering model presented in Chapter 4, Annoni et al. (2014a) discusses further these
discrepancies, and proposes extensions to the engineering model to resolve them.

2.4. EVALUATION OF WAKE REDIRECTION AND TURBINE REPO-

SITIONING METHODS

An alternative approach to controlling wakes in wind plants is to redirect the wake rather
than to only optimize induction. A SOWFA simulation-based evaluation of how much
wake redirection can be achieved on a single turbine through different techniques can
be found in Section 2.4.1. Then, in Section 2.4.2 we investigate the effects of the wake
redirection techniques on a second turbine standing downstream of another turbine to
which we apply the wake redirection techniques.

2.4.1. EVALUATION OF WAKE REDIRECTION CONTROL STRATEGIES FOR A

SINGLE-TURBINE CASE USING SOWFA

In this section, first we evaluate the effect of different control strategies on the properties
of the wake.

2.4.1.1. DESCRIPTION OF THE WAKE REDIRECTION STRATEGIES

In this section we consider three methods of achieving wake redirection, which are illus-
trated in Figure 2.8:

• By using the yaw drive to rotate the rotor and nacelle around the tower, the rotor
is misaligned with the wind direction, which makes that the flow direction of the
wake is changed in the horizontal direction, in the direction opposite to the yaw
angle γ.

• By using actuation to rotate the rotor and nacelle in the tilt direction, where the ro-
tor ‘leans forward or backwards’, the rotor is also misaligned with the wind direc-
tion. In this case the flow direction of the wake is changed in the vertical direction,
in the direction opposite to the tilt angle τ.

• Finally, the pitch actuation of the rotor blades, that rotate the blades around their
longitudinal axis, is used to induce wake deflection. We follow a novel Individual
Pitch Control (IPC) strategy to induce an imbalance of the forces of the blades on
the flow, causing redirection.
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The proposed methods are discussed in more detail below:

Wake redirection through rotor yaw and tilt In conventional wind turbine control, the
yaw drive is used to keep the rotor facing into the wind as the wind direction changes,
the yaw misalignment strategy is thus an alternative way to use an existing control DOF
of modern wind turbines. The tilt angle is not a controllable feature in present-day wind
turbines. Still, knowledge of the capability of this possibility for wind plant control might
be useful for novel wind turbine designs.

A simplified physical explanation for each wake redirection strategy is illustrated in
Figure 2.8. For the yawing and tilting case, the thrust force f exerted by the rotor on the
flow in the rotor axis direction is shown. When the wind inflow is at an angle to this direc-
tion, the thrust can be divided into components. In the yawing case these components
are fx and fy . Force component fx is parallel to the flow and slows down the wind, while
force component fy is in the cross-wind horizontal direction and causes the flow in the
wake to deflect. Likewise, the thrust force of a tilted rotor has a vertical component fz

that causes wake deflection in the vertical direction. Since the thrust force component
fx is smaller in the yaw case, also the axial induction of the rotor decreases with increas-
ing the yaw or tilt offset, which then increases the wind velocity in the wake. The above
explanation is simplified, since in addition to the rotor force f , there is also a compo-
nent of the rotor forces in the direction normal to the rotor axis. A more detailed analysis
based on vortex cylinder theory is found in Burton et al. (2002b).

The yaw wake redirection method has been studied experimentally in wind tunnel
tests with scaled turbines in Adaramola et al. (2011) and Medici (2005). Also, field tests
with kW-scale turbines were performed in Wagenaar et al. (2012) with encouraging re-
sults, although the data was found to be to scattered to make clear conclusions. A corre-
lation between yaw offset and a higher wind velocity downstream was demonstrated on
a MW-scale turbine in Soleimanzadeh et al. (2014). In addition, the yaw wake redirection
method was tested in CFD simulation in Jiménez et al. (2010). In a similar manner, verti-
cal wake redirection through tilt has been investigated in Guntur et al. (2012) using a CFD
model. Differences with the simulation study presented hereafter are that both Jiménez
et al. (2010) and Guntur et al. (2012) use an actuator disk model of the turbine, and that
the analysis in Guntur et al. (2012) assumes laminar flow.

Wake redirection through Individual Pitch Control Pitch control of the individual
blades is a feature available in state-of-the-art modern wind turbines, that is generally
used to mitigate loads on the rotor. In the IPC method evaluated in this section, we use
IPC in an unconventional manner based on the notion that we can intentionally induce
rotor force imbalances on the flow by pitching the blades in a coordinated manner. This
IPC method is based on the IPC scheme using the Coleman transformation as specified
in Houtzager (2011) which in turn is based on the initial idea in Bossanyi (2009). The
difference with the original IPC scheme of Houtzager (2011), that is aimed at blade load
reduction by removing yaw and tilt moments on the rotor, is that we intentionally create
these moments on the rotor. This is done by introducing reference signals for the yaw
and tilt moments, denoted respectively by Mr,yaw and Mr,tilt in the scheme in such a way
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Figure 2.8: Demonstration of the mechanisms for yaw-, tilt- and IPC-based methods for achieving wake redi-
rection. The figures on the top, based on the explanation given in Jiménez et al. (2010), shows the thrust force
decomposed into components. In each case, one of these components causes wake redirection in a crosswind
direction. IPC, shown on the bottom, generates an asymmetric rotor torque which can yield a force on the flow
in the crosswind direction.
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that they are tracked by the integral control in the Coleman-transformed domain. Fur-
ther, we adjust the implementation such that it is active in below-rated operation with a
varying rotor speed. In this IPC implementation the once-per-rotor-revolution (1P) and

twice-per-revolution (2P) additive adjustments to the pitch,
{
δθi , j P

}3
i=1, are given by:




δθ1, j P

δθ2, j P

δθ3, j P


= L (s)P j P
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)
[
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s
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(2.7)

for j = 1,2, with Coleman transformation matrices:
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))
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))
sin

(
j
(
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))


 , (2.8)

and with inverse notch filters N j P that amplify the 1P and 2P frequencies, and low-pass
filter L :

N j P (s) = K j P
2ζ j Pω j Ps

s2 +2ζ j Pω j Ps +ω2
j P

I3×3, L (s) =
ω2

L

s2 +2ζLωLs +ω2
L

I3×3, (2.9)

with ω j P = jϕ, where the gain factors K•, damping factors ζ•, low pass-band frequency
ωL and phase offsets δ j P are parameters of the controller.

When setting nonzero references Mr,yaw or Mr,tilt, this IPC implementation creates an
uneven distribution of thrust forces on the rotor blades over the course of a rotation (see
Figure 2.8) and a tilt or yaw moment on the turbine rotor. Still, the thrust reaction forces
on the flow are directed parallel to the inflow direction. Therefore, the uneven distribu-
tion of the thrust forces can cause differences in velocities in the wake, but it does not
cause significant redirection of the flow. However, as shown in the turbine front view in
Figure 2.8, IPC also causes the blade torques to be uneven over the course of a rotor ro-
tation (in the sense that rightward torque is not matched by leftward torque). Therefore
the in-plane reaction forces of the rotor on the flow are also unbalanced resulting in the
fact that the turbine applies a net force on the flow perpendicular to the thrust direction,
which does cause the flow to be redirected and the wake structure to be skewed. Notice
that the IPC configuration drawn in Figure 2.8, which depicts the case when we apply a
nonzero reference Mr,tilt, will yield a tilt moment on the turbine rotor (because the blade
thrust is most different between the top and bottom azimuth positions) but a wake skew
in the horizontal direction (because the reaction forces of the rotor on the flow are most
different in the horizontal direction). Similarly, applying a nonzero reference Mr,yaw will
yield wake redirection in the vertical direction.

2.4.1.2. SIMULATION SETUP

In this study, the different proposed methods explained in Section 2.4.1.1 are applied
on the single turbine scenario described in Section 2.2.1 in individual numerical simu-
lations with SOWFA, each with different settings of yaw misalignment, tilt angle, or IPC
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moment set-point. The wind inflow is the same for all simulations. From the simula-
tions, we extract the turbine’s average power over the simulation, as well as the metrics
of loading for several components. From the flow, we use a correlation method to iden-
tify the wake-center at all locations downstream from the turbine. The results allow for
a trade-off analysis of wake redirection potential and the effects on the turbine.

In each case, the turbine uses the baseline controller defined in Jonkman et al. (2009)
for collective pitch and torque control. In the IPC-induced moment test cases, the IPC
implementation of equations 2.7-2.9 is used. The IPC parameters K•,ζ•,ωL,δ j P as spec-
ified for the NREL 5-MW in Houtzager (2011). In these test cases, either Mr,yaw or Mr,tilt

are chosen positive or negative, with the magnitude large enough such that the pitch an-
gles vary with maximum amplitude, in order to find the maximum effect of IPC action
on the wake. The filters are used in a Tustin discretized form with a sample time of 0.02 s.
The pitch angles are saturated to a 5 degree amplitude, and the pitch rates are limited to
8 deg/s.

2.4.1.3. ANALYSIS AND DISCUSSION

A method developed at NREL is used to determine the mean wake center in the rotor
hub-height horizontal plane at each downstream location of the turbine rotor: first the
velocity profile in this plane are averaged over the total simulated time, then a Gaussian
shape is fitted to the time-averaged velocity profile in the crosswind direction, and finally
the maximum of that Gaussian is taken as the wake center position. Using the velocity
profile in the rotor-axis-centered vertical plane, the same process is followed to find the
vertical wake deflection; however, first the vertical profile of mean velocity of the flow not
affected by a turbine is subtracted to remove the effect of vertical shear that is present
in the atmospheric boundary layer. Figure 2.9 shows the result of the wake center-line
identification algorithm in the horizontal plane for the yaw cases, Figure 2.10 shows the
results in the vertical plane for the tilt cases, and Figure 2.11 shows the results for the IPC
cases.

It should be remarked that because the velocity profile in the wake does not follow
a perfect Gaussian shape, the method to track the wake center is somewhat arbitrary,
although it gives insight into the mechanism of the wake redirection methods.

Wake center tracking results in the yaw and tilt simulations demonstrate significant
displacements of wake center in the opposite direction to the yaw or tilt angle. In Fig-
ures 2.9 and 2.10, the wake displacements resulting from yaw at seven rotor diameters
(7D) from the turbine, a typical location for a downstream turbine in a wind plant, are
‘highlighted’ and shown to go up to approximately 0.5D for a positive yaw offset of 40 de-
grees. Note that in the baseline wake centerline contours, there is also a small wake de-
flection as a consequence of the rotor rotation effects mentioned before in Section 2.2.1.
For each of the methods, at larger distances, the direction of the wake will recover to the
free-stream flow direction.

The advantage of using tilt angle in the positive direction, as we will later demonstrate
in Section 2.2.2, is that deflecting the wake downwards in this way, promotes the attrac-
tion of higher-speed flow from the upper atmosphere, which would further increase the
downstream velocity which could potentially increase further the power production of
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downstream machines. It should be pointed out that to our knowledge, in industrial
MW-scale wind turbines, currently there is no means of modifying tilt angle. Also, note
that since positive tilt angles would cause the blades to come closer to the tower on up-
wind turbines, this technique would be better suited to downwind machines.

In addition to measurements of the wake, data were collected from the FAST turbine
output, in order to study the effects on power production and turbine loads. Here, for
the yaw and tilt strategies we refer to the next Section 2.4.2 for the main results in terms
of load and power characteristics, since these results do not significantly change when
adding a second downstream turbine.

With the IPC-based methods significant wake skew is achieved for some cases, al-
though not as large as can be achieved with rotor yaw or tilt misalignment. The re-
sults show that the largest vertical skew is obtained when inducing a high rotor yaw
moment Mr,yaw and the largest horizontal skew is created when using a high tilt mo-
ment Mr,tilt. This can be explained using the reasoning in Section 2.4.1.1.

However, if we take into account the effects on the turbine itself, the result of the
IPC-based method are mixed. Because the method is maximizing an asymmetric rotor
moment, the blade loads are substantially increased (with up to 130%, cf. Fleming et al.
(2014d)). This result implies that while it may be possible to achieve wake redirection
with IPC, this particular IPC algorithm is not a good method. Finding an IPC controller
that achieves wake skew with reduced blade loads would be very useful because IPC is
already possible to implement on many existing turbines (unlike changes to tilt), and can
be adjusted more quickly than yaw angle. However, finding such an IPC implementation
is expected to be problematic, because a moment applied by the rotor blades on the
flow through pitch will inherently result in a reactive moment on the rotor itself, which
then results in an increase in loads. Because of the limited potential of the IPC wake-
redirection method, we will not further investigate the strategy in this thesis.

2.4.2. EVALUATION OF WAKE REDIRECTION AND TURBINE REPOSITIONING

CONTROL STRATEGIES FOR A TWO-TURBINE CASE USING SOWFA

The objective of this section is to compare the two most successful wake redirection
strategies (rotor yaw and tilt misalignment) in a SOWFA simulation of a two turbine
setup. Further, we test the potential of a turbine repositioning strategy for wake miti-
gation. This latter method is explained in more detail below.

2.4.2.1. TURBINE REPOSITIONING STRATEGY

In the turbine repositioning method for wake mitigation, the turbines are assumed to
be floating and therefore repositionable. The turbines can then be moved out of each
others wake, as proposed in van Wingerden (2011), to reduce the effects of wakes on
loading and power production. The concept requires adjustments of the wind turbine
positions to wind direction and possibly also to other time-varying conditions that affect
the wake interaction in an offshore wind plant (e.g. turbulence and wind speed). In a
wind plant, cable length and other constraints on the ability to move the turbines will
limit the possible turbine displacement, therefore in a first investigation of the concept
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Figure 2.9: Wake centerlines in the horizontal hub-height plane as estimated with the Gausian function-fitting
method, for different yaw angles γ.
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it is important to know the size of the displacements that are needed to reduce the wake
effects, and this is what will be investigated in this two-turbine case study.

2.4.2.2. SIMULATION SETUP

In simulations with the two-turbine scenario described in Section 2.2.2, the yaw, tilt,
and position set-points of the upstream turbine are swept and held fixed for separate
1000-second simulations. In each case, the turbines use individual control for power and
speed regulation, using the baseline pitch and torque control laws defined in Jonkman
et al. (2009). Further, we investigate if the loads induced by moving from full to partial
overlap can be mitigated through the use of load-reducing IPC with the standard collec-
tive pitch control. The IPC on the downstream turbine is switching on for the last 400 s
of the simulation. As in the single-turbine case, the IPC implementation is based on the
equations 2.7-2.9, but in these cases the set-points Mr,tilt and Mr,yaw are set to zero such
that rotor loads are mitigated by the IPC. Again the parameters as specified in Houtzager
(2011) are used, and we use the load-reducing IPC also in below-rated conditions. The
SOWFA supervisory wind plant controller (described in Section 1.2.4.1) collects the data
from the individual turbines.

Note that in floating turbines, additional hydrodynamics play a role, which are not
currently modeled in SOWFA. Also, some control adjustments would be needed to ac-
count for the additional dynamics of floating turbines, as discussed in Van der Veen et al.
(2012). Therefore, the scenario in which we test turbine repositioning control is some-
what artificial.

Figure 2.12 shows the flow fields for example cases for the different wake mitigation
control strategies. It is shown that by misaligning the yaw angle of front turbine (T1) with
the wind direction, the flow direction of the wake is changed in the direction opposite to
the yaw angle, as was also seen in the single-turbine case study of Section 2.4.1. By con-
trolling the deflection of the wake through yawing, the wake can be directed away from
the downstream turbine (T2). In a similar manner, changing the rotor tilt on T1 redirects
the wake in the vertical direction, so that its overlap with the rotor of T2 is reduced. Fur-
ther, it is shown in Figure 2.12 that T2 can be moved out of the wake of T1. With each
of the wake mitigation techniques, we aim at increasing the power production of T2 by
increasing the velocity of the inflow into T2. The techniques reduce the overlap area of
the wake of T1 with the rotor of T2, making that a larger part of the rotor encounters
the higher free-stream velocity. Yawing or tilting also reduces the axial induction of the
rotor of T1, and this further increases the wake velocity. In the case of yawing and tilt-
ing, a reduction of power production of T1 can be expected because the axial induction
and the effective rotor area are reduced (Medici, 2005; Burton et al., 2002b). Changing
from full overlap to partial wake overlap affects the turbulence and shear in the inflow
to T2, which affects the loads on T2 (Yang et al., 2011). In the next part of this section,
we focus on the effect of each of the wake mitigation techniques on the electrical energy
productions of, and the load impacts on the turbines in simulation.

Following completion of the simulation, the data were collected from each case and
post-processed as follows. First, the 1000 s of time domain data for each simulation were
broken into segments (see Figure 2.13). The first 200 s of each simulation were discarded
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because the wake was not fully developed. The last 100 s were also discarded because
of system problems that left some files incomplete. Finally, the remaining time histo-
ries were divided into a segment from 200 s to 600 s, in which the downstream turbine
is not running IPC, and a segment from 700 s to 900 s, when it is and the IPC startup
transients have vanished. Although it should be possible to start IPC smoothly, because
the transition was not our research focus, we start the controller rather abruptly. In the
baseline case, IPC is never enabled, to provide a basis for comparison. From the wake
development time and the velocity in the wake, it can be found that the average turbine-
to-turbine flow-through time is approximately 200 s, and that we thus use the data of two
flow-through periods for the analysis of the operation with IPC, and one flow-through
period for the operation without IPC.

From these two blocks of time (200-600 s and 700-900 s), several metrics are com-
puted. First, the average power is computed for each turbine. Next, loads are computed
for blade out-of-plane (OOP) bending, drivetrain torsion, tower bending and yaw bear-
ing moment. In the case of the tower load, a combined load is computed from the sep-
arate fore-aft and side-side loads using a root-sum-square combination. This is likewise
done to combine the separate load components on the yaw bearing. For each of these
load signals, a damage equivalent load (DEL) is computed. The DEL is a standard metric
of fatigue damage (see Buhl Jr. (2008)). The power and DEL results are summarized in
Figure 2.14.
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Figure 2.13: Power and blade 1 out-of-plane bending signals for the simulation case in which turbine 1 has a 5
degree yaw angle.

2.4.2.3. ANALYSIS AND DISCUSSION

In general, each of the concepts show good potential to increase electrical power pro-
duction. Redirecting the wake with yaw and tilt on the upstream turbine or reposition-
ing the downstream turbine, such that overlap of the wake of the upstream turbine with



2

44 2. EVALUATION OF CONTROL DEGREES-OF-FREEDOM FOR WIND PLANT CONTROL

the downstream is reduced and the wind velocity in the wake increased, indeed yields a
power increase on the downstream turbine. With increasing yaw or tilt angle, the pro-
duction of the upstream turbine is reduced, but the production gain on the downstream
turbine is larger for a range of the misalignment angles. If we consider the simulations
in which the downstream turbine does not use IPC (Figure 2.14a), in the best cases, yaw
control shows an increase in total production of the setup of 4.6%, for tilt the maximum
increase is 7.1%, and there is 41% improvement when the downstream turbine is moved
a full rotor diameter.

Tilt misalignment thus shows larger potential electrical power production improve-
ments than yaw when considering large positive tilt angles. Both negative and positive
tilt angles will redirect the wake away from the downstream turbine rotor, but the posi-
tive tilting has the advantage that it will redirect the wake towards the ground, allowing
high velocity air from higher altitudes to flow towards the upper part of the downstream
rotor, resulting in higher power production of the downstream turbine.

In the repositioning technique, for smaller displacements, there is little power pro-
duction increase, and significant increase for larger displacements. This can be explained
by the fact that the wake expansion is substantial, therefore the displacements need to
be large for the wake overlap to be reduced. Also observing the loads for the downstream
turbine, there is little change for small alterations in position, significant change for the
displacements yielding partial overlap, and then no change again when the turbine is
moved a full rotor diameter. The feasibility of this floating wind plant control concept
thus strongly depends on the particular constraints on the displacements of the floating
turbines in the wind plant.

Looking at the loads across simulations without the use of IPC (also in Figure 2.14a),
the upstream turbine either experiences an increase or decrease in blade OOP bending,
depending on the angle chosen. Blade bending reduces with positive tilt angles and in-
creases with negative yaw angles. This is in agreement with an other investigation (Kragh
et al., 2013a) on this behavior in sheared inflow. For tilt, blade bending increases with
positive offset angles and decreases with negative offset angles. The drivetrain, tower,
and yaw load for the upstream turbine either decrease or minimally increase by yaw- or
tilt-angle adjustments. A possible explanation for this effect is that these methods gener-
ally reduce the power capture of the upstream turbine, and derating can be considered a
load mitigation strategy. For the downstream turbine, all loads generally increase some-
what, and this is most likely due to moving from full to partial wake overlap, which may
increase the asymmetry of thrust forces on the rotor.

Figure 2.14b shows the results for power and blade loads for the simulations where
the downstream turbine is using IPC to mitigate the effect of partial wake overlap. These
results are based on 200 s of simulation versus 400 s in Figure 2.14, and are from a dif-
ferent point in the simulation. Overall, the results indicate a very strong motivation for
the use of IPC, in general, and as a way to reduce the negative impacts of using wake-
mitigation strategies, since the impact of changing from fully-, to partially-, to non-
waked conditions can be reduced.

It is important to acknowledge the shortcomings of this current work:
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(b) Time-averaged power and load results when using IPC on the downstream turbine.

Figure 2.14: Summary of results of two-turbine simulations. The three columns are divided by control action.
The top row shows the combined power output for each case, compared to the baseline case on the far left.
The remaining rows indicate the percent change in load compared to the baseline.
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• First, because of computational/time constraints, results are based on simulations
of one inflow case and one atmospheric condition. As in the axial-induction con-
trol cases, the results in terms of potential gain of these methods are expected to
vary with the amount of wake recovery, which is dependent of the inflow and at-
mospheric conditions. We have studied a case with a large expected power gain,
since the relatively small turbulence intensity in the inflow together with the neu-
tral atmospheric stability, is expected to result in a relatively slow wake recovery.

• Further, the power and DEL calculations are based on lengths of time shorter than
what would be standard practice for a normal wind turbine simulation regime.
This is because of the large computational cost of the SOWFA simulations, and
limited access to the computational resources.

• Additionally, this work is based on a baseline of almost full overlap of the wake
of the upstream turbine with the rotor of the downstream turbine. This selection
represents a ‘worst case’ condition to investigate the potential gain of applying
these techniques. In practice, the more likely scenario will be to go from partially
overlapped to less overlapped, or not overlapped, and in these cases the potential
power increase on two turbines would typically be smaller. An example study is
provided in Chapter 4.

2.5. CONCLUSIONS

In this chapter we have evaluated the potential of different control degrees-of-freedom
of the wind turbine to control the wake and optimize the performance of the wind plant.
We have subdivided the control strategies in axial-induction-based, wake redirection
and repositioning techniques. In this section, we summarize our findings for each of
the techniques.

In literature, studies on the axial-induction-based strategies have been reported, where
simulations, wind tunnel experiments and field tests have been used to test the concept,
with a large range of reported potential gains in terms of power production. In our own
high-fidelity simulations, we have shown a case with a relatively low ambient turbulence
(neutral atmospheric boundary layer, low surface roughness), in which axial-induction-
based strategies are not successful, because there is too much wake expansion. We con-
clude that the potential gain is sensitive to the properties of the inflow, the atmospheric
conditions, but also the particular turbine characteristics. Therefore, a data-driven con-
trol strategy is needed to successfully implement an axial-induction-based technique
that is adaptive to the particular conditions in a wind plant at a certain time. A direct
data-driven strategy will be presented in Chapter 3. Further developments of engineer-
ing models for axial-induction-based control using data-driven model-based control are
presented in Annoni et al. (2014a).

For the wake redirection techniques we have shown in simulation examples of a par-
ticular flow case that there is significant potential to increase power production using
yaw and tilt. Loads on the misaligned turbine are increasing or decreasing depending
on the particular misalignment angle and direction used. Possible load increases on
the downstream turbines because of partial wake overlap can be mitigated by the use
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of standard load-reducing IPC on the downstream turbine. The novel concept of using
of IPC to redirect the wake, by intentionally inducing an asymmetry in the forces on the
flow, has also shown to work, but the resulting load increases on the turbine are substan-
tial. As for the axial-inducted-based strategies, for each of the wake redirection strate-
gies, it is to be expected that the potential to reduce loads and increase power production
is dependent on the particular atmospheric conditions, the wind turbine properties and
the wind plant setup. A data-driven strategy for yaw-based wake redirection control is
presented in Chapter 4.

Since both the axial-induction-based strategies, and the yaw-based wake redirec-
tion strategies were tested in the same simulated ambient turbulence conditions, the
results suggest that there is more potential for yaw-based wake redirection wind plant
control, than for axial-induction-based wind plant control, although further research is
needed to quantify the exact sensitivity to the ambient conditions (inflow turbulence, at-
mospheric stability, surface roughness). Because turbulence promotes wake recovery, it
seems apparent that the level of ambient turbulence is negatively correlated with the po-
tential of wind plant control to improve wind plant performance, but the exact influence
is not quantified yet.

For the repositioning techniques for floating wind plant, we have shown that if we
consider the baseline case of alignment of two rotors in the wind direction, because of
wake expansion, substantial displacements are needed (half a rotor diameter or more),
to reduce the wake effects sufficiently to have significant effects on total power produc-
tion. The potential of this concept is thus dependent on the constraints on possible
displacement of the floating turbines in a wind plant setup.





3
AXIAL-INDUCTION-BASED

OPTIMIZATION CONTROL FOR WIND

PLANTS

This chapter presents a data-driven adaptive scheme to adjust the control settings of each

wind turbine in a wind plant such that an increase in the total power production of

the wind plant is achieved. This is done by taking into account the interaction between

the turbines through wake effects. The optimization scheme is designed in such a way

that it yields fast convergence, so that it can adapt to changing wind conditions quickly.

The scheme has a distributed architecture in which each wind turbine adapts its con-

trol settings through gradient-based optimization, using information that it receives from

neighbouring turbines. The novel control method is tested in a simulation of the Princess

Amalia Wind Park. It is shown that the distributed gradient-based approach performs the

optimization in a more time-efficient manner compared to an existing data-driven wind

plant power optimization method that uses a game theoretic approach.

3.1. INTRODUCTION

The aim of control algorithms in modern wind turbines is to adjust the control degrees
of freedom of the turbine, such as the generator torque and the pitch angles of the rotor
blades, to changing wind conditions, with the aim of maximizing the energy capture of
the wind turbine while keeping the structural loads on the turbine within acceptable
limits. Nowadays, wind turbines are often placed with other turbines in wind plants to
reduce use of space and costs of installation and maintenance. However, placing wind
turbines in a wind plant introduces aerodynamic interaction between the turbines that
affect the power production and loads on each turbine in the plant. These interactions
effects are not taken into account in the current practice of wind turbine control design.

This chapter has been published in Gebraad and van Wingerden (2014b).
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The aerodynamic interaction follows from the fact that a wind turbine converts the
kinetic energy of an incoming wind flow into electrical energy, which results into the
formation of a wake of turbulent slow moving air downstream of the rotor. As the wake
travels downstream, the wake expands, and recovers to the free stream conditions be-
cause of mixing with the surrounding air. If another turbine is standing in the path of a
wake that has not fully recovered, the reduced wind speed in this wake results in a lower
electrical power production of the downstream turbine. Adjusting the control parame-
ters of a wind turbine affects the extraction of power from the wind flow, and therefore
the velocity deficit in the wake it produces. Therefore in wind plants, in which turbines
are placed relatively close to each other, the wake effect causes a coupling between the
control parameters of upstream turbines and the power productions and loads on down-
stream turbines. Cooperative control strategies that take into account the wake effect
can be used to optimize the total power production of the wind plant. This is done by
reducing the power production of the upstream turbines, in order to reduce the velocity
deficit in the downstream wind flow, which increases the power production of the down-
stream turbines (Steinbuch et al., 1988; Schepers et al., 2007; Johnson et al., 2009). In a
similar manner, it is possible use cooperative control to distribute the structural loads
acting on the individual wind turbines in the wind plant more equally.

One approach to deal with wake interactions is to derive a model that describes the
dynamics of the wind plant, and to use this model to synthesize control laws (Soleiman-
zadeh et al., 2013; Madjidian et al., 2011; Bitar et al., 2013)1, or to directly calculate con-
trol actions using model predictive control techniques (Soleimanzadeh et al., 2012, 2011;
Spudić et al., 2010; Heer et al., 2014). In this chapter we aim to develop a wind plant
control method that is directly data-driven rather than model-based, in the sense that
it makes direct use of measured data in order to optimize the control parameters of the
wind turbines and adapt them to time-varying wind conditions, without using a prede-
fined model that predicts the effect of each control action. Thereby the objective of the
optimization is to maximize the total power production of the wind plant in below-rated
wind conditions, although the method may be extended to perform load control, by in-
cluding static load measures in the objective function, as was done in Soleimanzadeh
et al. (2012); Madjidian et al. (2011).

The method that in this chapter is chosen to perform the data-driven adaptive con-
trol is known as Maximum Power-Point Tracking (MPPT). In previous work (Koutroulis
et al., 2006), the MPPT method was used to optimize the power of a single wind turbine
using a real-time closed-loop scheme, where the change of the power production of the
turbine as a result of control changes are measured, and subsequently the control pa-
rameters are adapted in a direction that yields a power improvement. In this chapter,
the MPPT method is extended in such a way that it optimizes the total power of a wind
plant, by letting the wind turbines exchange information about their power production
with other wind turbines in the wind plant.

In this work, the MPPT wind plant control method is made adaptive to time-varying
wind speeds, by designing the algorithm in such a way that its objective function is the
efficiency by which the wind plant converts the kinetic energy of the incoming wind

1The wind plant model that is used in Madjidian et al. (2011) to synthesize control laws does not include
interaction between turbines through the wakes.
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Figure 3.1: A distributed architecture for wind plant control.

into electrical energy, rather than the total power production of the wind plant. The
wind plant control also needs to be adaptive to other changing wind conditions, such
as a changing wind direction, or a changing turbulence intensity which will affect the
amount of mixing with the surrounding air and thereby the wake recovery. To accom-
plish this, it is required that the optimization takes place in a time-efficient manner. To
this end, gradient-based techniques are used to perform the optimization, and the algo-
rithm is designed using a distributed architecture in which the control parameters of a
wind turbine are adapted based on information from the nearest neighbouring turbines
only. This architecture is illustrated in Figure 3.1. The proposed algorithm is an example
of a direct data-driven method as described before in Section 1.4.

This chapter presents the new MPPT wind plant control method, and demonstrates
its features through simulation examples in which the performance of the method is
compared with a benchmark algorithm using the game theoretic approach of Marden
et al. (2013). The simulation results are generated using the Jensen wake model, to which
a delay structure is added to simulate the dynamics of the wake travelling through the
wind plant.

The chapter is organized as follows. A full explanation of the MPPT wind plant control
approach is given in Section 3.2. The game theoretic wind plant control approach is
explained in Section 3.3. An explanation of the wind plant model used in the simulation
examples is given in Section 3.4. In Section 3.5, the simulation examples are described
in detail and the results are given. Finally, in Section 3.6 the conclusions are presented.
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3.2. MAXIMUM POWER-POINT TRACKING CONTROL FOR WIND

PLANTS

In this section, the MPPT wind plant control method is presented in two variants: the
Gradient-Ascent MPPT (GA-MPPT) method and the Quasi-Newton MPPT (QN-MPPT)
method. Both methods make use of gradient-based optimization techniques to find the
control settings that yield a maximum total power production of the wind plant. As
these gradient-based techniques can be categorized as being local optimization tech-
niques, they may converge to a local maximum instead of a global maximum of the total
power (Boyd et al., 2004). Further, in developing the MPPT methods simplifying assump-
tions are made in order to be able to perform the optimization using a distributed con-
trol architecture, in which each turbine uses information from the nearest neighbour-
ing downstream turbine only. This gradient-based, distributed optimization approach
is taken to improve the time-efficiency of the optimization.

The GA-MPPT and QN-MPPT methods are explained for a single row of wind tur-
bines in Sections 3.2.1 and 3.2.2, respectively. In Section 3.2.3, the two methodologies
are extended in such a way that they can be used on any wind plant configuration.

3.2.1. GRADIENT-ASCENT MPPT CONTROL OF A ROW OF WIND TURBINES

Consider a row of n wind turbines standing in the wake of each other, in a wind field
with an incoming free stream speed V∞, as depicted in Figure 3.2. The turbines have
power productions {Pi }n

i=1 and certain control settings {ai }n
i=1 that influence the power

production of the turbines. In the simulation examples in this chapter, it is assumed that
the control variable ai is the axial induction factor of turbine i . This is a generalization
in the sense that in a modern turbine the axial induction factors can be influenced by
adapting either the blade pitch angles, or by scaling the generator torque which changes
the tip speed ratio of the rotor (Bianchi et al., 2007). Hence, in practice, one would use
the MPPT scheme as presented here as a supervisory controller adjusting the reference
signals for the blade pitch angles for each turbine, or the generator torque scaling fac-
tors used to adjust the rotor speed of each turbine. Alternatively, one could make use of
knowledge of the power and thrust characteristics of a turbine rotor, if available, to find

...a1 a2 an

P1 P2 Pn

V∞

xV∞
x1 x2 xn

distance x

Figure 3.2: A row of n wind turbines with power productions
{

Pi

}n
i=1 and control parameters

{
ai

}n
i=1, in a

wind field with free-stream speed V∞.
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the pitch and torque that yield a desired axial induction provided by a wind plant con-
troller, as was shown in Schaak (2006). In both cases, each of the local turbine controllers
would track the reference signals while fulfilling some requirements for safe operation
(by limiting pitch rates for example).

Due to wake interaction, changing a control parameter ai influences
{
P j

}n

j=i
, the

power productions of turbine i and the turbines downstream of turbine i . Further, the
power production of the turbines is dependent on the kinetic energy of the incoming
wind field. The kinetic power of wind with air density ρ passing through an area A with
speed V∞ is given by Bianchi et al. (2007):

PV =
1

2
ρAV 3

∞. (3.1)

If constant air density is assumed, the efficiency by which the row of turbines converts
the energy of the incoming wind field PV into electrical energy can be maximized by
solving the following optimization problem:

max
{ai }n

i=1

n∑

i=1

P̃i (a1, a2, · · · , ai ) , with P̃i =
Pi

V 3
∞

. (3.2)

Note that in the above optimization problem, the power production of each turbine is
divided by a factor that is proportional to the power of the incoming wind field. To per-
form the optimization in a local sense, the control parameters {ai }n

i=1 can be iteratively
updated using a gradient-ascent optimization method (Boyd et al., 2004), resulting in the
following Gradient-Ascent Maximum Power-Point Tracking (GA-MPPT) control update
law:

ai (k +1) = ai (k)+K
n∑

j=i

∂P̃ j

∂ai
(k), (3.3)

for i = 1, . . . ,n, with index k denoting the iterations, and with a small scalar K > 0 being
a scaling factor for the size of the steps on ai . This design variable K can be used to tune
the convergence properties of the gradient-ascent optimization. In order to perform

the optimization in a real-time data-driven manner, the gradients
∂P̃ j

∂ai
can approximated

from the past iterations through first-order backward differencing:

∂P̃ j

∂ai
(k) ≈

P̃ j (k)− P̃ j (k −1)

ai (k)−ai (k −1)
. (3.4)

A difficulty of the approach described above is that it takes a substantial amount of
time to obtain the gradients of the objective function. For example, suppose that in iter-
ation k, a1 is changed by a certain step, then to find the gradient ∂Pn /∂a1 (k) using the
above update rule, one would have to wait for the air in the wake of turbine 1 to travel
to turbine n to find the effect of the control update on Pn , which is the power of the last
turbine in the row. Because of the large distances between the turbines (typically 7 to 8
rotor diameters), the time this takes is very long for a large wind plant. During this travel-
ling time, the speed of the incoming wind field is likely to have changed. Also other wind
conditions may change over time, such as the wind direction, and the turbulence inten-
sity in the free stream flow, which affects the amount of wake recovery in between the
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turbines. To make the algorithm adaptive to time-varying wind conditions, two changes
are made to the control scheme described above:

1. To overcome the problem of a changing speed of the incoming wind field, the de-
lays related to the wind travelling from one turbine to the next are taken into ac-
count in the definition of the efficiencies P̃i . Let TV∞→i denote the time it takes
for the wind field to travel from xV∞

(the location where the incoming free-stream
wind speed is measured) to xi (the location of a turbine i ). Then to compensate
for the wind travelling delays, the efficiency P̃i can be found from the power Pi at
a time instant t , by:

P̃i =
Pi (t)

V del
∞,i (t)3

, (3.5)

with:

V del
∞,i (t) =V∞

(
t −TV∞→i

)
. (3.6)

2. Changes in wind conditions such as wind direction and turbulence intensity change
the way in which the power of each turbine is dependent on the control parame-
ters of upstream turbines. A speed-up of the algorithm is needed for the optimiza-
tion to be able to track these changes. A practical approach to speed-up the op-
timization scheme is to only take into account the influence of a turbine’s control
settings on the power of the turbine itself, and on the power of the neighbouring
downstream turbine. This then results in the following control update scheme:

ai (k +1) = ai (k)+K

[
∂P̃i

∂ai
(k)+

∂P̃i+1

∂ai
(k)

]
. (3.7)

Only taking into account the effect on the downstream neighbouring turbine can
be a good approximation as in practical cases there is a substantial reduction of the
velocity deficit in the wake as the air travels from one turbine to the next, because
of mixing with the free stream air. Thus, the effect of a control setting change is far
larger on the nearest downstream neighbouring turbine than on turbines further
downstream.

3.2.2. QUASI-NEWTON MPPT CONTROL OF A ROW OF WIND TURBINES

In order to further improve the convergence properties of the algorithm, one can use
a Quasi-Newton optimization method to perform the local optimization of the control
variables. When the vector notation a = [a1, · · · , an]T is used for the set of control pa-
rameters, the Quasi-Newton update law reads:

a (k +1) = a (k)+K B (k) J (k) . (3.8)

As in the previous method, the scalar parameter K > 0 again determines the step-size.
The matrix J (k) represents an approximation of the gradient of the objective function,
in which again only the gradients corresponding to the effect of a turbine’s control pa-
rameter on its own power and on its downstream neighbouring turbine are taken into
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account:

J (k) =




∂P̃1
∂a1

(k)+ ∂P̃2
∂a1

(k)
∂P̃2
∂a2

(k)+ ∂P̃3
∂a2

(k)
...

∂P̃n−1
∂an−1

(k)+ ∂P̃n

∂an−1
(k)

∂P̃n

∂an
(k)




. (3.9)

As in the previous method, the gradients ∂P j /∂ai are approximated using (3.4). The ma-
trix B represents an approximation of the inverse Hessian of the objective function. To
avoid the inversion of an approximate Hessian matrix, the matrix B is directly approxi-
mated using the Davidon-Fletcher-Powell formula (Fletcher et al., 1963):

B (k) = B (k −1)+
∆a (k)∆a(k)T

∆J (k)T
∆a (k)

−
B (k −1)∆J (k)∆J (k)T B(k −1)T

∆J (k)T B (k −1)∆J (k)
, (3.10)

with:

∆a (k) = a (k)−a (k −1), (3.11)

∆J (k) = J (k)− J (k −1) . (3.12)

As a starting point of the above iterations, B (0) should be set to a symmetric positive
definite matrix, for example, the identity matrix.

3.2.3. MPPT CONTROL OF A WIND PLANT

This section presents the scheme to perform the real-time closed-loop MPPT control on
a wind plant of an arbitrary, but known spatial configuration, taking into account the de-
lays between the control update and the power responses of the different turbines. Let
F = {1,2, · · · , N } denote a set of indices that number the wind turbines in a wind plant,
with N denoting the total number of turbines. Let G ⊂ F be the set of turbines that are
directly influencing neighbouring downstream turbines through wake interaction, and
let d (i ) be the index of the nearest neighbour downstream turbine that a turbine i ∈G is
directly influencing. Further, L = {i ∈ F |i ∉G} is the set of turbines that are not influenc-
ing other turbines. In Figure 3.3 an example is given of how to define the sets F , G, and
L and the mapping i 7→ d (i ) for a given wind plant configuration and wind direction.
It is assumed that the sets F , G, L can be updated using information of the wind plant
configuration and the wind directions in the wind plant. Notice that an estimate of the
wind direction is available in most wind turbines, as it is used to align the rotor axis with
the wind direction through yaw control.

Using the above definitions, the GA-MPPT control update law for the wind plant is
written as:

ai (k +1) = ai (k)+K

[
∂P̃i

∂ai
+
∂P̃d(i)

∂ai

]
∀i ∈G, (3.13)

and the QN-MPPT control update law for the wind plant is:

ai (k +1) = ai (k)+K si (k) ∀i ∈G, (3.14)
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incoming
wind flow

1234

5678

9101112

13141516

x

turbine index i ∈G 1 2 3 5 6 7 9 10 11
turbine d (i ) 6 7 8 10 11 12 14 15 16

set R (i ) {1,6,11,16} {2,7,12} {3,8} {5,10,15} {6,11,16} {7,12} {9,14} {10,15} {11,16}

turbine index j ∈ F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
turbine ĩ

(
j
)

1 2 3 4 5 1 2 3 9 5 1 2 13 9 5 1

Figure 3.3: The above picture shows the top view of a 4-by-4 wind plant in a south-eastern wind flow. The
dotted arrows show which turbine is directly influencing which other nearest neighbour downstream turbine
through wake interaction. In this case, the set of indices numbering each turbine is F = {1,2, · · · ,16}. The in-
dices of turbines i that are influencing other turbines are collected in the set G. The index of the neighbouring
downstream turbine that a turbine i ∈G is directly influencing is given by d (i ). The mapping i 7→ d (i ) is given
in the table below the picture. The indices of turbines that do not influence other turbines are collected in the
set L = {4,8,12,13,14,15,16}. The notation R (i ) is used for the full set of turbines that are standing in the wake
of a turbine i ∈ G, and ĩ

(
j
)

is the most upstream turbine of the row that a turbine j is part of (both notations
are used to define the wind plant simulation model in Section 3.4).
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with si (k) being the i -th element of the search direction vector s (k), defined as:

s (k) = B (k) J (k) , (3.15)

with:

J (k) =




J1 (k)
...

JN (k)


 where Ji (k) =

{
∂P̃i

∂ai
(k)+

∂P̃d(i )

∂ai
(k) for i ∈G,

0 for i ∉G,
(3.16)

and B (k) being generated by the update rule (3.10). In both MPPT methods, turbines
in the set L are controlled to operate in such a way that the power of the turbine itself is
maximized:

ai = a
opt
i

∀ i ∈ L, (3.17)

where a
opt
i

is the control setting that yields maximum power production for the turbine

i itself. In the case that ai is the axial induction factor, a
opt
i

= 1/3, (Bianchi et al., 2007).

After a control variable ai is updated, there is a time delay before this change has an
effect on the turbine i itself, and another time delay before the change has an effect on
the neighbouring downstream turbine d (i ). The scalar Ts,t denotes the largest settling
time of the responses of the power Pi of each turbine i ∈ G to the change of their own
control variables ai . The scalar Ts,d ∈ R is an upper bound for the time interval that it
takes for each control variable {ai |i ∈G} to have its full effect on the power production
of the neighbouring downstream turbine, Pd(i). The interval Ts,d includes the maximum
wake travelling time between a turbine i ∈ G and its downstream neighbouring turbine
d (i ). Therefore, the interval Ts,d can be assumed to be larger than Ts,t . Notice that if
the control variables {ai , i ∈G} are updated simultaneously to an iteration ai (k), at a

time instant denoted by t
upd

k
, the gradient updates can be scheduled according to the

following update rules:

∂P̃i

∂ai
(k) =

P̃i

(
t

upd

k
+Ts,t

)
− P̃i

(
t

upd

k

)

ai (k)−ai (k −1)
, (3.18)

∂P̃d(i)

∂ai
(k) =

P̃d(i)

(
t

upd

k
+Ts,d

)
− P̃d(i)

(
t

upd

k
+Ts,t

)

ai (k)−ai (k −1)
, (3.19)

for all i ∈G. In Algorithm 1 the complete GA-MPPT wind plant control scheme is given.
In this algorithm, ∆t denotes the interval between two samples. In line 9 of Algorithm 1,
the value of ∆t is employed to update a scalar time counter τ ∈ R that schedules the
updates of the gradients. The size of the initial step on the control settings {ai |i ∈G}
is −(∆a)init, where (∆a)init > 0 is a scalar that is to be chosen beforehand. A Boolean

variable LocGr is used to memorize whether or not the gradients ∂P̃i

∂ai
have been updated

after the last control update. Estimates of the speed of the incoming wind field V∞ are to
be produced using measuring (Mikkelsen et al., 2013) or filtering techniques (Østergaard
et al., 2007; Knudsen et al., 2011), and these estimates of V∞ are to be stored for a certain
time window to be able to calculate the lagged variables V del

∞,i (t) in lines 4, 12, and 20
of Algorithm 1. In a straightforward manner, Algorithm 1 can be adapted to give the
QN-MPPT method.
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Algorithm 1 The pseudocode below shows the Gradient-Ascent MPPT wind plant con-
trol algorithm. The variables ai and P i are used to store past values of the control vari-
ables and the power of the turbines.

1: given Ts,d , Ts,t , (∆a)init, K and sets F , G

2: τ← 0, LocGr ← False
3: ai ← a

opt
i

∀ i ∈ F

4: measure Pi (t) , estimate V del
∞,i (t)∀ i ∈G

5: P i ← Pi (t)V del
∞,i (t)−3 ∀ i ∈G

6: ai ← ai ∀ i ∈G

7: ai ← ai − (∆a)init ∀ i ∈G

8: loop

9: τ← τ+∆t

10: if τ> Ts,t and τ≤ Ts,d and LocGr = False then

11: for all i ∈G do

12: measure Pi (t) , estimate V del
∞,i (t) , P̃i ←Pi (t)V del

∞,i (t)−3

13:
∂P̃i

∂ai
←

P̃i−P i

ai−ai

14: P i ← P̃i

15: P d(i) ← P̃d(i)

16: end for

17: LocGr ←True
18: else if τ> Ts,d then

19: for all i ∈G do

20: measure Pd(i) (t) , estimate V del
∞,d(i) (t) , P̃d(i) ←Pd(i) (t)V del

∞,d(i) (t)−3

21:
∂P̃d(i )
∂ai

←
P̃d(i )−P d(i )

ai−ai

22: P i ← P̃i

23: ai ← ai

24: ai ← ai +K
[
∂P̃i

∂ai
+

∂P̃d(i )
∂ai

]

25: end for

26: τ← 0
27: LocGr ← False
28: end if

29: end loop
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3.3. BENCHMARK WIND PLANT CONTROL ALGORITHM WITH A

GAME THEORETIC APPROACH

In the simulation examples of Section 3.5, the MPPT approaches are compared with a
Game Theoretic (GT) wind plant control approach with full communication between
the turbines, presented in Marden et al. (2013). Like the MPPT method, the GT approach
of Marden et al. (2013) is data-driven, since it only needs measurements of the power and
the control parameters to track the point of maximum power. A similar game-theoretic
approach was taken in Park et al. (2013), but the latter uses knowledge of the model to ef-
ficiently perform the optimization. An important difference between the MPPT method
and the GT optimization approach with full communication as presented in Marden
et al. (2013), is that this GT approach aims to optimize the settings of each turbine by
evaluating their effect on all the turbines in the wind plant.2 Furthermore, the GT ap-
proach performs this optimization by making random perturbations to the control vari-
ables and holding the settings if they yield an improvement of the wind plant total power
production, so as to iteratively find the global maximum of the wind plant total power.
To evaluate the effect of each control variable change on the total power production of
the wind plant, the algorithm has to wait until the wake has travelled through the entire
wind plant. This waiting time is denoted by Ts,p .

In Algorithm 2, the control scheme of the GT approach is given as it is implemented
in our simulations. The algorithm has two parameters that are used to set the exploration
rate of the randomized optimization:

• a scalar E ∈ [0,1] that defines the probability of using a new random setting for ai ,
instead of keeping the settings that yielded the largest total power so far,

• a scalar K ∈ [0,1] that defines the size of the interval in which the random steps on
the control settings are chosen.

The range
[
amin, amax

]
is the set of allowable values for the control settings, which for

the axial induction factor is given by [0,1/3]. The algorithm is somewhat different than
the one presented in Marden et al. (2013), since in the exploration it makes small ran-
dom perturbations in each iteration, rather than taking random values in the full range[
amin, amax

]
. This change is made to improve the convergence speed of the algorithm,

and reduce oscillations of the power signal.

3.4. WIND PLANT SIMULATION MODEL

In Section 3.5, the control methods are evaluated in simulations of a wind plant. The
simulation model used in this case study is the Jensen model, that was first introduced
in Katić et al. (1986), extended with a delay model to include the wake travelling dynam-
ics. The Jensen model is a relatively simple engineering model that gives an estimate of

2Marden et al. (2013) also presents a form of the Game-Theoretic method with limited communication be-
tween the turbines, but it is shown in the same paper that this particular method has slower convergence
than the full communication GT approach.
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Algorithm 2 The pseudocode below shows a wind plant control algorithm similar to the
Game Theoretic approach of Marden et al. (2013). The values of R1 and R2 are drawn
randomly using a uniform distribution. The variables ai and P i are used to store past
values of the control variables and the power of the turbines.

1: given Ts,p , K ∈ [0,1] ,E ∈ [0,1] and set F

2: τ← 0
3: ai ← a

opt
i

∀ i ∈ F

4: P ←
∑N

i=1 Pi (t)
5: ai ← ai

6: loop

7: τ← τ+∆t

8: if τ> Ts,p then

9: if
∑N

i=1 Pi (t) > P then

10: ai ← ai ∀ i ∈ F

11: P ←
∑N

i=1 Pi (t)
12: end if

13: for all i ∈ F do

14: R1 ← random value ∈ [0,1]
15: if R1 < E then

16: R2 ← random value ∈
[
−amax, amax

]

17: ai ←min
(
max

(
āi +K R2, amin

)
, amax

)

18: else

19: ai ← ai

20: end if

21: end for

22: τ← 0
23: end if

24: end loop



3.4. WIND PLANT SIMULATION MODEL

3

61

turbine i

turbine j

Aol
i , j

D j

Di x

Dw,i (x)
V∞

Dw,i
(
x j

)

Vw,i (x,r, ai )r

A j

Figure 3.4: The wake expansion parameters in the Jensen model. The value of Aol
i , j

is set to a maximum value

of 1 when the turbines are in each full wake, i.e., when Ai and A j fully overlap.

the velocity profile in the wind plant as a function of the incoming wind field and the set
of axial induction factors of each turbine {ai |i ∈ F }.

Consider a single turbine i with a rotor diameter Di , with its rotor axis aligned with
the wind direction. Assume an incoming uniform wind field with a free-stream speed
V∞. Let (x,r ) be a point in the wake of the turbine, where x is the distance to the rotor
disk plane of the turbine, and r is the distance to the centerline of the wind turbine rotor
axis (see Figure 3.4). The Jensen model estimates the wind speed in the point (x,r ) to be:

Vw,i (x,r, ai ) =V∞

[
1−δVw,i (x,r, ai )

]
, (3.20)

with the fractional velocity deficit δVw,i (x,r, ai ) given by:

δVw,i (x,r, ai ) =

{
2ai

[
Di

Dw,i (x)

]2
for r É

Dw,i (x)
2 ,

0 for r >
Dw,i (x)

2 ,
(3.21)

where Dw,i is the diameter of the wake, which is assumed to have a circular cross-section.
The diameter is assumed to expand proportional to the distance x:

Dw,i (x) = Di +2κx, (3.22)

where parameter κ represents a tunable wake expansion coefficient. In the simulation
examples of Section 3.5, this parameter is set to κ= 0.084, to fit the offshore wind plant
power data provided in Barthelmie et al. (2009).

The model is extended to include multiple turbines with interacting wakes. Then the
effective wind speed V j for a turbine j ∈ F is found by combining the estimated wind
velocity deficits created by each upstream turbine:

V j =V∞

[
1−δV j

]
, (3.23)

with:

δV j = 2

√√√√√ ∑

i∈F :xi <x j

[
ai

[
Di

Dw,i
(
x j − xi

)
]2 Aol

i , j

A j

]2

, (3.24)
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where A j is the rotor swept area of a turbine j , and Aol
i , j

is the overlapping area of the

rotor swept disk of a turbine j , and the wake generated by an upstream turbine i at the
rotor plane of turbine j (see Figure 3.4), which are calculated using basic trigonometric
relationships.

When the effective wind speed at each turbine is known, the power of each turbine is
calculated as Bianchi et al. (2007):

P j =
1

2
ρA j CP

(
a j

)
V j

3, (3.25)

where ρ is the air density and CP is the power efficiency coefficient, which is expressed
as a function of the axial induction factor:

CP

(
a j

)
= 4a j

[
1−a j

]2
. (3.26)

In the above form, the Jensen model is a static model, in which a change in the axial
induction factor has an immediate effect on the total power. To be able to evaluate the
time-efficiency of the different wind plant control algorithms described in this chapter,
simplified wake travelling dynamics are added to the model. This is done by including
estimated delays corresponding to the wake travelling from one turbine to the next in
the Jensen model, following an approach similar to that presented in González-Longatt
et al. (2012). In this approach, an estimate of the wake travel time between a turbine i

and its nearest downstream neighbour d (i ), denoted by Ti→d(i), is made by assuming a
constant speed in between the turbines that is equal to the average of the wind speed
just behind the turbine i and the wind speed just in front of the downstream turbine
d (i ):

Ti→d(i) =
xd(i) − xi

1
2

[
Vi [1−2ai ]+Vd(i)

] . (3.27)

Before a change in the incoming wind field at location xV∞
has its effect on a turbine i

in the plant, the wind has to travel from location xV∞
to the turbine location xi , see also

Figure 3.3. To incorporate this effect, the delays approximated with equation (3.27) are
incorporated in the model in such a way that a change in the incoming wind field has a
delayed effect on the turbines. In this model, a uniform incoming free stream wind field
with a speed V∞ (t) is prescribed as the wind speed just in front of a wind turbine f , i.e.
xV∞

= x f , where f is the turbine that is standing upstream of all other turbines, i.e.:

f = argmin
i∈F

(xi ) . (3.28)

For example, for the wind plant configuration of Figure 3.3, f = 1. The notation R̃
(

j
)

is
used for the complete row of turbines R (i ) that a certain turbine j is part of, i.e. R̃

(
j
)

is
the largest set R (i ) for which it holds that j ∈ R (i ). Further, let ĩ

(
j
)

be the first member
of the set R̃

(
j
)

(see Figure 3.3 for an example of the mapping j 7→ ĩ
(

j
)
), then by summing

the different delays an expression for TV∞→ j , being the total wind travelling delay for a
turbine j , is found:

TV∞→ j =
xĩ( j ) − x f

V∞

(
t −Tĩ ( j )→ j

) +Tĩ( j )→ j , (3.29)
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with:
Tĩ( j )→ j =

∑

u∈R̃ j :xu<x j

Tu→d(u). (3.30)

Substituting expression (3.29) in equation (3.6) yields:

V del
∞, j (t) =V∞


t −

xĩ (j ) − x f

V∞

(
t −Tĩ( j )→ j

) −Tĩ( j )→ j


 . (3.31)

Moreover, for a change in control variable ai to have an effect on the downstream turbine
d (i ), the wake has to travel from turbine i to turbine d (i ). To incorporate this effect, a
delay structure is added to the model for the wake velocity deficit, which for the MPPT
method is given by:

δV del
j (k) = 2

√√√√√ ∑

i∈F :xi <x j

(
δV del

w,i , j
(k)

Aol
i , j

Ai

)2

, (3.32)

with:

δV del
w,i , j (k) = ai

(
k −∆i , j

)
[

Di

Dw,i
(
x j − xi

)
]2

, (3.33)

where ∆i , j is the discrete delay as a consequence of the wake travelling from a turbine i

to a turbine j . For example, ∆i , j = 1 if j = d (i ), ∆i , j = 2 if j = d (d (i )), and so on. Then at

time t k
upd

+Ts,t , the power of each turbine changes in response to the change in its own

control variable. Hence, the power estimate is updated by:

V j

(
t k

upd +Ts,t

)
=V del

∞, j

(
t k

upd +Ts,t

)[
1−δV del

j (k)
]

, (3.34)

P j

(
t k

upd +Ts,t

)
=

1

2
ρA j CP

(
a j (k)

)[
V j

(
t k

upd +Ts,t

)]3
. (3.35)

The settling time of the turbines with respect to a change in their own control variables
is assumed to be Ts,t = 5s.

In the MPPT method, the gradients are updated simultaneously after each wake has
reached the next downstream turbine, which results in the following settling time Ts,d

used in scheduling the gradient updates:

Ts,d ≈ max
i∈G

(
Ti→d(i)

)
. (3.36)

At time t k
upd

+Ts,d the wakes have travelled from one turbine to the next, and the velocity

deficit in front of each turbine changes. Therefore, the wind velocities and powers are
updated by:

V j

(
t k

upd +Ts,d

)
=V del

∞, j

(
t k

upd +Ts,d

)[
1−δV del

j (k +1)
]

, (3.37)

P j

(
t k

upd +Ts,d

)
=

1

2
ρA j CP

(
a j (k)

)[
V j

(
t k

upd +Ts,d

)]3
. (3.38)
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Then in the MPPT method, after the wake has travelled to the next turbine, the control
variables are updated, hence:

t k+1
upd = t k

upd +Ts,d . (3.39)

The wake travelling modelling results in the fact that after each control update in the
MPPT optimization, initially the total power will decrease as a consequence of the fact
that some turbines will decrease their own power extraction, but when the wakes of
those turbines travel to the next row of turbines, the total power will increase as a conse-
quence of the reduced velocity deficits in the wakes.

In the model used to evaluate the GT method, a similar behaviour is incorporated,
but part of the delay structure is omitted because in the GT method the wake will have
travelled through the full wind plant before a control update takes place. Under the same
assumptions as used above to estimate Ts,d , an estimate of Ts,p is obtained, which de-
notes the largest time it takes for a change in a control variable ai of a turbine i ∈ G

to have its effect on the power of all of its downstream turbines, by summing each of
the turbine-to-turbine wake travel times. This time interval Ts,p is used to schedule the
control updates in the GT method. To find an expression for Ts,p , the notation R (i ) is
used for a set that includes the index of a turbine i ∈ G and the indices of the full row of
turbines in the set G that are affected by that turbine i , i.e., R (i ) = {i ,d (i ) ,d (d (i )) , · · ·}
(see Figure 3.3 for an example of the mapping i 7→ R (i )). Using this notation, the approx-
imation is given by:

Ts,p ≈ max
i∈G

(
∑

j∈R(i)

T j→d( j )

)
. (3.40)

The estimates for the delays in the model are fairly rough, but since the underlying
assumptions are similar for the estimation of Ts,d and Ts,p , these estimates can be used
to make a relative comparison of the time-efficiency of each optimization method.

3.5. SIMULATION EXAMPLES

This section presents the results of simulation experiments that compare the perfor-
mance of the different wind plant control methods presented in this chapter in terms
of the time-efficiency of the power optimization, the power production increases that
can be achieved, and the adaptability of each method to varying wind conditions.

In the simulation examples, the MPPT approaches presented in 3.2 are compared to
the Game-Theoretic (GT) approach described in Section 3.3, which is a global optimiza-
tion approach for maximizing the total power production of the wind plant. It is shown
that as a consequence of the simplifying assumptions that are taken in the MPPT op-
timization scheme (in which the effect on nearest neighbouring turbines is taken into
account only), the power production increases that can be obtained with the MPPT ap-
proaches may be somewhat smaller than those that can be obtained with the GT ap-
proach, although the differences are small. The distributed gradient-based optimization
approach of the MPPT wind plant control method yields a large improvement of the
time-efficiency however, which is important for making real-time implementation pos-
sible.
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In each of the simulation experiments, the wind plant model as presented in Sec-
tion 3.4 is used to simulate the Princess Amalia Wind Park, an offshore wind plant that
is located 23km off the coast of The Netherlands, under different wind conditions. The
Princess Amalia Wind Park consists of 60 wind turbines with a rotor diameter of 80m and
a rated power of 2MW. The locations of the turbines in the The Princess Amalia Wind
Park are shown in Figure 3.5, together with a compass rose that defines the different wind
directions as mentioned further on in the simulation examples. In each of the cases, a
constant air density ρ = 1.225kg ·m−3 is assumed.

In Section 3.5.1, the time-efficiency and gain of the MPPT power optimization meth-
ods is compared to that of the GT approach in a simulation of the wind plant with a
constant incoming wind speed and a single wind direction. Thereby each of the param-
eters of the optimization algorithms are set to deliver fast convergence properties for this
specific case. In Section 3.5.2, it is evaluated whether the same settings will also result
in good convergence properties for other wind directions, by repeating the simulation
experiment of Section 3.5.1 for a range of wind directions. These results are then used in
Section 3.5.3 to make an estimate of the energy production increase that can be achieved
using these methods. In the final experiment in Section 3.5.4, it is shown that the pro-
posed MPPT algorithms are able to deal with a time-varying incoming wind speed.

3.5.1. COMPARATIVE SIMULATION STUDY OF THE WIND PLANT CONTROL

APPROACHES FOR A CONSTANT INCOMING WIND SPEED

In the first simulation example, a uniform wind field with a direction of 25◦ is assumed,
with a constant, below-rated speed of V∞ = 8ms−1. The parameters determining the
iteration step-size of each of the methods are tuned to yield fast convergence towards
the optimum. With the turbine powers Pi expressed in the megawatt unit, this resulted
in setting K = 7.7 MW−1 for the GA-MPPT approach, K = 5.12 MW−1 for the QN-MPPT
approach, and K = 0.06 and E = 0.1 for the GT approach. In both MPPT methods, the
size of the initial step on the control settings is set to (∆a)init = 0.01.

The simulation results are given in Figure 3.6a. After the control updates take place,
first a drop in total power production is observed, since the production of the upstream
turbines decreases, and then after the wake has travelled to the downstream turbines, an
increase of the total power is achieved. The results show that each of the control methods
will iteratively improve the total electrical power production. The GA-MPPT approaches
converge to a slightly lower total power than the GT and the QN-MPPT approach. This
is because the GT is guaranteed to converge to a global optimum of the wind plant total
power, and the QN-MPPT approach also finds this optimum in this case, but the GA-
MPPT converges to a local optimum that is close to this global optimum. The MPPT
approaches increase power much quicker than the GT approach. This is because the
MPPT methods use gradient information to converge to the local optimum in a faster
way. Also, it is because the distributed optimization approach of the MPPT methods
consider the wake effect on the nearest neighbouring turbines only, which makes that
the MPPT algorithms is able to update the control settings more frequently, since the
turbine-to-turbine settling time Ts,d is much shorter than the total wind plant settling
time Ts,p .
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Figure 3.5: Properties of the Princess Amalia Wind Park offshore wind plant.
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(b) Results for wind direction 60◦ , parameters of MPPT and GT not retuned (i.e. kept the same as for 25◦ wind
direction).
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(c) Results for wind direction 60◦ , with parameters of QN-MPPT and GT retuned.

Figure 3.6: Results of power optimization control with the GA-MPPT, QN-MPPT, and the GT approach in the
wind plant simulation described in Section 3.5.1, where the incoming wind speed is kept constant at V∞ =

8ms−1 . On the left, the ’◦’-markers on the total power curves correspond to the time instances at which the
control updates take place. On the right, the results are shown on a larger time range to show the convergence
of the GT approach, and to show the effect of the randomization in this GT method, the distribution of the
results of 100 experiments is shown.
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3.5.2. EVALUATION OF THE POWER GAIN OF THE WIND PLANT CONTROL

APPROACHES FOR DIFFERENT WIND DIRECTIONS

In the second case study, it is evaluated how the power increase that is achieved with
the MPPT and GT control methods changes with the direction of the incoming wind.
The simulation experiment of Section 3.5.1 is repeated for the 0◦,5◦,10◦, . . . ,355◦ wind
directions. In each simulation the incoming wind speed is kept constant at V∞ = 8ms−1.
The power increase that is achieved after each of the control methods have converged is
shown in Figure 3.7. It can be seen that the power increase that is achieved is highly de-
pendent on the wind direction, as the spatial configuration of the turbines in the Princess
Amalia Wind Park is optimized for more frequently occurring wind directions. As in the
previous case study, the MPPT methods converge much faster than the GT method. This
is shown in Figure 3.7e, in which the convergence times of the methods are given for
each wind direction.

The optimization results for different wind directions are obtained without adjust-
ing the parameter K for each direction (the same settings are used as in the example of
Section 3.5.1). In Figure 3.7d it can be seen that while the QN-MPPT may yield a slightly
higher power increase for the 25◦ wind direction (for which the control parameters are
tuned), for other wind directions the GA-MPPT yields a higher power increase. This is
because the convergence properties of the QN-MPPT approach are sensitive to the tun-
ing of the K parameter, and the QN-MPPT approach may need retuning of the step-size
scaling parameter K to different wind directions to have good converge properties, while
on the other hand, the GA-MPPT is more easy to use, in the sense that it does not need
adjustment of the K parameter to have good convergence properties for different wind
directions. This is also illustrated in Figure 3.6b and 3.6c. In Figure 3.6b the power time-
series for each of the optimization methods is shown for the wind direction 60◦, where
for each method the same tuning is used as previously for the 25◦ wind direction. It can
be seen that this results in bad convergence properties for the QN-MPPT method, as it
does not come as close to the global optimum found by the GT method as the GA-MPPT
method does. When the QN-MPPT method is retuned to K = 0.044, better convergence
properties can be obtained, the results are show in Figure 3.6c. Also, in Figure 3.6c, the
GT method is retuned such that faster convergence occurs, by setting E = 0.2 and keep-
ing K = 0.06.

3.5.3. ESTIMATION OF THE ANNUAL ENERGY GAIN OF THE WIND PLANT CON-

TROL METHODS

In the wind plant model of Section 3.4, the fractional velocity deficit in the wake (i.e. the
relative amount of wake recovery) is independent of the incoming wind speed. There-
fore, the settings finally found by the GT and MPPT optimization algorithms yield the
same power increase for different below-rated wind speeds. This can also be confirmed
by rerunning the experiments of Section 3.5.2 with different below-rated incoming wind
speeds (the results are omitted for brevity). By using wind measurements at a nearby
location, an estimate is made of the increase of the energy annually produced in below-
rated conditions that can be achieved using the different optimization methods. These
wind measurements were made by the NoordzeeWind meteorological mast at a nearby
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Figure 3.7: Results of the power optimization the Princess Amalia Wind Park for different wind directions.
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location in the North Sea during the period from July 1st, 2005 to June 30th, 2006 (Brand
et al., 2013). The measurements are available at NoordzeeWind B.V. (2013). The mea-
surements consist of 10 minute averages of the wind direction and the free stream wind
speeds. With the wind plant model of Section 3.4, the energy production of the Princess
Amalia Wind Park is calculated for each of the wind directions, for the case in which each
turbine is controlled individually, and the results are shown in Figure 3.5c. When the fi-
nal power increase that is obtained with each of the control methods is added to these
productions, and the results are summed over the year, a rough estimate can be made
of the annual production with each of the methods. In this way it is estimated that on a
yearly basis, the energy produced in below-rated wind conditions can be increased with
1.36% using the GA-MPPT method, with 1.19% using the QN-MPPT method, and with
1.42% using the GT method. Notice that in these calculations, the convergence time of
each of the methods is not taken into account, and that it is thus assumed that each of
the control methods is able to quickly track the changing wind conditions. Given the
large convergence times of the GT method when compared to the MPPT method, it is
less likely that the GT method is able to perform this tracking, and thus it is less likely
that the estimated energy production increase can be achieved in practice using the GT
method as described in Section 3.3 in an online implementation.

3.5.4. SIMULATION OF THE MPPT APPROACHES WITH A VARYING WIND

SPEED

In the final case study, it is shown in simulation that indeed the total power can be opti-
mized under varying wind speeds using the MPPT methods. The results, shown in Fig-
ure 3.8, are obtained by simulating the Princess Amalia Wind Park with a varying incom-
ing wind speed signal, obtained from a part of the December 2010 wind speed measure-
ments of the NoordzeeWind meteorological mast in the North Sea (NoordzeeWind B.V.,
2013), shown in the top plot of Figure 3.8a. It should be noted that this wind speed is
smoothed, as it is an interpolation of 10 minute averages of the measured wind speed.
In the lower two plots in Figure 3.8a, it can be seen that a power increase of about 4%
can be obtained with the MPPT techniques, using K = 0.25 for the QN-MPPT approach,
and K = 13 for the GA-MPPT approach. In both MPPT approaches, the initial step size is
set to (∆a)init = 0.01. Notice that in this time-varying wind speed case, the algorithm is
able to continue the optimization under changing wind velocity, making use of the fact
that the objective function is defined as the sum of the efficiencies P̃i as defined in (3.6),
rather than the sum of turbine power productions. In Figure 3.8b it is shown how this
objective function is optimized within the first 20 minutes of the simulations. After this
convergence period, the algorithm does not make any adjustments of control settings
anymore, and the wind plant optimally captures power as long as the wind direction
does not change.

3.6. CONCLUSIONS

In this chapter, two data-driven MPPT control algorithms for wind plants are presented
that optimize the control settings of each turbine in the plant in a real-time closed-
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Figure 3.8: Varying wind speed simulation results
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loop manner. The control algorithms achieve a power production increase of the wind
plant by taking into account the interaction between the turbines through the wake
effect. A speed-up of the optimization is achieved by using gradient-based optimiza-
tion techniques with a distributed approach in which we take into account the effect on
neighbouring turbines only. Using information on the spatial configuration of the wind
plant in this way, results in a much faster convergence of the power optimization than is
achieved with the existing game-theoretic method with full communication between the
turbines presented in Marden et al. (2013). This is demonstrated in the first simulation
example in Section 3.5.1.

As the gradient information used in the GA-MPPT and QN-MPPT is calculated from
measured data, the method is adaptive to changing wind conditions such as a chang-
ing wind direction. For the optimization algorithms to be able to track time-varying
wind conditions it is needed that the optimization takes place in a time-efficient man-
ner. Therefore, the gradient-based distributed MPPT approaches may be a more likely
candidate for practical application than the GT approach.

It is shown in the second simulation example in Section 3.5.2, that the GA-MPPT
method is more robust to changing wind conditions than the QN-MPPT approach, as
the latter optimization method may need an adjustment of the iteration step-sizes to
adapt to changing wind conditions.

The final simulation example in Section 3.5.4 showed that by letting the control al-
gorithm optimize the energy conversion efficiency of the wind plant rather than the to-
tal power, the optimization scheme is made adaptive to time-varying incoming wind
speeds. To define this efficiency, the algorithm needs an estimate of the effective in-
coming wind speed, and an estimate of the delays related to the wind field travelling
from one turbine to the next. In the simulation experiments with the Jensen model,
these wind speeds and delays are assumed to be exactly known. Future research aims
at applying the MPPT wind plant methods on a more advanced simulation model that
describes the wake and turbine dynamics in more detail, such as the SOWFA model pre-
sented in Churchfield et al. (2012b); Fleming et al. (2013b). To be able to do this, measur-
ing (Mikkelsen et al., 2013) or filtering techniques (Østergaard et al., 2007; Knudsen et al.,
2011) are to be applied that produce estimates of the speed of the incoming wind field,
and models are to be developed that give estimates of the wake traveling delays (a more
advanced delay model than used in this work, is presented in Chapter 5). Also, filtering
techniques are to be applied within the optimization gradient-based frame to deal with
the effect of small-scale turbulence on power production, which may form a problem in
determining the gradients.

The potential to increase wind plant power production with axial-induction-based
control is sensitive to the wind direction, as is shown in Figure 3.7 and was also pointed
out in Knudsen et al. (2014). Therefore, evaluating the methods in realistic wind sce-
narios with changing wind conditions, will be informative to further evaluate the poten-
tial of the control techniques. Moreover, the (more recent) SOWFA simulation results in
Chapter 2 and Annoni et al. (2014a) show that axial-induction-based control may only
have a potential for particular inflow conditions and turbine power and thrust charac-
teristics, and finding these this range of conditions, and the influence of the turbine
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characteristics, is ongoing research. The results of aforementioned recommended re-
search, can also impact the predictions on annual wind plant yield increase as a result of
axial-induction-based, as presented in Section 3.5.2, and thus we have to remain critical
towards these results.

Since the publication of this work, further research has been performed towards di-
rect data-driven axial-induction-based wind plant control methodologies that take into
account the wake propagation delays: Ahmad et al. (2014), that uses the wake delay
model as presented in this Chapter and shows a faster convergence with a simultane-
ous perturbation stochastic approximation method than the MPPT methods, and the
extremum-seeking control method in Yang et al. (2013b). This shows that there are al-
ternative ways of performing the data-driven optimization, but in each case the time-
efficiency has to be taken into account. In future work, the optimization methodologies
can be extended to above-rated wind conditions by including constraints in the opti-
mization problem that give upper bounds on the power production of each turbine in
the wind plant. Also, the optimization methodology may be used to perform balancing
of the loads on each turbine, using an approach similar to the one presented in Solei-
manzadeh et al. (2012), in which the objective function is extended with static turbine
load measures.





4
YAW-BASED OPTIMIZATION

CONTROL FOR WIND PLANTS

This chapter presents a wind plant control strategy that optimizes the yaw settings of wind

turbines for improved electrical energy production of the whole wind plant by taking into

account wake effects. The optimization controller is based on a novel internal paramet-

ric model for wake effects, called the FLOw Redirection and Induction in Steady-state

(FLORIS) model. The FLORIS model predicts the steady-state wake locations and the effec-

tive flow velocities at each turbine, and the resulting turbine electrical energy productions,

as a function of the axial induction and the yaw angle of the different rotors. The FLORIS

model has a limited number of parameters that are estimated based on turbine electri-

cal power production data. In high-fidelity computational fluid dynamics simulations of

a small wind plant, we demonstrate that the optimization control based on the FLORIS

model increases the electrical energy production of the wind plant, with a reduction of

loads on the turbines as an additional effect.

4.1. INTRODUCTION

Each wind turbine in a cluster of wind turbines (a wind power plant) can influence the
performance of other turbines through the wake that forms downstream of its rotor. The
wake is a flow structure that is characterized by a reduced wind speed because the tur-
bine rotor extracts kinetic energy from the incoming flow, and an increased turbulence
because the turbine obstructs the flow. If another turbine is standing in the path of a
wake at a location where the flow has not yet fully recovered to free stream conditions,
the reduced wind speed results in a lower electrical energy production of that turbine. In
addition, the increased turbulence and shear in the wake may induce an increase in dy-
namic loads on the downstream turbine. These wake interaction effects have been stud-

This chapter will appear as a journal publication in Gebraad, Teeuwisse, van Wingerden, Fleming, Ruben,
Marden, and Pao (2014d).
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ied extensively; see Vermeer et al. (2003); Crespo et al. (1999); Sanderse et al. (2011) for
reviews of the literature. The topology and amount of the wake interaction depends on
time-varying atmospheric conditions (e.g., wind direction, wind speed, turbulence, and
atmospheric stability), and on the operating point of each turbine that can be adjusted
by changing their control settings (generator torque, pitch angles of the blades Ainslie
(1988), or yaw angle Dahlberg et al. (2003); Wagenaar et al. (2012); Jiménez et al. (2010)).

In current industrial practice, wind turbines in wind plants are still controlled to max-
imize their own individual performance, ignoring the effect that the turbines have on
other turbines through their wakes Johnson et al. (2009). Recently, the wake interac-
tion effects have become a more significant field of study in the research on wind tur-
bine control algorithms, as wind plants have grown in size, and more knowledge has
become available on the loss of efficiency due to the wake interaction effect. The study
in Barthelmie et al. (2009), for example, reports an energy production loss in an offshore
wind plant due to the wake effects, of 12%, averaged over different wind directions.

Previous work on wind plant control has mainly focused on reducing wake inter-
action by adjusting the axial induction of turbines to improve the overall wind plant
performance, which can be achieved by adjusting pitch and torque. This concept was
first proposed in the late 1980s in Steinbuch et al. (1988). Static model-based optimiza-
tion strategies, based on simplified parametric wake models are tested in Johnson et al.
(2009); Bitar et al. (2013); Heer et al. (2014) (based on the Jensen wake model, Jensen
(1984); Katić et al. (1986)) and in Gonzalez et al. (2013) (based on the Frandsen wake
model, Frandsen et al. (2006)). In Schepers et al. (2007) a similar static optimization
is performed based on a computational fluid dynamics (CFD) model. Axial-induction-
based wind plant control strategies that adjust the control settings to changing inflow
conditions were developed in Marden et al. (2013) and Gebraad et al. (2014b) (using
model-free data-driven approaches), and in Soleimanzadeh et al. (2012, 2011, 2013) (us-
ing a model-based control approach using simplified CFD models).

The goal of the work presented here, is to optimize the yaw angles of the wind tur-
bines for increased total electrical power production of the wind plant. By changing the
yaw angle of a turbine, not only the axial induction of the rotor, but also the flow direc-
tion of the wake is changed. By controlling the deflection of the wake through yawing,
the wake can be directed away from downstream turbines. This approach was shown to
have great potential in CFD simulations in Jiménez et al. (2010); Fleming et al. (2014d,b).
The concept was also tested in wind tunnel experiments with scaled turbines Dahlberg
et al. (2003) and on a small wind plant in Wagenaar et al. (2012). In these tests it was
confirmed that the wake can be redirected using yaw, but since only a limited amount of
data could be gathered, no quantitative analysis could be made. Further, an interesting
work in this context is Kragh et al. (2013a), where it is shown that misaligning the rotor
yaw of a turbine with the wind direction can be used to reduce the loads on that turbine.

The response of the complete wind plant system with respect to control setting chan-
ges is slow, because of large delays that are associated with the flow in the wake traveling
from one turbine to the next González-Longatt et al. (2012); Choi et al. (2013). This is a
disadvantage for model-free global optimization approaches such as the one proposed
in Marden et al. (2013): the long time it would take a global optimization to iteratively test
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control settings on the real system and converge, forms a problem if the controller has to
adapt to time-varying conditions such as wind direction and inflow velocity. In Gebraad
et al. (2014b) the problem of having large delays in the system is addressed, and an alter-
native gradient-based ‘localized’ approach for model-free optimization is proposed to
improve the time-efficiency of the wind plant control. The ‘localized’ optimization algo-
rithm only takes into account the effect of control settings changes on the nearest down-
stream neighbouring wind turbines. This approach was used in Gebraad et al. (2014b)
for pitch- and torque-based wind plant control, but it is less suited for yaw control if the
goal is to not only deflect the wake away from the nearest downstream turbine, but also
to avoid the wake hitting turbines farther downstream. Therefore in this work, we pro-
pose a model-based control scheme, in which an optimization algorithm can test a large
number of possible control settings on the model, in order to iteratively find the optimal
settings based on the model predictions, before applying them to the real system.

The supervisory wind plant control scheme proposed in this chapter increases the
total electrical energy production of the wind plant by model-based optimization of the
yaw control settings. An overview of the proposed control scheme is shown in Figure 4.1.
An important part of the work presented in this chapter, is the development of the ‘in-
ternal model’ for the wind plant controller, that predicts the wake effects in the wind
plant.1 High-fidelity CFD-based models, based on a coupling of detailed turbine dy-
namics models with accurate wind flow models, such as the ones presented in Yang
et al. (2013a); Larsen et al. (2007); Churchfield et al. (2012b); Schepers et al. (2007), have
an important role in wind plant controls development, as they allow the algorithms to
be tested in a controlled environment. However, because of their computational com-
plexity, accurate CFD-based models are less suited to be used as internal models for real-
time controllers. The simplified parametric Jensen and Frandsen models, that were used
in axial-induction-based wind plant control strategies mentioned before Johnson et al.
(2009); Bitar et al. (2013); Gonzalez et al. (2013), do not include the ability to predict the
effect of yaw control on wake redirection. Therefore, we have developed a novel control-
oriented model that is able to predict the steady-state effects of yaw control on the wakes,
and the resulting effects on the turbine electrical power productions. The model has pa-
rameters that can be identified by fitting the predictions of the model to turbine power
measurements, an approach that can be referred to as ‘gray-box’ system identification.
Also, the model uses measurements from the wind plant to estimate relevant properties
of the inflow into the wind plant. The combination of the model identification and the
model-based optimization steps in the control scheme, is illustrated in the overview in
Figure 4.1. The fact that we use measurements to identify the model parameters and the
inflow conditions, motivates why later on we refer to the control scheme as ‘data-driven’.
Furthermore, the model has a relatively simple structure allowing for quick computa-
tion, such that it is suited for real-time control based on model-based optimization of
the control settings.

Because we do not have access to a real-world wind plant to perform yaw control
experiments with, in this work, a high-fidelity CFD wind plant model is used to generate
the data needed to develop, and identify the parameters of the simplified parametric
model. Then the model is implemented in a wind plant control scheme that performs

1A preliminary version of this work appeared in Gebraad et al. (2014c).
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model-based optimization of the yaw settings of each turbine using a game-theoretic
approach. Finally this model-based optimization control strategy is tested in the high-
fidelity wind plant simulation, in which the effects on power production and loads are
calculated. Hence, the high-fidelity simulation is used to provide a proof of concept for
the data-driven optimization control scheme based on the simplified parametric model.
Previous work on yaw optimization for wind plants, Park et al. (2013), did not include
validation of the optimized settings using high-fidelity numerical simulations.

The remainder of this chapter is organized as follows. The simulation experiments
performed in the high-fidelity CFD simulator to obtain identification data for the para-
metric model are described in section 4.2. The simplified parametric model is presented
in section 4.3. In section 4.4, the game-theoretic approach to calculate optimal yaw con-
trol settings based on the simplified model is explained. In section 4.5, simulation stud-
ies are presented to validate the data-driven model-based optimization approach in the
high-fidelity CFD wind plant simulation. Finally, in Section 4.6 the conclusions are pre-
sented.

wind plant

optimization identification

control set-points
(yaw)

measurements
(turbine powers,
yaw angles,
local flow velocities)

predicted steady-state outputs
(turbine powers)

try-out control
settings (yaw)

model
parameters

simplified internal model of wind plant

Figure 4.1: Overview of the data-driven model-based wind plant control optimization approach
(wind plant photo courtesy: Vattenfall, C. Steiness).

4.2. CHARACTERIZING WAKE EFFECTS THROUGH SIMULATIONS

IN SOWFA, A HIGH-FIDELITY CFD WIND PLANT SIMULA-

TOR

In this section, we describe the simulations we performed in a CFD simulator to obtain
identification data for the parametric model. We use the Simulator for Onshore/Offshore
Wind Farm Applications (SOWFA), which is a Large-Eddy Simulation (LES) of the three-
dimensional wind flow around one or more turbine rotors in the atmospheric boundary
layer. The rotating rotor blades are modeled through an actuator line approach Sanderse
et al. (2011). The actuator lines are coupled with the FAST turbine aeroelastics simulator
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tool Jonkman et al. (2005) that calculates the loads, power, and rotor speed of each tur-
bine, in addition to the forces that each turbine blade exerts on the flow. Each turbine
in the simulation can be controlled using an individual control algorithm implemented
in FAST, but also through a supervisory or distributed plant-wide controller. More de-
tails on the CFD calculations in SOWFA can be found in Churchfield et al. (2012b), and
in Fleming et al. (2013b,a) more explanations on controls implementation in SOWFA are
provided. Further, Churchfield et al. (2012a) presents a validation of SOWFA with time-
averaged turbine powers measured at the Lillgrund wind plant.

In Fleming et al. (2014d,b), SOWFA simulation results were presented which show:

• how effective the yaw techniques are at wake redirection,

• the effect of yaw wake redirection techniques on the electrical energy production
and loads of downstream turbines that are standing in the wake of the yawing tur-
bine,

• the effect of repositioning a turbine such that the overlap with a wake of an up-
stream turbine is reduced, on electrical energy production and loads on that tur-
bine.

More in particular, in Fleming et al. (2014b), the results of SOWFA simulations of a
setup of two NREL 5-MW baseline turbines Jonkman et al. (2009). These turbines have a
rotor diameter D = 126.4 m. In this setup the turbines are aligned in the wind direction
with a downwind spacing of 7 rotor diameters (7D). The turbines are placed in a domain
that is 3 km (horizontal length) by 3 km (horizontal width) by 1 km (height). The turbu-
lent inflow into the domain has a mean hub-height free-stream wind speed U∞ of 8 m/s
and a turbulence intensity of 6%. This turbulent inflow is generated by a precursor sim-
ulation of the neutral boundary layer in the same domain, with an aerodynamic surface
roughness that has a low value of 0.001 m, which is typical for offshore conditions.

The data of the following two series of simulations performed in Fleming et al. (2014b)
are used in this chapter (see Figure 4.2a):

• in SOWFA Simulation Series 1, the upstream turbine (turbine 1) is yawed to redirect
its wake away from the downwind turbine (turbine 2), resulting in an electrical
power production decrease on turbine 1 caused by a loss of rotor efficiency, but
an electrical power production increase of turbine 2 caused by an increase of the
velocity of the inflow into turbine 2,

• in SOWFA Simulation Series 2, turbine 2 is moved in the crosswind direction to
reduce the overlap of its rotor with the wake of turbine 1, also causing an increase
in the electrical power production of turbine 2.

For each yaw setting and position, a 600-second simulation was run. The wakes were al-
lowed to develop during the first 200 seconds of the simulation, and then 400 seconds of
simulated data was collected. By averaging of the power signals of the turbines over these
400 seconds, the results presented in Figure 4.2b were generated. In each case, the tur-
bines use the baseline pitch and torque controllers defined in Jonkman et al. (2009). For
the simulated flow conditions, both the upstream and the downstream turbine operate
in a below-rated operating region (region 2) and thus use constant pitch, variable torque
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control to maximize power production Jonkman et al. (2009); Burton et al. (2002a). For
most cases, the downwind turbine produces less electrical energy than the upwind one
because it is subjected to the low-speed wake of the upwind turbine.

SOWFA high-fidelity CFD simulations are typically run for a few days on a cluster
with a few hundred processors Fleming et al. (2014d,b). Due to the complexity and com-
putational costs of the SOWFA model, it is not suitable as an internal model for a wind
plant controller. However, the data generated by SOWFA can be used to develop sim-
plified models that can be directly used by the controller. In Section 4.3, we describe
how the power data from SOWFA Simulation Series 1 and 2 are used to identify such a
simplified control-oriented model. In Section 4.5, SOWFA is used to evaluate the control
techniques based on the simplified internal model in high-fidelity simulations.

4.3. DATA-DRIVEN PARAMETRIC WIND PLANT MODEL: FLORIS

In this section, we explain the structure of a parametric model predicting the steady-
state effects of yaw misalignment of different turbines on the electrical energy produc-
tions of wind turbines in a wind plant. It captures the effects of the yaw control on both
the redirection of the wake behind the turbine, and on the velocity in the wake. This is
important for predicting the electrical energy productions on downstream turbines, as
is also pointed out in Choi et al. (2013). Since it includes both effects, for the remainder
of the chapter we refer to the model as the FLORIS (FLOw Redirection and Induction in
Steady-state) model.

The FLORIS model is a combination of the Jensen model Jensen (1984); Katić et al.
(1986), and a model for wake deflection through yaw first presented in Jiménez et al.
(2010). Further, augmentations were made to the Jensen model in order to better model
situations with partial wake overlap, and to the wake deflection model in order to in-
clude wake position offsets caused by rotor rotational effects. These augmentations also
make that we can better fit the model with the power measurements obtained in SOWFA

Simulation Series 1 and 2.

Figure 4.3 gives an overview of the different parts of the model, and of how it inter-
acts with the yaw optimization algorithm of the wind plant controller. It also shows that
measured power and yaw setting of turbines, as well as wind direction measurements at
each turbine, are fed into the model. The measurements are used to estimate certain
atmospheric conditions, being the current direction and free-stream velocity of the in-
flow into the wind plant. These yaw measurements should be distinguished from the
try-out yaw settings that the optimization algorithm feeds into the model, and the corre-
sponding predicted turbine power outputs that the model generates on the basis of those
try-out yaw settings and the estimated inflow properties, and feeds back to the optimiza-
tion algorithm.

In this section the different parts of the FLORIS model are presented. First, in Sec-
tion 4.3.1 it will be explained how the electrical power productions of the turbines are
calculated (the turbine power model in Figure 4.3). To calculate these power levels,
estimates of the effective inflow speeds are used. These inflow speed estimates follow
from the wake model. In the wake model we use a specific down-/crosswind coordinate
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SOWFA Simulation Series 1:
yaw angle γ1 is varied
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Figure 4.2: Setup and results for the SOWFA Simulation Series 1 and 2, as described in Section 4.2. The power
data was used to find the parameters of the FLORIS model, see Section 4.3.
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frame. Figure 4.3 shows that the turbine coordinates are transformed to these coordi-
nates using measured wind directions at the turbines. This step is further explained in
Section 4.3.2. Submodels for different wake properties are the wake decay, deflection
and expansion models, also shown in Figure 4.3. These submodels are explained in Sec-
tions 4.3.3 to 4.3.5. Finally, 4.3 shows that there is the wake combination submodel, that
defines how the wake effects of the different turbines are combined in order to find the
effective inflow speeds at each turbine. This submodel is explained in Section 4.3.6. In
explaining the model, different coefficients are introduced that serve as model parame-
ters that are to be tuned to measurements from a wind plant. In this work, we use the
power measurements from SOWFA to find the FLORIS model parameters, as discussed
in Section 4.3.7.

4.3.1. TURBINE POWER

Let F = {1,2, · · · , N } denote a set of indices that number the wind turbines in a wind
plant, with N denoting the total number of turbines in the plant. The steady-state elec-
trical power of a turbine i ∈F , denoted as Pi , is calculated as follows Bianchi et al. (2007):

Pi =
1

2
ρAi CP

(
ai ,γi

)
Ui

3
∀i ∈F , (4.1)

where ρ is the air density, Ai is the rotor swept area, and CP is the power coefficient of
the turbine, and Ui is the effective wind speed at the turbine. In non-yawed idealized
conditions, the power coefficient is related to the axial induction factor of each turbine,
defined as ai = 1−Ui ,D /Ui , with Ui ,D being the wind speed at the rotor, and Ui the free-
stream wind speed in front of turbine i , as CP (ai ) = 4ai [1−ai ]2 Bianchi et al. (2007).
In the model presented here, we apply a correction on this relationship to account for
the effect of the yaw misalignment angle γi on the rotor power coefficient, following the
example of the experimental studies in Medici (2005). In addition, we use a constant
scaling of the CP value, η, to account for other losses. This results in

CP

(
ai ,γi

)
= 4ai [1−ai ]2ηcos

(
γi

)pP . (4.2)

To match the maximum CP = 0.482 and 94.4% generator efficiency reported in Jonkman
et al. (2009) for the NREL 5-MW turbine that is used in SOWFA Simulation Series 1 and
2, we use a loss factor η = 0.768. In Medici (2005), a parameter value pP = 2 was found
to fit data from wind tunnel tests with yawing turbines, but the parameter settings listed
in Table 4.1 are found to fit the yaw-power relationship of the upstream turbine (turbine
1) in SOWFA Simulation Series 1 (see Figure 4.2b). To find these parameters, we assume
an idealized axial induction of ai = 1/3 for below-rated conditions. The model can be
extended to above-rated operation by make corrections on ai as a function of inflow
speed Ui (based on a maximum rated power), or by making ai a function of pitch and
tip-speed ratio, using knowlegde of the CP -curve.

In the remainder of this section, it will be described how the effective inflow speeds
Ui at each turbine are estimated by the model, by predicting the steady-state wake char-
acteristics as a function of the yaw angles.
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Figure 4.3: Overview of the FLORIS data-driven parametric model as it is implemented in the wind plant controller. Figure 4.1 shows the same basic control scheme,
but in this figure the different submodels of the FLORIS simplified wind plant model are shown, and the identification block is omitted. The FLORIS model uses some
measurements from the wind plant (shown below) to estimate in the inflow properties (speed and direction). The GT optimization algorithm (right-top) uses the FLORIS
model to test yaw settings for these particular inflow conditions, and finally sends optimized yaw settings as reference signals to the wind plant. In the scheme shown
here, the shorthand notation

{
θi

}
is used for the set

{
θi |i ∈F

}
, where θi is a certain property of a wind turbine i in the wind plant.
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(b) Cut-through at down-
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Figure 4.4: The three different wake zones of the FLORIS parametric model. The free-stream wind vectors are
indicated as arrows with length Ui (the free-stream velocity). Inside the wake zones the wind vectors have
a reduced velocity (see Section 4.3.5). The areas overlapping with a downstream rotor j , Aol

i , j ,q , are used to

calculate the effective wind speed at turbine j , see (4.20),(4.22).

4.3.2. INFLOW DIRECTION AND THE DOWNWIND-CROSSWIND COORDINATE

FRAME

In order to describe the spatial properties of the wakes behind the turbines, we adopt a
Cartesian coordinate framework

(
x, y

)
in which the x-axis is pointing downwind along

an estimated mean inflow direction in the wind plant, and the y-axis is pointing orthog-
onal to the x-axis in the horizontal direction, i.e., along the crosswind direction (as il-
lustrated in Figure 4.4). Then naturally the z-axis represents the altitude. In this work,
we assume that each turbine has the same hub-height, and the turbine locations in this
downwind-crosswind coordinate frame are denoted as (Xi ,Yi )∀i ∈F .

The mean inflow direction, denoted by Φ, can be estimated in several ways. In the
model as used in the CFD simulation examples in Section 4.5, it is found using wind
direction measurements at the most upwind turbine. However, to determine which is
the front turbine, we need some initial guess of the free-stream wind direction, therefore
we use the iterative procedure described below. The steps of this procedure are also
illustrated in the left-most block in the FLORIS model scheme in Figure 4.3. The steps
are as follows:

1. We average the flow direction measurements at the hub of each turbine i ∈ F
2,

denoted as φmeasured
i

, to provide a first estimate of the inflow direction:

Φ=
1

N

N∑

i=1

φmeasured
i . (4.3)

2. Then, the turbine positions in downwind/crosswind coordinates are calculated
according to the estimated wind direction. If

{
X̄i , Ȳi

}
are the turbine coordinates

relative to the same Cartesian coordinates
(
x̄, ȳ

)
to which the wind direction Φ is

2In the CFD simulation examples, the wind direction at the turbine hubs is estimated by sampling the hori-
zontal velocity components

(
ūi , v̄i

)
at the hub location of each turbine i ∈F from the flow field calculated by

the CFD simulator, and calculating the direction in the horizontal plane as φi = tan−1 (
v̄i /ūi

)
.
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measured (see also Figure 4.4), the downwind-crosswind turbine coordinates are:

[
Xi

Yi

]
=

[
cos (−Φ) −sin (−Φ)
sin (−Φ) cos(−Φ)

][
X̄i

Ȳi

]
. (4.4)

3. Then, it is established which turbine is the front (most upwind) turbine, and it is
assumed that the mean inflow direction is equal to the wind direction measured
at that turbine (i.e., we assume a uniform direction of the free-stream inflow to the
wind plant):

f = argmin
i∈F

Xi (4.5)

Φ=φmeasured
f . (4.6)

4. We repeat step (2) and (3), until convergence (i.e., no change in estimated wind
direction Φ).

The wind direction estimation iterative procedure will generally converge to a wind di-
rection measured at a certain turbine within two or three iterations, in our simulation
examples. Note that in our implementation of the model as illustrated in Figure 4.3, the
wind direction measurements at the hub of the turbines, defined relative to the mesh
coordinates, are low-pass filtered, in order to filter out small-scale turbulence effects.

4.3.3. WAKE DEFLECTION

Yawing a turbine rotor causes the thrust force that the rotor exerts on the flow, FD , to
rotate in such a way that a crosswind component is induced Jiménez et al. (2010), which
causes the wind flow to deflect in the direction opposite to the yaw rotation (see Fig-
ure 4.4a). Because the wake deflection is induced by the thrust force, the amount of de-
flection is a function of the thrust coefficient of the turbine CT = 2FD /(ρAi U 2

i
). When

the yaw is not misaligned with respect to the wind direction (i.e., γi = 0), the thrust
coefficient is related to the axial induction factor ai of the rotor of a turbine i , as fol-
lows Bianchi et al. (2007):

CT (ai ) = 4ai [1−ai ]. (4.7)

The following heuristic relationship between the yaw angle of a turbine i , γi , the thrust
factor CT of the turbine in non-yawed conditions, and the angle of the centerline of its
wake ξi at a downstream location x > Xi , was derived in Jiménez et al. (2010):

ξi (x) ≈
ξinit

(
ai ,γi

)
[

1+2kd
x−Xi

Di

]2 with ξinit
(
ai ,γi

)
=

1

2
cos2 (

γi

)
sin

(
γi

)
CT (ai ), (4.8)

where Di is the rotor diameter of turbine i , kd is a model parameter that defines the sen-
sitivity of the wake deflection to yaw, and where ξinit is the initial angle of the wake at the
rotor. Relation (4.8) is elegant in the sense that it only has one unknown parameter, kd ,
to be tuned. This kd parameter defines the recovery of the wake flow direction towards
the main inflow direction Φ. By integrating the tangent of the wake centerline angle over
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x, the yaw-induced lateral offset of the wake center with respect to the hub of a turbine
i , denoted as δyw,yaw,i , can be found:

δyw,yaw,i (x) =

x−Xi∫

0

tan (ξi (x))d x. (4.9)

This integral can be approximated by integrating the second-order Taylor series approx-
imation of ξ(x), yielding

δyw,yaw,i (x) ≈
ξinit(ai ,γi )

[
15

[
2kd [x−Xi ]

Di
+1

]4

+ξinit(ai ,γi )2
]

30kd
Di

[
2kd [x−Xi ]

Di
+1

]5 −
ξinit(ai ,γi )Di

[
15+ξinit(ai ,γi )2

]

30kd
.

(4.10)
Further, in the simulations described in Fleming et al. (2014d), it was found that a small
lateral wake deflection occurs when the turbine is not yawed (i.e., γi = 0). This deflection
can be explained by vertical shear in the boundary layer and wake rotation: in reaction
to the rotor rotating clockwise, the wake will rotate counterclockwise, and therefore low
speed flow in the lower part of the boundary layer will be rotated up and to the right,
and high speed flow in the upper part of the boundary layer will be rotated down and to
the left. As a result the velocity deficit at the right part of the wake (looking downstream)
increases, so the wake deflects to the right. Since in SOWFA Simulation Series 1 and 2 the
wake behavior was tested for a single mean wind velocity with a limited velocity variation
caused by turbulence, the exact dependence of the wake deflection on the rotor speed
could not be derived from the power data obtained. Therefore, this rotation induced
wake lateral offset is parameterized through a simple linear function of the downstream
distance front the rotor:

δyw,rotation,i (x) = ad +bd [x −Xi ] . (4.11)

Combining the rotation induced and yaw induced components, the position of the wake
center of a turbine i at a downstream location x > Xi is given by:

yw,i (x) = Yi +δyw,rotation,i (x)+δyw,yaw,i (x) . (4.12)

4.3.4. WAKE EXPANSION

The Jensen model Jensen (1984); Katić et al. (1986) assumes a wake that is expanding
proportionally to the axial downstream distance from the rotor, and a wind velocity in
the wake that is uniform in the lateral direction. In reality, the velocity will be closer
to the free-stream velocity towards the edges of the wake, due to mixing Sanderse et al.
(2011). Therefore, we expand the Jensen model in order to better model partial wake
situations, by dividing the wake in three zones that also expand proportionally with the
distance from the rotor, but each with their own expansion factor (see Figure 4.4a). The
diameters of the wake zones behind a turbine i are given by:

Dw,i ,q (x) = max
(
Di +2ke me,q [x −Xi ] ,0

)
(4.13)
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for x > Xi , and index q = 1,2,3 numbering the different zones, Di being the rotor diam-
eter of turbine i , and with parameters me,q , ke being coefficients defining the expansion
of the zones. The different wake zones can be referred to as the ‘near wake’ (q = 1), ‘far
wake’ (q = 2), and ‘mixing zone’ (q = 3), in accordance with the terms that are com-
monly used in literature to describe wake characteristics Vermeer et al. (2003); Crespo
et al. (1999); Sanderse et al. (2011). The scaling parameter for the expansion of the near
wake, me,1, is typically set to a negative value, which prescribes that the cross-section of
the near wake zone is decreasing to zero with the distance to the rotor. The extension to
different wake zones makes that we can better match the data from SOWFA Simulation

Series 1 and 2, as is shown in Section 4.3.7.

4.3.5. WIND VELOCITY IN A SINGLE WAKE

By definition, the axial induction is the relative amount of velocity drop at the rotor
with respect to the inflow velocity. From actuator disk theory, it follows that the rela-
tive rotor-induced drop of the velocity behind the rotor is two times the axial induction
factor Bianchi et al. (2007). In the wake behind the rotor, the velocity will gradually re-
cover to the free-stream velocity by turbulence-induced mixing. The Jensen model as-
sumes that the time-averaged velocity deficit in the far wake decays quadratically with
the expansion of the wake. In Annoni et al. (2014b) it is shown that the parameters of the
Jensen model can be tuned to obtain a good fit of the time-averaged velocity profile in
the far wake as predicted by the SOWFA model for non-yawed conditions. An extension
made in the FLORIS model, in order to better fit the power data from SOWFA Simulation

Series 1 and 2, is that the wake is divided into three zones, as described in the previous
section, and that the velocity deficit decays quadratically with the distance from the ro-
tor, rather than being directly related to the wake expansion. Hence, the velocity profile
behind a turbine i is modeled as:

Uw,i
(
x, y

)
=Ui

[
1−2ai ci

(
x, y

)]
(4.14)

for x > Xi , with Ui again denoting the free-stream speed in front of the turbine, and
with the wake decay coefficient ci

(
x, y

)
being a piecewise constant function of the lateral

offset of the location y with respect to the wake center of turbine i :

ci

(
x, y

)
=





ci ,1 if |r | ≤ Dw,i ,1 (x)/2
ci ,2 if Dw,i ,1 (x)/2 ≤ |r | ≤ Dw,i ,2 (x)/2
ci ,3 if Dw,i ,2 (x)/2 ≤ |r | ≤ Dw,i ,3 (x)/2
0 if |r | > Dw,i ,3 (x)/2

with r = y − yw,i (x)

(4.15)

and with the local wake decay coefficient for each zone given by:

ci ,q (x) =

[
Di

Di +2ke mU ,q
(
γi

)
[x −Xi ]

]2

. (4.16)

The coefficients mU ,q are parameters defining how quickly the different wake zones de-
cay. Following a similar approach to that in Section 4.3.1, the wake decay rates are ad-
justed for the rotor yaw angle in order to fit the data from SOWFA Simulation Series 1
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and 2, by empirically deriving the following relationship between the coefficient mU ,q

and the yaw angle γi :

mU ,q
(
γi

)
=

MU ,q

cos
(
aU +bUγi

) (4.17)

for q = 1,2,3 with model parameters MU ,q , aU , bU .

In order to better predict the effect of axial-induction-based control on wind plant
performance, modifications to the wake velocity model in FLORIS were made by Annoni
et al. (2014a). These modifications are not included in the model presented here, that is
aimed at predicting the effect of yaw-based wake redirection control.

4.3.6. COMBINING WAKES TO FIND THE TURBINE EFFECTIVE WIND VELOC-

ITIES

In the submodel described in this section we combine the effects of the wake zones of
different turbines, in order to estimate the effective inflow velocity at each turbine. The
different parts of this submodel are illustrated in the lower-right block in the FLORIS
model scheme in Figure 4.3. The submodel described in Section 4.3.5 estimates the ve-
locity deficits in the wake with respect to a certain free-stream inflow speed. Generally,
we cannot assume the free-stream inflow velocity into the wind plant to be known, but
by inverting relationship (4.1), we can estimate the effective wind speeds at the front
turbines from turbine power and yaw angle measurements, denoted as P measured

i
and

γmeasured
i

, respectively. Then, the wind speeds at the downstream turbines are estimated
by combining the effect of the wakes, weighting the wake zones by their overlap with
the rotors using the root-sum-square method of Katić et al. (1986). This results in the
following formulations.

First, the overlapping areas between turbine rotors and the different zones of the
wakes are calculated from the wake center and wake diameter predictions described
in Section 4.3.3 and 4.3.4, using basic geometry. We denote the overlapping area be-
tween a wake zone q of a turbine i and a rotor of a downstream turbine j , by Aol

i , j ,q , see

Figure 4.4b. Then, let U ⊂ F denote the set of front, upstream turbines that are not in-
fluenced by other turbines through wake interaction, because their rotors do no overlap
with any wakes, and D the set of turbines that are influenced by other turbines, i.e.:

U =

{
j ∈F |Aol

i , j ,q = 0∀i ∈F , q ∈ {1,2,3}
}

D =
{

j ∈F | j ∉U
} (4.18)

Further, u
(

j
)

denotes the index of a turbine in the set U that has the largest overlap area
with a turbine j ∈D when compared to other turbines in the set U :

u
(

j
)
= argmax

i∈U

(
3∑

q=1
Aol

i , j ,q

)
∀ j ∈D. (4.19)

Figure 3.3 gives an illustrative example of how the sets U and D and the mapping j →

u
(

j
)

are defined in a particular case. The effective inflow speed at a turbine j ∈ D is
assumed to be the velocity at turbine → u

(
j
)

multiplied with a factor that represents
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the effects of the different wake zones, which are weighted by the overlap of these wake
zones with the rotor. This results in the following relations for estimating the effective
wind speeds U j at each turbine j ∈F :

U j =

{
f1

(
j
)

∀ j ∈U

f2
(

j
)

∀ j ∈D
(4.20)

with functions:

f1
(

j
)
=




2P measured
j

ρA j CP

(
a j ,γmeasured

j

)




1/3

(4.21)

f2
(

j
)
=Uu(j )


1−2

√√√√√ ∑

i∈F :Xi <X j

[
ai

3∑
q=1

ci ,q
(
X j

)
min

(
Aol

i , j ,q

A j
,1

)]2

 . (4.22)
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Figure 4.5: The above picture shows the hub-height flow field of a 3-by-2 wind plant, with the centerline and
boundaries of the wake zones as predicted by the FLORIS model shown as solid lines. The set definitions for
this case, F ,U ,D, and the mapping i → u (i ) are shown in the table underneath the picture. The mapping
i → u (i ) follows from the fact that the rotors of turbines 3 and 6 have the largest overlap with the model-
predicted wake of turbine 1 (shown in yellow), when compared to other turbines in the set U , and the rotors
of turbines 4 and 5 have the largest overlap with the wake of turbine 2 (shown in green).
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4.3.7. FITTING THE WAKE MODEL PARAMETERS

By fitting to the power data from turbine 2 in SOWFA Simulation Series 1 and 2, the
parameters for wake deflection, expansion and decay were tuned ‘manually’ (see Fig-
ure 4.2b and Table 4.1). The results were validated by comparing the resulting wake
velocity profiles for a single yawed turbine with the corresponding data generated by
SOWFA in the simulation experiments described in Fleming et al. (2014d); see Figure 4.6
for this comparison. In can be seen that by dividing the wake in different zones, as de-
scribed in Section 4.3.4, and introducing a rotation-induced wake position offset (Sec-
tion 4.3.3), we are able to better match the wake velocity profile.

wake
turb. power deflection expansion velocity
η 0.768 kd 0.15 ke 0.065 MU ,1 0.5 aU 5
pP 1.88 ad -4.5 me,1 -0.5 MU ,2 1 bU 1.66

bd -0.01 me,2 0.22 MU ,3 5.5
me,3 1

Table 4.1: FLORIS model parameters
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Figure 4.6: Time-averaged wake velocity profiles at turbine hub-height at a 7 rotor diameter distance from the
rotor, for different yaw angles of the rotor γ, as calculated with SOWFA (dashed) in the simulation described
in Fleming et al. (2014d), and with the FLORIS model (solid).

4.4. WIND PLANT YAW OPTIMIZATION USING A GAME-THEORETIC

APPROACH

In this work, we use the game-theoretic (GT) approach of Marden et al. (2013) to perform
an optimization of the yaw settings of the turbines in a wind plant with the objective of
maximization of the total wind plant power production. The GT approach performs the
optimization by making random perturbations to the yaw settings and holds the settings
as a baseline setting if they yield an improvement of the wind plant total power, so as to
iteratively find the global maximum of the wind plant total power. Following the con-
trol scheme of Figure 4.1 (shown in more detail in Figure 4.3), the optimization is based
on the turbine power predictions of the FLORIS model, hence the randomized search of
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the GT approach is performed using the simplified model, and once the optimized set-
tings are found, they are applied on the wind plant. In the remainder of this section, we
will explain the optimization algorithm in more detail. A specification of the different
parameters of the optimization algorithm for a particular case study follows in Section
5.2.

In Algorithm 3, the (simplified) optimization scheme of the GT approach is given as
it is implemented in our simulation examples. The randomized perturbation on the yaw
settings of the turbines in the wind plant model takes place in lines 9-15 of the algo-
rithm. In lines 10-11, a randomized process determines whether the yaw setting of a
specific turbine is updated; E is the probability of using a new random setting for γi , in-
stead of keeping the baseline setting, denoted by γi . By setting this search rate E , we can
control the amount of updates on turbines taking place at the same time, and as such
tune the convergence properties of the GT algorithm. If the yaw setting of a turbine is
indeed updated, it is randomly selected from the range

[
γmin,γmax

]
(in lines 12-13). This

range of possible yaw settings is discretized with an interval ∆γ in order to improve the
convergence speed. Testing whether the updated yaw settings improve the total wind
plant power, based on an evaluation of the FLORIS model, takes place in lines 18-22. If
they yield an improvement, the updated yaw settings are stored as a baseline setting γi

(see line 20). After that evaluation, a new iteration of the GT algorithm will follow.

4.5. WIND PLANT YAW OPTIMIZATION SIMULATION EXAMPLES

We perform an evaluation of the online yaw optimization wind plant control strategy
based on the FLORIS parametric model, by using it in SOWFA simulations of a small
wind plant.

4.5.1. SIMULATION SET-UPS

The simulated wind plant consists of two rows with three NREL 5-MW baseline tur-
bines Jonkman et al. (2009) each, with a 5 rotor diameter spacing in the downwind di-
rection, and 3 rotor diameters in the crosswind direction. We simulate a constant wind
direction, and 3 configurations of the wind plant, in which the setup is rotated 0◦, 5◦ and
10◦ with respect to the wind direction. For each of these configurations, we run simula-
tions of two cases:

• a case with the model-based control performing plant-wide optimization of the
yaw settings enabled, and

• a case in which the yaw settings that yield maximum power for each individual tur-
bine are used, i.e., each rotor is aligned perpendicular to the mean wind direction.
Since these yaw settings result in maximization of electrical power of the turbine
itself, but not in production maximization on a plant-level, we refer to these set-
tings as ‘greedy’.

The turbine positions, and the SOWFA-calculated flow fields for each of the cases are
shown in Figure 4.7. In this figure it can be seen that yaw misalignment indeed leads
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Algorithm 3 The pseudocode below shows a Game Theoretic approach for wind plant
control, performing optimization of the yaw angles for increased electrical energy pro-
duction. Index k denotes the iterations of the optimization. The variables γi and P i

are used to store baseline values of the control variables and the corresponding turbine
powers (yielding the maximum wind plant power found so far). U denotes a uniform
distribution, Zn denotes the set of integers [0,1, . . . ,n].

1: γi ← 0 ∀ i ∈F

2: k ← 0
3: n ←

γmax−γmin
∆γ

4: update Pi

(
γi

)
∀ i ∈F using (4.20),(4.1)

5: P ←
∑N

i=1 Pi (t)
6: γi ←γi

7: loop

8: k ← k +1
9: for all i ∈F do

10: R1 ← random value ∼U (0,1)
11: if R1 < E then

12: R2 ← random value from the set Zn

13: γi ←γmin +R2∆γ

14: else

15: γi ← γ̄i

16: end if

17: end for

18: update Pi ∀ i ∈F using (4.20),(4.1)
19: if

∑N
i=1 Pi

(
γi

)
> P then

20: γi ← γi ∀ i ∈F

21: P ←
∑N

i=1 Pi (t)
22: end if

23: end loop
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to a redirection of the wake, and an increase of flow velocity in the wake caused by a
reduction of axial induction.

In these SOWFA simulations, an inflow with a 6% turbulence intensity and an 8 m/s
mean velocity is used, which is the same inflow condition as in SOWFA Simulation Series

1 and 2 described in Section 4.2. Note that a different spacing between the turbines in
the wind direction is used in SOWFA Simulation Series 1 and 2 to obtain the parameters
of the FLORIS model, namely 7 rotor diameters, and in that sense we use the model
for extrapolation. The wind plant setup is placed in a 3km (horizontal length) by 3km
(horizontal width) by 1km (height) mesh, see Figure 4.7. The smallest mesh cells for the
CFD calculation, which contain the turbine rotors, the axial induction zones of the rotor
and the wakes between the turbines, have a size of 3m×3m×3m. Further away from
the turbines the mesh is coarsened to 6m×6m×6m cells, and then to 12m×12m×12m
cells, resulting in a total of 32 ·106 cells. Using a time-step of 0.02s, a 1000s simulation
is performed for each of the six cases. Because of the high mesh and time resolution
required, the computational cost of the CFD simulations is high: 59 hours of distributed
computation on 512 processors for each 1000s simulation.

4.5.2. SPECIFICATIONS OF THE PLANT-WIDE OPTIMIZATION CONTROLLER

USED IN THE SIMULATION EXAMPLES

In accordance with the scheme in Figure 4.3, the electrical power production, yaw, and
local wind direction measurements as calculated by SOWFA are directly fed into the in-
ternal FLORIS model. The FLORIS model uses these signals to estimate the inflow prop-
erties (effective wind speed and direction). A first-order low-pass filter with a -3dB cut-
off frequency of 2 mHz is used on the measured power and wind direction signals in
order to make sure that the wind plant yaw controller only responds to the slower trends
in the changes of the inflow conditions. When the plant-wide controller is switched
on, in each 0.02s timestep of the simulation the yaw optimization is performed. The
GT algorithm parameters are set to γmin = 0◦, γmax = 40◦ (offset relative to wind direc-
tion), ∆γ = 0.05◦, E = 0.2, and in each optimization 1000 iterations of the yaw settings
are tested on the internal FLORIS model, which is sufficient for convergence to a max-
imum in the predicted power production. In each iteration of the optimization it takes
about 0.04ms to evaluate the C-implementation of the FLORIS model on a single CPU.
The search is restricted to positive yaw angles since previous simulation studies Fleming
et al. (2014d) showed that for the given inflow conditions, yawing in the positive direc-
tion yields a reduction of relevant structural loads on the turbine, while negative yaw
increases blade loads. After the optimization procedure, the baseline yaw setting for
each turbine as calculated by the optimization algorithm is set as a reference to which
the turbines respond with a maximum yaw rate of 1◦/s. In the following timestep, the
optimization is initialized with the previous yaw reference setting.

In this case study, an unrealistically high update rate for the yaw reference settings
was used when considering the maximum yaw rate of 1◦/s. In practice, one would run
the optimization algorithm far less frequently, and the 0.04s needed to run the optimiza-
tion would be sufficiently short to allow for online optimization. The time between yaw
reference updates on a real wind turbine may be in the order of tens of seconds to min-
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utes (examples are discussed in Hau (2013a) and Kragh et al. (2013b)). Since both a con-
ventional ‘greedy’ yaw control system and the proposed plant-level optimized yaw con-
trol system respond to changes of the wind direction, the yaw reference update rate can
be adjusted to make a trade-off between additional yaw actuator usage and electrical
power production, where in principle the plant-level optimized scheme does not need
more actuator usage than the ‘greedy’ scheme.

4.5.3. DETAILED RESULTS OF SIMULATIONS WITH THE 5 DEGREE ROTATED

WIND PLANT

For the cases with the 5◦ rotated wind plant, relevant signals are shown in Figure 4.8.
We compare the SOWFA simulation with the ‘greedy’ settings, with a SOWFA simulation
in which the plant-wide optimization controller is switched on after 400s. Figure 4.8a
compares the electrical power output calculated by SOWFA and predicted by the FLORIS
model for both cases. Figure 4.8b shows the yaw angles for both cases, and the wind
direction estimated by the controller.

Figure 4.8a shows that the predictions given by FLORIS are not always closely match-
ing the SOWFA results for each turbine, since the FLORIS model does not include the
transient effects related to the wakes taking some time to propagate through the wind
plant, and also higher-frequency variations related to turbulence are not included in the
FLORIS model. Still, the FLORIS-model predictions are accurate enough to be used by
the GT optimization algorithm in the controller for the calculation of yaw settings that
yield a significant increase in total power production of the wind plant, when compared
to the case with the greedy settings (see lower-left plot in Figure 4.8a). In the SOWFA re-
sults, over the period of 50s to 500s after plant-wide optimization control is switched ON,
on average 13% more electrical energy is produced compared to the ‘greedy’ yaw case.
In Figure 4.8b it can be seen that the online implementation of the GT model-based op-
timization responds to changes in the inflow conditions (direction and velocity), which
are predicted based on the measured signals.

4.5.4. OVERVIEW OF ELECTRICAL POWER PRODUCTION AND LOAD RESULTS

OF SIMULATIONS WITH DIFFERENT WIND PLANT CONFIGURATIONS

Table 4.2 shows the time-averaged results for the total wind plant electrical power pro-
duction calculated with SOWFA and estimated with FLORIS, for both ‘greedy’ and plant-
wide optimized settings for the 0◦, 5◦ and 10◦ rotated configurations of the wind plant.
Figure 4.9 shows the power productions for each individual turbine. When comparing
the FLORIS and SOWFA predictions on the power production, we again see that there is
not a perfect match, but the FLORIS predictions are accurate enough to enable a power
production increase when using them for optimization of the yaw angles. In each of the
cases with the plant-wide optimization controller, it can be seen that the loss of power
through yawing on upstream turbines is compensated by a larger power gain in a down-
stream turbine. When comparing simulations with different configurations of the wind
plant, we can see the effect of changes in the mean wind direction on the wake inter-
action in the wind plant: for a 10◦ rotation, the power production gain from the yaw
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optimization is much smaller. This is because in that case also with the ‘greedy’ settings
there is little overlap of the wakes with the downstream turbines (see also the flow fields
in Figure 4.7). Table 4.3 lists the optimal yaw angles as calculated by the GT optimization,
which shows that in the case with the 10◦ rotated wind plant, the optimized yaw angles
are much smaller.

Also included in Figure 4.9 are relevant structural loads on each turbine for each case,
as estimated by the FAST dynamic model of each turbine. It has to be remarked that the
validation of load predictions from SOWFA is still ongoing work. Loads are computed
for blade out-of-plane (OOP) bending moments, drive-train low-speed shaft (LSS) tor-
sion, yaw bearing moments and tower bending moments. For each of these load signals,
a damage equivalent load (DEL) is computed, which is a standard measure of fatigue
damage Buhl Jr. (2008). The comparison shows that for most of the investigated loads,
a reduction of DEL is observed when the yaw settings are optimized by the plant-wide
controller, even though this was not the objective of the optimization. The observation
that yaw misalignment on the upstream turbines can reduce the loads on these turbines
themselves, is consistent with the findings in Kragh et al. (2013a), and load reductions
on downstream turbines can be attributed to a reduction of wake overlap. There are in-
creases in some DELs on some of the downstream turbines, which can be explained by
an increase of imbalance through partial wake overlap. In Fleming et al. (2014b) it is
suggested that these loads can be mitigated using individual pitch control. Also, a drive-
train damper can mitigate the increase of loads on the LSS observed at turbine 5 for the
0◦ rotated wind plant case. There are substantial differences in the DELs when compar-
ing the two 3-turbine rows in the wind plant, even though turbine spacing in each row is
the same. This can be explained by the fact that the turbulence in the inflow is different
for each of these rows, and that the data is averaged over a relatively short period.

Finally, it should be remarked that the expected beneficial effects of the proposed
yaw optimization control on a real large wind plant are smaller than in this case study.
In this case study there is a relatively small inter-turbine spacing in the flow direction,
and a relatively slow wake recovery through mixing because of the low turbulence-level
in the inflow, and the neutral boundary layer conditions. These are conditions that make
that the wake losses are relatively large in this wind plant, and thus also we see a large
effect of mitigating these losses through control.

greedy yaw optimized yaw increase
SOWFA FLORIS error SOWFA FLORIS error

wind plant rotated 0◦ 6.68MW 6.34MW 5.27% 7.55MW 7.66MW 1.55% 13.03%
wind plant rotated 5◦ 8.75MW 8.75MW 0.08% 9.91MW 9.99MW 0.79% 13.19%

wind plant rotated 10◦ 10.80MW 11.04MW 2.23% 10.91MW 11.22MW 2.76% 1.04%

Table 4.2: Total wind plant electrical power production in the SOWFA simulation results, and as predicted by
the FLORIS model, for both ‘greedy’ control and plant-wide optimized yaw control. The data is averaged over
a period of 50s to 500s after plant-wide optimization control is switched ON (and over the same period for the
‘greedy’ case). Also listed are the errors of the FLORIS prediction relative to the SOWFA results, and the increase
obtained when using optimized yaw relative to the greedy yaw control case in the SOWFA results.
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Figure 4.7: Hub-height wind field at 800s simulated time, as calculated by SOWFA for 3 different configurations
of the wind plant. Black lines indicate rotor positions and yaw orientation of each turbine (the yaw angles are
listed in Table 4.3).
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Figure 4.8: SOWFA simulation results and FLORIS predictions of power productions with and without FLORIS-
based optimization control (a), and the yaw angles used in these simulations (b), for the 5◦ rotated wind plant
configuration (see also Figure 4.7b).
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Figure 4.9: Time-averaged SOWFA simulation results (solid bars) for turbine electrical power production and
structural loads for both turbine-level optimal (‘greedy’) and plant-wide optimal yaw settings (‘optimal’), for 3
different wind plant configurations (see Figure 4.7 for these configurations). The data is averaged over a period
of 50s to 500s after plant-wide optimization control is switched ON (and over the same period for the ‘greedy’
case). Listed are increases of power and loads of the optimized case relative to the greedy case as calculated
by SOWFA (in %, red). Also included are the FLORIS estimates of the power productions (clear bars), and the
associated errors e relative to the SOWFA-calculated values (in %, black and gray). Table 4.2 shows total wind
plant electrical power production. Table 4.3 lists the yaw angles used in the ‘optimal’ case.
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turbine 1 turbine 2 turbine 3 turbine 4 turbine 5 turbine 6
wind plant rotated 0◦ 25.85◦ 25.15◦ 39.80◦ 39.75◦ 0.45◦ 0.35◦

wind plant rotated 5◦ 19.00◦ 19.00◦ 23.80◦ 23.80◦ 0.05◦ 0◦

wind plant rotated 10◦ 6.25◦ 3.45◦ 4.75◦ 6.35◦ −0.05◦ 0.05◦

Table 4.3: Optimized turbine yaw angles (relative to the mean 30◦ wind direction) after 800s of simulation for
different wind plant configurations.

4.5.5. ESTIMATION OF ENERGY GAIN OF YAW-BASED WIND PLANT CONTROL

ON THE PRINCESS AMALIA WINDPARK

In Fleming et al. (2014c), the annual energy production gain that can be obtained through
yaw-based wake redirection control for the Princess Amalia Windpark offshore wind
plant, is estimated to be 1.1%. This estimate is obtained using the same approach as
taken in Section 3.5.3: for each wind direction the annual energy gain is evaluated of
using optimized yaw instead of greedy control, using the FLORIS model, and then the
annual estimated gain is based on the frequency of those wind directions over the year,
based on measured wind data from a nearby location in the North Sea NoordzeeWind
B.V. (2013); Brand et al. (2013) .

4.6. CONCLUSIONS

In this chapter, a wind plant control strategy for the optimization of the total electrical
energy production of the wind plant by changing the yaw control set-points of each tur-
bine, was presented. The yaw control is used to change the direction and velocity of the
wake forming behind each turbine in the wind plant. The optimization is based on pre-
dictions provided by the FLORIS model, a novel simplified parametric model for these
wake effects in the wind plant.

In high-fidelity CFD simulation examples, it was shown that the control strategy could
be applied successfully on a small wind plant. The FLORIS model was found to be able
to predict the time-averaged turbine powers for both the ‘greedy’ and plant-wide op-
timized settings with sufficient accuracy to indeed yield a significant power production
increase, for different configurations of the wind plant. The CFD simulations also predict
that a reduction of loads can be achieved through the yaw control. The CFD simulation
examples provide a first proof of concept for the data-driven optimization scheme based
on the FLORIS model.

Ongoing work is aimed at the further development of the control scheme such that
it can be applied on a real wind plant, under changing atmospheric conditions. When
for example the turbulence intensity of the inflow changes, the wake properties are af-
fected, and the model parameters should be updated online. The FLORIS model has a
relatively simple formulation, with a small number of parameters that can be identified
using power measurements of the different turbines in the wind plant. This enables the
development of such a fully data-driven approach for adaptive wind plant optimization
control.

In further ongoing work, the FLORIS model is extended with a more accurate descrip-
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tion of the wake effects, in order to give better predictions of the wind plant performance.
This work includes the extensions proposed by Annoni et al. (2014a). These extensions
consist of a better description of wake decay through turbulent mixing in overlapping
wakes, and a better prediction of the effects of changing axial induction using blade pitch
and generator torque. Further, in the next Chapter 5, the FLORIS model is extended with
dynamic effects, by including the delays associated with the wake effects propagating
through the wind field.

Certainly when considering varying atmospheric conditions, the FLORIS model needs
to be further validated. Gathering validation data from relevant and realistic scenarios
with changing wind conditions from high-fidelity models like SOWFA, or with a real wind
plant, is a substantial task, given the computational costs of high-fidelity models, and
the uncontrollable nature of the conditions in real wind plants. With proper validation
of the model under varying wind conditions, also a description of the uncertainty of the
FLORIS model should be formulated, with which a robust yaw control strategy can be
developed, possibly with some conservatism in the amount of yaw offset used.



5
A CONTROL-ORIENTED DYNAMIC

MODEL FOR WAKES IN WIND PLANTS

In this chapter, a novel control-oriented dynamic model for predicting wake effects in wind

plants, called the FLOw Redirection and Induction Dynamics ( FLORIDYN) model, is pre-

sented. The model predicts the wake locations and the effective flow velocities at each

turbine, and the resulting wind turbine electrical energy productions, as a function of

the control degrees-of-freedom of the turbines (the axial induction and the yaw angle of

the different rotors). The model is an extension of the previously presented static model

( FLORIS). It includes the dynamic wake propagation effects that cause time delays be-

tween control setting changes and the response of downstream turbines. These delays are

associated with a mass of air in the wake taking a certain amount of time to travel from

one turbine to the next, and the delays are dependent on the spatially- and time-varying

state of the wake. The extended model has a state-space structure combined with a non-

linear feedback term. While including the control-relevant dynamics of the wind plant,

it still has a relatively small amount of parameters. A Kalman filter is developed for the

model that corrects the flow field predictions of the model using wind turbine power pro-

duction measurements. The computational complexity of the model is small enough such

that it has the potential to be used for dynamic optimization of the control reference sig-

nals for improved wind plant control, as is demonstrated in a case study.

5.1. INTRODUCTION

Because a wind turbine extracts energy from the flow, it has a wake of turbulent flow
downstream of its rotor, in which the wind velocity in the wake is reduced with respect
to the free-stream velocity. Downstream of the rotor the wake expands, and turbulent
mixing and diffusion causes the wake velocity to recover towards the free-stream velocity
further downstream. In a cluster of wind turbines (a wind plant), the wake of one turbine

This chapter has been published in Gebraad and van Wingerden (2014a).
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can overlap with another turbine rotor, which affects the electrical power production
and loads on that turbine. The topology and amount of the wake interaction depends
on time-varying atmospheric conditions (e.g., inflow direction, speed and turbulence,
and atmospheric stability), and on the control settings of each turbine: the rotor speed
and pitch angles of the blades affect the rotor axial induction and thus the wake velocity
deficit (Ainslie, 1988), and the rotor yaw angle affects both the velocity deficit and flow
direction in the wake (Burton et al., 2002b; Dahlberg et al., 2003; Wagenaar et al., 2012;
Adaramola et al., 2011; Jiménez et al., 2010; Fleming et al., 2014b,d).

In Chapter 4, the FLOw Redirection and Induction in Steady-state (FLORIS) model
was developed, a simplified control-oriented model that predicts the steady-state char-
acteristics of wakes in a wind plant as a function of the axial inductions and yaw angles
of the wind turbine rotors. The complete flow field in a plant does not respond instanta-
neously to a change in turbine control settings however, since the flow takes some time
to move downstream, resulting in a delay of the response of the downstream turbine.
In Knudsen et al. (2012), system identification experiments are described with a setup
with two megawatt-scale wind turbines aligned in the wind direction in which the ax-
ial induction of the front turbine is varied, and the response of the downwind turbine
is measured. In these system identification experiments, the wake propagation delay
is identified from measured data, as a constant time-delay that is incorporated in the
transfer function form of the dynamic model of the interaction between the upstream
and downstream turbine. The lengths of the wake propagation delays are dependent on
the spatially- and time-varying flow velocity profile in the wake however, therefore, it is
useful to parameterize them as such. In an early attempt to incorporate wake velocity
dependent delays in a control-oriented model, in Koch et al. (2005), the wake travel time
was estimated by dividing turbine-to-turbine distance with the flow speed at the most
downstream turbine. Since the velocity deficit in the wake of a turbine is at its maximum
just behind the rotor and recovers to the free-stream velocity through mixing further
downstream, the delay is underestimated with this method. In Section 3.4 of this thesis
we made an extension of the Jensen model (Jensen, 1984; Katić et al., 1986) with a delay
model that calculated the wake travel time between two turbines based on the average of
the flow velocities at the upstream and the downstream turbine, similar to the approach
in Gonzalez et al. (2013). In Choi et al. (2013) a more accurate estimation of the delay
time was made by further segmentation of the wake velocity profile in the downstream
direction, and summing the delay for each segment. Each of the delay models do not
take into account the dynamic response of the wake velocity profile to control setting
changes, and do not include the effect of the yaw degree-of-freedom on the wake deflec-
tion. Therefore, in this work, we extend the FLORIS model with a simplified dynamic
model for the propagation of the effects of control settings changes through the wake.
We refer to the model as the FLOw Redirection and Induction Dynamics (FLORIDYN)
model.

The outline of this chapter is as follows. In Section 5.2, a description of the FLORI-
DYN model is given. Then, in Section 5.3 the results of a case study are presented, in
which the predictions given by the FLORIDYN model are compared with those of a high-
fidelity computational fluid dynamics (CFD) simulation. In Section 5.4, a Kalman filter is
developed that makes corrections on the flow field predicted by the FLORIDYN model,
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on the basis of data measured at the turbine. In Section 5.5, a case study is provided in
which the FLORIDYN model is used to enable plant-level optimized dynamic control.
Finally, conclusions and recommendations are given in Section 5.6.

5.2. FLORIDYN MODEL DESCRIPTION

A detailed overview of the FLORIDYN model is provided in the scheme in Figure 5.1
(the gray parts). In brief, the FLORIDYN model is a combination of a static nonlinear
mapping describing the wake velocity profile, based on an augmented Jensen model
(Jensen, 1984; Katić et al., 1986), and the wake deflection through yaw (based on Jiménez
et al. (2010)), extended with a state-space model describing the propagation of control
settings changes through the wake.

In this section, the model will be described part-by-part, starting with a model for
the turbine power generation from the wind with a certain effective wind speed (Sec-
tion 5.2.1). Then, in Section 5.2.2 a subdivision is made between front and downstream
turbines, because only for the downstream turbines the wake properties are to be esti-
mated to find the effective wind velocities. Further prerequisite definitions follow in Sec-
tion 5.2.3, where a special Cartesian coordinate system is explained, and in Section 5.2.4,
where a subdivision of the wake in different zones is introduced. The wake propagation
model is defined in Section 5.2.5, and the model to find the local wake characteristics is
given in Section 5.2.6.

An overview of notations that are used throughout the model description in this sec-
tion, is given in Table 5.1. These notations will also be introduced step-by-step in the
next subsections.

5.2.1. TURBINE ELECTRICAL POWER PRODUCTIONS

The index t is used to count the different wind turbines in a wind plant. The index k

denotes the discrete time steps. When the effective wind speed at a time k at a turbine t ,
denoted as uT (t ,k), is known, the electrical power of a turbine t is calculated as:

PT (t ,k) =
1

2
ρAT (t)CP

(
aT (t ,k) ,γT (t ,k)

)
uT (t ,k)3 (5.1)

where ρ is the air density, and AT (t) is the rotor swept area, and CP is the power coef-
ficient of the turbine t . In Section 4.3.1 we derived the following heuristic relationship
between the axial induction factor aT and the yaw angle γT of the rotor and the power
coefficient CP , based on the work in Medici (2005):

CP

(
aT (t ,k) ,γT (t ,k)

)
= 4aT (t ,k)[1−aT (t ,k)]2ηcos

(
γT (t ,k)

)pP . (5.2)

Note that aT in this relation corresponds to the axial induction factor when the rotor
is not yawed, which can be found from the blade pitch angle and rotor speed using
knowledge of the turbine characteristics. Scalars pP and η are turbine-specific model
parameters: η is a efficiency factor used to represent possible losses with respect to the
theoretical maximum efficiency in non-yawed operation, parameter pP is used to fit the
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P (k +1|k) =Ã (k) P (k|k −1) Ã (k)T
+Q−

Ã (k) P (k|k −1)Cu (k)T
(
R +Cu (k)P (k|k −1)Cu(k)T

)−1 (
Ã (k) P (k|k −1)Cu (k)T

)T

K (k) =Ã (k) P (k|k −1)Cu (k)T
(
R +Cu (k)P (k|k −1)Cu(k)T

)−1

−→
ŵ =K (k)

[
−−−→
uT,D −�−−−→uT,D

]

ŵ

find
downwind-crosswind

coordinates
of turbines

coordinates (sec. 5.2.3)

wind plant
wind direction

turbine positions measured powers front turbines {PT (t)∀t ∈F }

measured powers downstream turbines {PT (t)∀t ∈D}

find wake characteristics (static nonlinear mapping) (sec. 5.2.6)

FLORIDYN model and Kalman filter

Figure 5.1: FLORIDYN model scheme, with Kalman filter (in red). Measurements from the wind plant (top) are fed into the model to estimate the inflow properties.
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Time stepping

k discrete time-step index
∆T sample time, interval between two discrete time steps k and k +1
A,B state-space matrices, cf. eq. 5.4 (definition), and eq. 5.6-5.7

Turbine and wake indices and sets

t turbine index
Nt number of turbines in wind plant
P set of all turbines in wind plant
F set of front turbines
D set of downstream turbines
z wake zone index
p wake tracking point (TrP) index
Np number of TrPs in a wake zone

Turbine properties

AT turbine rotor area
DT turbine rotor diameter
xT turbine x-position in downwind-crosswind coordinates
yT turbine y-position in downwind-crosswind coordinates
PT turbine power production
CP turbine power coefficient, cf. eq. 5.1
pP coefficient for adjusting power coefficient CP to yaw offset, cf. eq. 5.1
η coefficient for adjusting power coefficient CP for losses, cf. eq. 5.1
aT turbine axial induction (non-yawed)
γT turbine rotor yaw angle
uT effective wind speed at turbine
UT effective free-stream wind speed at turbine
rT effective wind speed reduction factor at turbine

Properties of a Tracking Point (TrP) p in the wake zone z of a turbine t

xt ,z,p TrP x-position in downwind-crosswind coordinates
∆xt ,z,p TrP x-distance to turbine rotor
yC,t ,z,p y-position of wake center effective at TrP
yI,t ,z,p y-position of wake zone inner-point
yM,t ,z,p y-position of wake zone mid-point
yO,t ,z,p y-position of wake zone outer-point
at ,z,p axial induction effective at TrP
γt ,z,p yaw angle effective at TrP
Ut ,z,p free-stream speed effective at TrP
ut ,z,p wake speed at TrP
rt ,z,p wake speed reduction factor effective at TrP
Ot ,z,p set of wake zones that is overlapping with a TrP

Other wake zone properties

Dw,n,Dw,f ,Dw,m diameters of main wake zones (near, far and mixing zone), cf. Fig. 5.2, eq. 5.10

Flow parameters

ρ air density
kd wake deflection coefficient, cf. eq. 5.8-5.9
αd, βd coefficients for wake deflection caused by rotor rotation, cf. eq. 5.8-5.9
ke wake expansion coefficient, cf. eq. 5.8-5.9
me,n, me,f, me,m wake zones expansion coefficients, cf. eq. 5.10
MU,n, MU,f , MU,m wake zone velocity recovery coefficients, cf. eq. 5.12-5.14
αU, βU coefficients for adjusting wake velocity deficit to yaw offset, cf. eq. 5.12-5.14

Table 5.1: Notations repeatedly used in the FLORIDYN model description, Section 5.2
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power loss when a turbine is yawed. In Chapter 4, the values η = 0.768, pP = 1.88 were
found to provide a good match with experiments in which the yaw angle of the NREL
5-MW baseline turbine was varied.

In Figure 5.1 the turbine power model is used in the lower-right sub-block of the
FLORIDYN model to estimate the turbine electrical power productions from estimated
effective wind velocities. This is only done for the set of downstream turbines D, as is
explained in the next section.

5.2.2. FRONT AND DOWNSTREAM TURBINES

The set P = {1,2, · · · , Nt } denotes the set of indexes t of all turbines in the plant, with Nt

denoting the total number of turbines in the plant. Given a certain inflow direction, we
can distinguish some front turbines in the wind plant, for which the rotor is not over-
lapping with the wake of any other upstream turbines. Those front turbines are in the
set F ⊂ P . From a controls perspective, the velocity of the inflow to these turbines, is a
given input (disturbance) to the wind plant system. From measurements at these front
turbines (power, yaw and axial induction) we can estimate the local free-stream veloci-
ties, denoted by UT, by inverting relation (5.1):

UT (t ,k) =

[
PT (t ,k)

1
2ρAT (t)CP

(
aT (t ,k) ,γT (t ,k)

)
]1/3

∀t ∈F (5.3)

as is also shown in the top-right sub-block of the model scheme in Figure 5.1. The above
inversion assumes that the CP factor remains constant with changing wind speed, which
is a valid assumption for below-rated operation with constant tip-speed-ratio, and also
above-rated this is expected to be a workable assumption, as long as the CP (or the axial
induction) is updated with the most recent tip-speed-ratio estimate, and the wind speed
changes slowly enough. An alternative is to use more advanced methods for estimating
effective wind speed from power using filtering techniques based on a dynamic turbine
model, such as those presented in Østergaard et al. (2007); Knudsen et al. (2011).

Adjustments of the axial induction and yaw of the turbine rotors affect the wake ef-
fects on the turbines that are standing downstream of the front turbines, that are in-
cluded in the set D = {t ∈P |t ∉F }. The inflow velocities for those turbines can be con-
sidered as variables that can be controlled to have values within a certain range. In
the remainder of this section, it will be described how the effective inflow speeds uT at
each turbine t ∈ D are estimated through a dynamic model of the wake characteristics.
Based on those estimated effective inflow speeds uT, the FLORIDYN model estimates
the power production of those turbines, using eq. 5.1.

5.2.3. DOWNWIND-CROSSWIND COORDINATE SYSTEM

In order to describe the spatial properties of the wakes in the wind plant, a Cartesian
coordinate system

(
x, y

)
is adopted, in which the x-axis is pointing downwind along an

estimated mean inflow direction in the plant, and the y-axis is pointing orthogonal to the
x-axis in the horizontal direction, i.e., along the cross-wind direction (see Figure 5.2). In
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this work, we assume that each turbine has the same hub-height, and the turbine loca-
tions in this downwind-crosswind coordinate system are denoted as

(
xT (t) , yT (t)

)
. In

the upper-left sub-block of the model scheme in Figure 5.1, the turbine positions are
transformed to the downwind-crosswind coordinate system using information of the
(free-stream) wind direction. A detailed description of a method to perform this trans-
formation based on turbine measurement data, is provided in Section 4.3.2.

5.2.4. WAKE ZONES

Following the approach of the FLORIS model, the wake is divided in different zones (see
Figure 5.2), each with their own expansion and recovery properties, so that the crosswind
velocity profile can be fitted more precisely than with the standard Jensen model that
has a wake velocity profile that is constant in the crosswind direction. In the FLORIS
model there are three zones: the (inner) near wake, the (middle) far wake and the (outer)
mixing zone, we will refer to them later on as the ‘main zones’. A difference with the
FLORIS model described in Section 4.3, is that these main zones are further divided in
a left and right part, and we add a zone to describe the free-stream, resulting in a total
of 7 wake zones. This further subdivision is needed because in the FLORIDYN model,
in order to calculate the delays, an estimate of the velocity profile over the full wake is
needed, rather than just the effective velocities at the turbines, as in the FLORIS model.
With partial overlap of wakes, the propagation delays may be different in the left and
right part of the wake.

UT (t)

UT (t)

UT (t)

γT (t)

Dw,n (t)

Dw,f (t)

Dw,m (t)

turbine t

y

x

(
xT (t) , yT (t)

)

zone 1 (near wake) zone 2 (near wake)

zone 3 (far wake) zone 4 (far wake)

zone 5 (mixing zone) zone 6 (mixing zone)

zone 7 (free-stream zone)wake centerline

wake zone boundaries

Figure 5.2: The different zones of the wake in the FLORIDYN model

5.2.5. WAKE PROPAGATION DYNAMICS

In this subsection, we present the submodel that describes the delays in the response
of the wake velocity profile to changes in the control settings, which is the top-center
sub-block in the FLORIDYN model scheme in Figure 5.1. The delay mechanism is im-
plemented by defining in each wake zone of each turbine, a finite number of so-called
Tracking Points (TrPs), as shown in Figure 5.3. The first TrP is located in the turbine rotor
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plane. It is assumed that at each discrete time step, a mass of air will move from one TrP
to the next downstream TrP. The axial distances between the TrPs are adjusted accord-
ingly, based on the (to be estimated) wind velocity in between the TrPs. Variables that are
measured at the turbines, are passed on between the TrPs, using the time update laws
given below, and then these variables are used to calculate the local wake characteristics,
using the submodel described in the next section (lower-left block in Figure 5.1).

The index z ∈ {1, . . . ,7} numbers the zones in a turbine wake. The total number of TrPs
in one wake zone of a turbine is Np . The index p ∈

{
1, . . . , Np

}
numbers the TrPs in a wake

zone. We use a notation in which xt ,z,p (k) and ut ,z,p (k) are respectively the downwind
position and the velocity of a TrP p in a wake zone z of a turbine t at a time-step k. For
adjusting the downwind positions of the TrPs in each time-step, it is assumed that the
velocity in between two TrPs is constant over the downwind distance, resulting in the
following update law:




xt ,z,1 (k +1)
xt ,z,2 (k +1)

...
xt ,z,Np (k +1)



=

A︷ ︸︸ ︷


0 ∅

1 0
. . .

. . .

∅ 1 0







xt ,z,1 (k)
xt ,z,2 (k)

...
xt ,z,Np (k)



+

B︷︸︸︷


1
0
...
0




xT (t)+∆T A




ut ,z,1 (k)
ut ,z,2 (k)

...
ut ,z,Np (k)




∀t ∈P , z ∈ {1, . . . ,7}
(5.4)

where ∆T is the sampling time, i.e. the time interval between two discrete time-steps k

and k +1.

The mechanism of modeling the wake propagation dynamics is illustrated in Fig-
ure 5.3. In each time-step k, the following variables that are measured at the turbines
or estimated from measurements at the turbines, are ‘passed down’ the stream from one
TrP to the next downstream TrP in a zone: the turbine yaw angle γT, and axial induc-
tion aT, and the free-stream velocities UT. From these quantities, local wake properties
(lateral position and velocity) at the TrPs are calculated. This makes that at the first TrP,
the effects on the wake of a change in yaw are observed after one time-step, and in the
second TrP the effects of the yaw properties two time-steps ago is observed, etc., and
likewise for the rotor axial induction and the free-stream velocity. The free-stream ve-
locity, axial induction, and yaw effective at a TrP p in zone z of turbine t at time-step k,
are denoted respectively as Ut ,z,p (k), at ,z,p (k) and γt ,z,p (k). The yaw and axial induc-
tion property is only passed on in this way in zones 1 to 6, and not in free-stream zone
7, since by definition the free-stream flow is not affected by the axial inductions and yaw
angles of turbines. Using a similar vector notation as above, the update laws for passing
on the measurements between the TrPs in each time-step are:




Ut ,z,1 (k +1)
Ut ,z,2 (k +1)

...
Ut ,z,Np (k +1)



= A




Ut ,z,1 (k)
Ut ,z,2 (k)

...
Ut ,z,Np (k)



+BUT (t ,k) ∀t ∈P , z ∈ {1, . . . ,7} (5.5)
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x2 (k +1) = x1 (k)+u1 (k)∆T

x3 (k +1) = x2 (k)+u2 (k)∆T

γ2 (k +1) = γ1 (k)

γ3 (k +1) = γ2 (k)

U2 (k +1) =U1 (k)

U3 (k +1) =U2 (k)

u2 (k)

u3 (k)

FLORIS model

FLORIS model

yI,2, yM,2, yO,2

yI,3, yM,3, yO,3

u1

u1

u2

u2

u3

u3

u4

u4

etc.

x1 = xT

γ1 (k) = γT (k)

U1 (k) =UT (k)

time
k

time
k +1

x

y

turbine at
time k −1

(
x1, yI,2

)

(
x1, yI,2

)

(
x2, yI,2

)

(
x2, yI,2

)

(
x3, yI,3

)

(
x3, yI,3

)

(
x4, yI,4

)

(
x4, yI,4

)

(
x5, yI,5

)

(
x5, yI,5

)

(
x2, yM,2

)

(
x2, yM,2

)

(
x3, yM,3

)

(
x3, yM,3

)

(
x4, yM,4

)

(
x4, yM,4

)

(
x5, yM,5

)

(
x5, yM,5

)

(
x2, yO,2

)

(
x2, yO,2

)

(
x3, yO,3

)

(
x3, yO,3

)

(
x4, yO,4

)

(
x4, yO,4

)

(
x5, yO,5

)

(
x5, yO,5

)

= tracking point (TrP)

= boundaries of wake zone at tracking point

Figure 5.3: Illustration of the state update mechanism in the FLORIDYN model. The turbine changes its yaw
angle between time step k−1 and k, and we see that the velocities, as well as the x-position, and y-positions of
the wake zone mid- and boundary points at the TrP, are updated using an extended FLORIS model. The effect
of the yaw change is seen as a wake deflection in the left-most TrPs first. Since we only consider one turbine
and wake zone, the t and z indices are omitted in the notation.
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


γt ,z,1 (k +1)
γt ,z,2 (k +1)

...
γt ,z,Np (k +1)



= A




γt ,z,1 (k)
γt ,z,2 (k)

...
γt ,z,Np (k)



+BγT (t ,k) ∀t ∈P , z ∈ {1, . . . ,6} (5.6)




at ,z,1 (k +1)
at ,z,2 (k +1)

...
at ,z,Np (k +1)



= A




at ,z,1 (k)
at ,z,2 (k)

...
at ,z,Np (k)



+B aT (t ,k) ∀t ∈P , z ∈ {1, . . . ,6} (5.7)

with A and B as in equation (5.4).

5.2.6. CALCULATION OF WAKE CHARACTERISTICS

In this section, it is explained how in the FLORIDYN model, certain control-relevant
wake characteristics are estimated at each time-step. This part of the FLORIDYN model
is shown in the lower-left block in the FLORIDYN model scheme in Figure 5.1. The sev-
eral sub-blocks of this part of the model are each explained in subsections. First, in order
to find the dimensions and positions of the wake zones, the deflection and expansion
properties are estimated (Section 5.2.6.1). Then, the velocity profile in the wake is esti-
mated in several steps (Section 5.2.6.2), which results in the estimated velocity ut ,z,p at
each TrP, which is an input to the wake propagation model (cf. eq. 5.4). Finally, from the
wake characteristics, the effective velocities at the downstream turbines are estimated,
cf. Section 5.2.6.3.

Each of the blocks is based on the static FLORIS model previously presented in
Chapter 4. Therefore, all the relations in this part of the model are static (nonlinear)
mappings, i.e. the estimated wake properties at a TrP at a time k are calculated from
the locally effective input variables (Ut ,z,p , at ,z,p and γt ,z,p ) at k only. Therefore, in this
section we will omit the time index k in the notations.

5.2.6.1. DEFLECTION AND EXPANSION OF THE WAKE ZONES

Through eq. 5.4, each time-step the x-positions of the TrPs are updated. From the locally
effective yaw angle γt ,z,p and axial induction at ,z,p at a TrP p in wake zone z of turbine
t , the model then calculates the spatial lay-out of the wake zones at that TrP in terms
of its deflection and expansion relative to the turbine rotor disk. The wake deflection is
described as the cross-wind translation of a wake zone centerline, and then the expan-
sion is described relative to that centerline. From this, the y-positions of two wake zone
boundary points and a wake zone mid-point are defined at each TrP x-location.

Wake centerline deflection The crosswind position of the centerpoint of the total wake
at TrP p, denoted as yC,t ,z,p , is calculated as:

yC,t ,z,p = yT (t)+∆yw,rotation
(
∆x t ,z,p

)
+∆yw,yaw

(
∆x t ,z,p ,γt ,z,p , at ,z,p ,DT (t)

)
(5.8)
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where yT (t) is the cross-wind position of the turbine t , and where the following func-
tions define the rotor rotation-induced and yaw-induced wake deflection, as a function
of ∆x t ,z,p = xt ,z,p − xT (t), the down-wind distance from the turbine, and DT (t) the rotor
diameter of the turbine:

∆yw,rotation (∆x) =αd +βd∆x

∆yw,yaw
(
∆x,γ, a,DT

)
=

ξinit(a,γ)
[

15
[

2kd∆x

DT
+1

]4
+ξinit(a,γ)2

]

30kd
DT

[
2kd∆x

DT
+1

]5 −
ξinit(a,γ)DT

[
15+ξinit(a,γ)2

]

30kd

where ξinit
(
a,γ

)
=

1
2 cos2

(
γ
)

sin
(
γ
)

[4a [1−a]]

(5.9)

with coefficients αd, βd and kd as model parameters. We refer to the FLORIS model de-
scription in the previous chapter, Section 4.3.3, for the derivation of the above functions.

Main wake zone expansion The diameters of the three main wake zones (near wake,
far wake and the mixing zone), are denoted as respectively Dw,n, Dw,f, Dw,m, cf. Fig-
ure 5.2. Similar to the FLORIS model (cf. Section 4.3.4), the zone diameter at a TrP with
a downstream distance from the turbine ∆x t ,z,p , is given by:

Dw,•
(
∆x t ,z,p

)
= max

(
DT (t)+2keme,•∆x t ,z,p ,0

)
with •= n, f ,or m (5.10)

where parameters me,n,me,f,me,m, ke are coefficients defining the expansion of the main
zones, relative to the total wake expansion rate ke. As in the FLORIS model, the param-
eter me,n is typically set to a negative value, such that the near wake zone contracts over
distance, and the other expansion factors are set 0 < me,f < 1 and me,m = 1, such that the
far wake zone expands, and ke defines the expansion of the outer mixing zone.

Wake zone boundary- and mid-points Using the main wake zone diameters at each
TrP, the model finds the local position of an inner boundary point

(
xt ,z,p , yI,t ,z,p

)
, an outer

boundary point
(
xt ,z,p , yO,t ,z,p

)
, and a mid-point

(
xt ,z,p , yM,t ,z,p

)
, of the wake zones 1 to

6 (cf. Figure 5.3), as follows:

yI,t ,1,p = yC,t ,1,p , yO,t ,1,p = yC,t ,1,p +
1
2 Dw,n

(
∆x t ,z,p

)
,

yI,t ,2,p = yC,t ,2,p , yO,t ,2,p = yC,t ,2,p − 1
2 Dw,n

(
∆x t ,z,p

)
,

yI,t ,3,p = yC,t ,3,p +
1
2 Dw,n

(
∆x t ,z,p

)
, yO,t ,3,p = yC,t ,3,p +

1
2 Dw,f

(
∆x t ,z,p

)
,

yI,t ,4,p = yC,t ,4,p −
1
2 Dw,n

(
∆x t ,z,p

)
, yO,t ,4,p = yC,t ,4,p −

1
2 Dw,f

(
∆x t ,z,p

)
,

yI,t ,5,p = yC,t ,5,p +
1
2 Dw,f

(
∆x t ,z,p

)
, yO,t ,5,p = yC,t ,5,p +

1
2 Dw,m

(
∆xt ,z,p

)
,

yI,t ,6,p = yC,t ,6,p −
1
2 Dw,f

(
∆x t ,z,p

)
, yO,t ,6,p = yC,t ,6,p −

1
2 Dw,m

(
∆xt ,z,p

)
,

yM,t ,z,p =
1
2

(
yI,t ,z,p + yO,t ,z,p

)
for all z ∈ {1, . . . ,6}

(5.11)

These different points can then be used to test how the wake zones overlap at different
TrPs, which is relevant for estimating the wake velocities, as described in the next sub-
section.

5.2.6.2. WAKE VELOCITY PROFILE

Interaction between the turbines and their wakes is modeled by correcting the velocities
in the wake by means of a method that is again based on an extension of the FLORIS



5

112 5. A CONTROL-ORIENTED DYNAMIC MODEL FOR WAKES IN WIND PLANTS

model. If a TrP is situated in the wake zone of a turbine, the estimated effective wind
speed ut ,z,p at that TrP is found by correcting the free-stream velocity ‘passed on’ to that
TrP, Ut ,z,p , with a wake-induced reduction factor that is dependent on the ‘delayed’ tur-
bine measurements and the downwind distance to the turbine. First, we consider the
case of a single turbine influencing its own wake only, then we model the effect of over-
lapping wakes.

Velocities in a single wake In the FLORIS model, the velocity deficit in the wake zones
decayed quadratically with the expansion of the wake (cf. Section 4.3.5), as in the Jensen
model (Jensen, 1984; Katić et al., 1986). Because in the FLORIDYN model also the ve-
locity profile closer to the rotor is relevant (in order to calculate the propagation delays),
we extend this description with an arctangent function as a velocity correction factor.
This factor models the gradual reduction of velocity as the flow passes the rotor, and it
is based on the method in Torres et al. (2010) and the velocity profiles found in Annoni
et al. (2014b). The factor goes to 1 further downstream. This leads to the following for-
mulation for the velocity at a TrP p in the wake zone z of a turbine t :

rt ,z,p = 2at ,z,p

near−rotor correction factor︷ ︸︸ ︷[
1

2
+ tan−1

(
2
∆xt ,z,p

πDT (t)

)][
DT (t)

DT (t)+2kemU,z
(
γt ,z,p

)
∆x t ,z,p

]2

(5.12)

ut ,z,p =Ut ,z,p
(
1− rt ,z,p

)
(5.13)

The coefficients mU,z define how quickly the velocities recover to the free-stream veloc-
ity Ut ,z,p in different zones, as the distance to the rotor ∆x t ,z,p increases. Similar to the
FLORIS model, these coefficients are adjusted for the rotor yaw angle as follows:

mU,z
(
γt ,z,p

)
=

MU,z

cos
(
αU +βUγt ,z,p

) (5.14)

where we set MU,1 = MU,2 = MU,n, MU,3 = MU,4 = MU,f and MU,5 = MU,6 = MU,m, so that
the parameters MU,n, MU,f, MU,m define the wake recovery rate for the main wake zones
(near, far, and mixing zone), relative to the ke factor, and parameters αU and βU define
how the recovery rates are adjusted for yaw offsets.

Combining wakes to find velocities in overlapping wakes For all the TrPs p in a wake
zone z of a certain turbine t , we can calculate the velocity reduction factors induced by
that turbine t , rt ,z,p . To consider the case in which wakes of multiple turbines overlap
with a certain TrP, we have to combine the reduction factors of several turbines. Because
the TrPs in one wake might be located in different downwind positions x than in another
wake, we apply an interpolation to find all the effective reduction factors of the differ-
ent turbine wakes overlapping with a certain TrP. The effective (interpolated) reduction
factor at a TrP p in a wake zone z of a turbine t , of a different wake zone z̃ of a different
turbine t̃ , is denoted as r(t̃ ,z̃→t ,z,p). We find r(t̃ ,z̃→t ,z,p) by interpolating the reduction
factor of the two nearest TrPs (in the upwind and downwind direction) in the wake zone
z̃ of turbine t̃ (cf. Figure 5.4). We use the notation upstr

(
t̃ , z̃ → t , z, p

)
, for the index of the
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zone 5

zone 2

turbine t̃

turbine t

TrP upstr
(
t̃ ,5 → t ,2, p

)

TrP upstr
(
t̃ ,5 → t ,2, p

)
+1

TrP p

Figure 5.4: Wake zone mid-points of a tracking point (TrP) p, in zone 5 of a turbine t , and the upstream and
downstream TrPs in an overlapping wake zone 2 of a turbine t̃ , illustrating the interpolation mechanism in
determining the velocities in overlapping wakes.

nearest upwind TrP belonging to the wake zone z̃ of turbine t̃ . The nearest downstream
TrP in zone z̃ of turbine t̃ then is upstr

(
t̃ , z̃ → t , z, p

)
+1. This results in the following

interpolation:

r(t̃ ,z̃→t ,z,p) = fint
(
r ; t̃ , z̃ → t , z, p

)
(5.15)

where fint is a linear interpolation operator, which for some variable ξ defined at each
TrP is given by:

fint
(
ξ; t̃ , z̃ → t , z, p

)
=

x t̃ ,z̃,upstr(t̃ ,z̃→t ,z,p)+1−xt ,z,p

x t̃ ,z̃,upstr(t̃ ,z̃→t ,z,p)+1−x t̃ ,z̃,upstr(t̃ ,z̃→t ,z,p)
ξt̃ ,z̃ ,upstr(t̃ ,z̃→t ,z,p) + . . .

xt ,z,p−x t̃ ,z̃,upstr(t̃ ,z̃→t ,z,p)
x t̃ ,z̃,upstr(t̃ ,z̃→t ,z,p)+1−x t̃ ,z̃,upstr(t̃ ,z̃→t ,z,p)

ξt̃ ,z̃ ,upstr(t̃ ,z̃→t ,z,p)+1

(5.16)

In a similar way, we interpolate the crosswind positions of the wake zone boundaries
(yI,t̃ ,z̃ ,p and yO,t̃ ,z̃ ,p ), and use those boundary positions to find out for each TrP, which
wake zones of which turbines are overlapping with the wake zone mid-point yM,t ,z,p of
at that TrP. For brevity, here we omit the exact conditions which follow from simple ge-
ometry, and state that if a TrP p belonging to the wake zone z of turbine t is in the wake
zone z̃ of a turbine t̃ , then the pair

(
t̃ , z̃

)
belongs to the set Ot ,z,p . We can combine the

effective reduction factors of each wake to find the velocity at a TrP, through:

ut ,z,p =Ut ,z,p

∏

(t̃ ,z̃)∈Ot ,z,p

(
1− r(t̃ ,z̃→t ,z,p)

)
(5.17)

Further, we note that because the overlap conditions are checked at the wake zone mid-
point

(
xt ,z,p , yM,t ,z,p

)
of each TrP, and because for simplicity it is assumed that the ve-

locity ut ,z,p determined at that mid-point, then is constant across crosswind direction,
such that the boundary points

(
xt ,z,p , yI,t ,z,p

)
and

(
xt ,z,p , yI,t ,z,p

)
move parallel to the

mid-point (cf. Figure 5.3).
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5.2.6.3. CALCULATION OF EFFECTIVE VELOCITIES AT DOWNSTREAM TURBINES

Through the above modeling steps, a two-dimensional description of the velocity profile
at the hub-height of the turbines is obtained, that is used to calculate the propagation of
the wake zones through the wind field. This description includes the location of the wake
zones at the hub-height. For the calculation of the effective wind velocity at the turbines,
the overlap method of the FLORIS model (Section 4.3.6) is adopted, that is based on the
cross-sectional profile of the wakes at the turbine rotors, rather than on the hub-height
profile. Similar to the modeling steps above, the effective wind speeds at the rotor are
estimated by combining the effect of the wake zones on the free-stream velocity. First
the interpolation function fint is used to find the set of delayed free-stream velocities U

for each wake zone z̃ of the turbines t̃ upstream of turbine t , at the location of the rotor
plane of t . Since the TrPs with index p = 1 are always located in the rotor plane, we can
find these interpolated velocities, denoted as U(t̃ ,z̃→t), as follows:

U(t̃ ,z̃→t) = fint
(
U ; t̃ , z̃ → t ,1,1

)
(5.18)

To find the effective free-stream velocity for each turbine t ∈ D we weigh each of the
delayed free-stream velocities by the overlap area of the corresponding wake zones z̃ of

other turbines t̃ with the rotor of turbine t , denoted by A
overlap
t̃ ,z̃→t

(see Figure 5.5). For the

part of the rotor that is not overlapping with any wake (with area A
noOverlap
t ), we use the

delayed free-stream velocity in zone 7 of the upstream turbine that is closest to turbine
t in terms of its y-location:

closest (t) = arg min
t̃∈P :xT(t̃)<xT(t )

(∣∣yT (t)− yT
(
t̃
)∣∣) (5.19)

UT (k) =
∑

i∈P :xT (t̃)<xT(t )

6∑

z̃=1




A
overlap
t̃ ,z̃→t

AT (t)
U(t̃ ,z̃→t)


+

A
noOverlap
t

AT (t)
U(closest(t ),7→t )∀t ∈D (5.20)

Note that the free-stream speeds UT for front turbines t ∈F are estimated based on their
own measurements (see Section 5.2.2), while the free-stream speeds for turbines t ∈ D

estimated through equation (5.20) are fed back to the state-space delay model (eq. (5.5)),
such that the free-stream wind speed measurements are essentially passed on from tur-
bine to turbine through the wakes of the different turbines. Using the interpolation func-
tion fint and a root-sum-square weighting by overlap area, we also can find the effective
velocity reduction factor rT (t) for each turbine rotor:

rT (t) =

√√√√√ ∑

t̃∈P :xT(t̃)<xT(t )




6∑

z̃=1

A
overlap
t̃ ,z̃→t

AT (t)
r(t̃ ,z̃→t)




2

(5.21)

with r(t̃ ,z̃→t) = fint
(
r ; t̃ , z̃ → t ,1,1

)
. We then correct the free-stream velocity to find the

effective velocity for the turbine:

uT (t) =UT (t) [1− rT (t)]∀t ∈D (5.22)

The effective velocities uT (t) can then be used to calculate the powers of through equa-
tion (5.1).
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A
overlap
t̃ ,2→t

A
overlap
t̃ ,4→t

A
overlap
t̃ ,6→t

A
noOverlap
t

wake of

turbine t

turbine t̃

Figure 5.5: Cut-through of wake at a turbine rotor plane, showing the different overlap areas. The colors of the
overlapping wake relate to the different wake zones as shown in Figure 5.2.

We have now described each part of the FLORIDYN model (gray parts in Figure 5.1).
The model uses the measured electrical power production of the front turbines, in or-
der to estimate the free-stream inflow velocity to the wind plant, and then uses control
settings of each turbine, to estimate the hub-height flow field propagating through the
plant, and the powers at the downstream turbines. In the next Section 5.3, we will per-
form a case study in which we compare the FLORIDYN model prediction with SOWFA
simulation results, for a particular set of tuned model parameter values. Then, in Sec-
tion 5.4, we will apply a Kalman filter to the FLORIDYN model (red parts in Figure 5.1)
that also uses the power of the downstream wind turbines in order to correct the flow
field.

5.3. SIMULATION CASE STUDY

Figure 5.6 and 5.7 show the results of a case study in which we simulate a small wind
plant in three different ways:

• a high-fidelity 3D large-eddy simulation with the Simulator for On/Offshore Wind
Farm Applications (SOWFA) (cf. Section 1.2.4.1, and Churchfield et al. (2012a);
Fleming et al. (2013b))

• a simulation of the same wind plant with the FLORIDYN model, with the parame-
ters of the model tuned to provide a good match with the SOWFA data (the model
parameters are listed in Table 5.2)

• calculation of steady-state (SS) solution of the FLORIDYN model, which would be
comparable with the predictions that the static FLORIS model would provide

The simulated wind plant consists of 2 rows with 3 NREL 5-MW baseline turbines (Jonk-
man et al., 2009) each, with a 5 rotor diameter (5D) spacing in the row direction, and
3D in the column direction. The turbine rows are rotated 5 degrees with respect to the
wind direction. In the SOWFA simulations, an inflow with a 6% turbulence intensity and
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ρ pP η Np ∆T αd βd kd ke
1.172 1.88 0.768 80 5 s -4.5 0.01 0.15 0.0963
me,n me,f me,m MU,n MU,f MU,m αU βU
-0.5 1 2.2 0.375 1 5.125 5◦ 1.66

Table 5.2: FLORIDYN model parameter values used in the case study of Section 5.3

an 8 m/s mean velocity is used (see the case study in Section 4.5 for more details on the
setup). After 400 s, the yaw angles of upstream turbines are misaligned with the incom-
ing wind direction, in order to redirect the wakes away from the downstream turbines.
The first 300 s of the simulation results are not shown in Figure 5.6 and 5.7, since in the
time interval 0-300 s in the SOWFA simulation the wakes are developing, which is not
representative of normal operation in a wind plant.

In the tuning of the FLORIDYN model, the time interval ∆T , was set to 5 s (a smaller
time interval just increases calculation time without improving the fit with the SOWFA
data). Then, the total number of TrPs was set at Np = 80, large enough such that the
last TrP in each wake zone is behind the last turbine in the row at all times during the
simulation (note that the strings of TrPs get shorter if the velocity in the wake reduces).
Further, the tuning parameters that are directly related to the turbine properties (η, pP ,
αU, βU) and the wake deflection due to rotation (αd and kd), as well as the expansion
coefficients used to subdivide the wake in wake zones me,n, me,f, me,m, were set to the
same values as for the FLORIS model, because there is no clear reason that they should
change in a model taking into account the dynamics of wake propagation, and because
this also simplifies the tuning problem. The parameters related to the recovery of the
wake velocity profile (ke, MU,n, MU,f, MU,m) were changed however, in order to find a
better match between FLORIDYN and SOWFA. These parameters were tuned using a
pattern search optimization algorithm (MathWorks, 2014) that minimized the total root-
mean-square error between the turbine power signals, resulting in the settings listed in
Table 5.2. The pattern search algorithm showed to be a robust way of optimizing of the
parameters, but alternative methods of optimization may provide faster convergence.

In Figure 5.6, it can be seen that:

• The FLORIDYN model gives an overall better fit to the SOWFA-predicted turbine
electrical power production data of the downstream turbines than the SS solution,
with the exception of turbine 6. Specifically, in the 400-600 s time range, when
the effects of the yaw angle changes propagate through the wind field, the FLORI-
DYN model will perform better. In Figure 5.7, it can be seen both in the SOWFA-
and in the FLORIDYN-predicted flow-fields, that in response to the yaw change,
first the part of the wake closer to the rotor will be redirected and then gradually
the part further downstream. The SS solution does not include these transient ef-
fects.

• There are still significant errors between the FLORIDYN-predicted power output
and the SOWFA-predicted output. This can at least partly be attributed to turbu-
lence (and the resulting wake meandering of the wake), which is not fully repre-
sented by the FLORIDYN model. The mismatch is larger on the turbines further
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model type of software implementation type of hardware computation time
SOWFA OpenFOAM cluster, 512 CPUs 59h (distributed)
FLORIDYN MATLAB code, partly compiled single CPU on PC (1.6 GHz) 1.4s
FLORIS MATLAB code single CPU on PC (1.6 GHz) 0.6ms
FLORIS compiled C code single CPU on cluster 0.04ms

Table 5.3: Computational costs of simulating the 3x2 wind plant in the case study of Section 5.3, for different
models.

downstream (5 and 6), where turbulence is more prevalent because of the wake
overlap with two turbines.

These notions are also shown in the normalized root-mean square errors (RMSE) listed
for each turbine in Figure 5.6. The normalized RMSE is defined as the root-mean square
error between SOWFA-predicted power output and FLORIDYN-predicted power output,
divided by the mean SOWFA-predicted power output.

As shown in Table 5.3, the computational complexity of the FLORIDYN model is in-
creased significantly when compared to FLORIS because of the additional interpolation
steps that are needed to describe the interaction effects between the wakes of different
turbines that are propagating through the wind field, but the computational complexity
is very small when compared to SOWFA. It should be noted that the FLORIDYN model
used here consists of MATLAB code that is only partly compiled, and the computational
efficiency could certainly be increased just by improving the software implementation
(e.g. writing FLORIDYN in C-code).

5.4. USING A KALMAN FILTER TO CORRECT THE PREDICTED

VELOCITY FIELD

The FLORIDYN model describes the velocity profile in the wakes of turbines. Although
the ensemble-average effect of turbulence1 on the wake recovery is included through a
parametric model of the wake velocity profile, the local fluctuations as a result of tur-
bulence are not included, and it is beyond the scope of this work (the development of
a simplified, control-oriented dynamic wind plant model) to include a detailed turbu-
lence model. In the case study in Section 5.3, we have seen that there is error between
the FLORIDYN-predicted output, and the SOWFA-predicted output, which to some ex-
tend can be attributed to turbulence in the flow field. In control engineering, Kalman
filters are widely used to reconstruct the state of models from measured data, under the
influence of random noise influences, and model inaccuracies (Verhaegen et al., 2007).
In this section, it is shown that in order to correct the errors between FLORIDYN and
SOWFA, we can use Kalman filtering techniques to reconstruct the state of the FLORI-
DYN model, from measurements at the turbine (electrical power production and control
settings). Since these are measurements available on a wind turbine, it is expected that

1In turbulent flows generated under the same conditions, the basic behavior in terms of statistical properties
will not change between repetitions of an experiment. The ensemble average is taken across the experiment
repetitions to get the underlying mean value. Under the ergodic assumption, the ensemble average is the
same as the time-average over a sufficiently long experiment. See also Carley (2011).
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Figure 5.6: Predicted power productions and yaw angles in the case study of Section 5.3. After 400s, the yaw
angles of the 4 upstream turbine are changed. Compared to the steady-state (SS) solutions, the dynamic
FLORIDYN model is able to better predict the characteristics of the power production response of the down-
stream turbines in SOWFA (especially in the 400-600s time range), as is also seen in the root-mean-square error
(RMSE) between the responses. This is caused by the fact that the wake effects have to propagate through the
wind field (see also Figure 5.7), resulting in a delayed increase in power after the yaw offsets are applied. These
delays are included in the FLORIDYN model, but not in the SS solutions.
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Figure 5.7: Predicted flow fields in the case study of Section 5.3, at different time instances. The dots in the
FLORIDYN model and the steady-state (SS) results represent the location of the TrPs (mid-point of the wake
zones), and the colors represent predicted the local wind speed. While both SOWFA and FLORIDYN predict a
deflection of the wake that propagates through the wind field after the yaw change at 400s (the upstream part
of the wake deflects first, then gradually the downstream part), the wake in the steady-state model responds
instantaneously.
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the techniques can be extended to application on real wind plants. Further, it is shown
that if we focus on correcting the model-predicted velocity field by adjusting the free-
stream velocities at different TrPs, the Kalman filter takes on a relatively simple form.
This particular Kalman filter is shown as the red sub-block in the right-hand part of
the FLORIDYN model overview in Figure 5.1. In Section 5.4.1, an explanation of this
Kalman filter is provided. A simulation case study of applying this filter is presented in
Section 5.4.2.

5.4.1. DESCRIPTION OF THE KALMAN FILTER FOR CORRECTING THE PRE-

DICTED VELOCITY FIELD

Equations (5.18)-(5.20) define a time-varying mapping between the free-stream speeds
effective at some of the TrPs and the effective free-stream speed at the turbines. We can
write this mapping as:

−−−→
UT,D (k) =CU (k)

−→
U (k) (5.23)

with CU (k) a sparse, time-varying matrix,
−−−→
UT,D (k) a vector in which all the turbine-

effective free-stream speeds at the downstream turbines at time-step k, {UT (t ,k)∀t ∈D},

are stacked, and
−→
U (k) a vector in which the free-stream velocities at each TrP in the wind

plant,
{
Ut ,z,p (k)∀t ∈P , z ∈ {1, . . . ,7} , p ∈

{
1, . . . , Np

}}
, are stacked. Further, we can com-

bine the update equations (5.5) for all wake zones of all downstream turbines t ∈ D in a
system in state-space form:

−→
U (k +1) = A

−→
U (k)+BD

−−−→
UT,D (k)+BF

−−−→
UT,F (k)+−→

w (k) (5.24)

where A, BD and BD are matrices in which the matrices A and B are stacked in block-
diagonal form. In the above state-space form, we make a distinction between the in-
put vector consisting of the free-stream velocities effective at the downstream turbines,
−−−→
UT,D , and the input vector consisting of the free-stream velocities effective at the front

turbines,
−−−→
UT,F . The vector w is a noise process describing the effect of turbulence and

model inaccuracy. When combining equations (5.23) and (5.24) we can see the feedback

of the free-stream velocities effective at the downstream turbines
−−−→
UT,D already men-

tioned before in Section 5.2.6.3. This leads to the fact that equations (5.23) and (5.24)
can be combined in the following closed-loop form:

−→
U (k +1) = Ã (k)

−→
U (k)+BF

−−−→
UT,F (k)+−→

w (k) (5.25)

with:
Ã (k) = A+BDCU (k) (5.26)

We apply Kalman filtering techniques to make corrections on the model-predicted wake
velocity profiles using the electrical power production measurements, and the control
settings, at the turbines. We do this by correcting the free-stream velocities Ut ,z,p (k) at
the different TrPs (the state of the above system). In the model, these free-stream veloc-
ities are then adjusted with the wake reduction factors to find the wake velocity profile,
using equation (5.17), and using equation (5.22) the velocity effective at the turbines are
found. Note that the combination of (5.22) and (5.23) can be written as:

−−−→uT,D (k) =Cu (k)
−→
U (k)+−→v (k) (5.27)
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where Cu (k) is a sparse, time-varying matrix, −−−→uT,D (k) is a vector in which all the turbine-
effective wind speeds at the downstream turbines at timestep k, {uT (t ,k)∀t ∈D}, are
stacked, and where v (k) represents output noise. From measurements at the down-
stream turbines (power, yaw and axial induction) we can estimate these effective ve-
locities by inverting relation (5.1), and construct the vector −−−→

uT,D (k). Then using this
vector as input, we use a conventional Kalman filter for one-step-ahead prediction of
the state of the system with state equation (5.25) and output equation (5.27). We follow
the definition of the conventional Kalman filter provided in Verhaegen et al. (2007) (see
also Kalman (1960) for the original derivation). When augmented with this Kalman filter,
the system is:

−→
U (k +1) = Ã (k)

−→
U (k)+BF

−−−→
UT,F (k)+K (k)

[
−−−→
uT,D −�−−−→uT,D

]
(5.28)

where at each time-step the Kalman gain K (k) is updated as:

P (k +1|k) = Ã (k)P (k|k −1) Ã (k)T
+Q−

Ã (k)P (k|k −1)Cu(k)T
(
R +Cu (k)P (k|k −1)Cu(k)T

)−1

×
(

Ã (k)P (k|k −1)Cu (k)T
)T

(5.29)

K (k) = Ã (k) P (k|k −1)Cu (k)T
(
R +Cu (k)P (k|k −1)Cu(k)T

)−1
(5.30)

where Q is the covariance matrix of the noise −→
w , and R the covariance matrix of the

noise −→
v (for simplicity we assume the two noise sources −→w and −→

v are not correlated). If
we assume that the noise −→

w describes velocity variations at each TrP as a consequence
of turbulence, we can interpret the covariance matrix of w as a matrix that describes
the correlation between the turbulence at the different TrPs. Therefore, if we consider
the matrix Q as a tuning parameter, it makes sense to simplify the tuning problem by
parameterizing Q as follows:

Q =




Q̄ 0 · · · 0

0 Q̄
. . .

...
...

. . .
. . . 0

0 · · · 0 Q̄




with Q̄ =




q0 q1 q2 · · · qNP

q1 q0 q1
. . .

. . .

q2 q1
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . q2

. . .
. . .

. . .
. . . q1

qNP · · · q2 q1 q0




(5.31)

Now, according to the above reasoning, scalar q0 can be interpreted as the autocorrela-
tion of the turbulence at each TrP, q1 the cross-covariance of the turbulence of one TrP
with its neighbouring TrP, scalar q2 the correlation of the turbulence of two TrPs sepa-
rated by one other TrP, etc. I.e., under the assumption that the Kalman filter mainly has
to correct for homogeneous turbulence, for which the correlations are dependent on the
relative distance between the points, rather than on the specific location (Carley, 2011),
the matrix Q having the structure above, prescribes how well the turbulence remains
correlated over distance. It has to be noted that with this interpretation, the fact that the
Q matrix is defined constant, while the inter-TrP distances vary, is considered a further
simplification.
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Figure 5.8: Result of the case study with the Kalman filter described in Section 5.4: predicted power produc-
tions, and yaw angles. With the Kalman filter enabled, corrections on the flow field can be performed based
on the measured data (see also Figure 5.9), that result in a better fit the data when compared to the FLORI-
DYN model without these corrections. Also, the initial state of the flow field can be reconstructed from the
measurements, which results in a much better fit in the initial response.
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R q0 q1 q2 q3 q4 qi for 5 ≤ i < NP

0.88INt ×Nt
0.14 0.060 0.052 0.041 0.0022 0

Table 5.4: Specification of the Q and R parameter values used in the Kalman filter in the case study of Sec-
tion 5.4. The Nt by Nt identity matrix is denoted by INt×Nt , so matrix R is a diagonal matrix. Matrix Q is
parameterized as in eq. 5.31, with q• values as listed above.
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Figure 5.9: Result of the case study with the Kalman Filter described in Section 5.4: at different time instances
in the simulation, it is shown for each TrP which correction on the free-stream velocity is applied by the Kalman
filter
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5.4.2. KALMAN FILTERING CASE STUDY

In Figure 5.8, the results are shown of applying a Kalman filter in the case study described
in Section 5.3. The parameters Q and R used in this case are listed in Table 5.4, they were
tuned to minimize the sum of RMSE for each turbine. Two effects can be seen in the
results of this case study:

• An overall better fit of the responses can be expected by using the Kalman filter for
one-step ahead prediction of the responses.

• Further, a feature of a Kalman filter is that it is able to correct the response to an ini-
tial guess of the unknown state of a system in the first part of a simulation by using
measured data. The FLORIDYN model without the Kalman filter only uses mea-
surements at the front turbines to estimate the free-stream velocity. Since wake
traveling dynamics are slow, the transient response to the initial guess of the free-
stream velocity at the downstream turbines are long, and therefore there is a large
error in the initial response if the initial guess of the flowfield are not accurate. It
can be seen in the responses that the Kalman filter can ensure a more quick mit-
igation of that error, by using the measured data on the downstream turbines to
‘reconstruct’ the velocity field in the downstream part of the wind plant.

As an illustration of the Kalman filtering process, in Figure 5.9 the corrections are
shown that the filter performs on the free-stream velocity at the different TrPs upstream
of the turbine.

5.5. APPLICATION OF THE FLORIDYN MODEL FOR OPTIMIZED

YAW CONTROL

In this section, we give a case study of how a dynamic control-oriented model of the
wake effects such as the FLORIDYN model can be used to optimize the control of the
wind plant. By optimizing the control signals based on the predictions provided by the
FLORIDYN dynamic model, rather than on a steady-state model, we account for delays
in the wake effects.

In this case-study, we consider a scenario in which three turbines are placed in a line
that is 5◦ offset from the the wind direction, with a 5 rotor diameter spacing. After 200s of
simulated time, we simulate a short scheduled shut-down of the second turbine through
blade feathering, by setting the axial induction of that turbine to zero for 200s. It has to
be noted that this is an unrealistic reduction of axial induction, which just serves for a
proof of the control concept. We aim to optimize the time sequence of yaw settings of
the turbines for increased electrical energy production, by taking into account the wake
traveling dynamics. To keep the optimization computationally efficient, we use physi-
cal reasoning to parameterize a solution for the optimization problem and reduce the
parameter search space. We know that if the second turbine in the row will not extract
power anymore, the front turbine can decrease its yaw angle to increase power extrac-
tion, since it does not have to steer away its wake from the next downstream turbine 2,
but from turbine 3 that is standing further downstream. Further, we can assume that
turbine 1 will adjust its yaw some time before turbine 2 pitches to feather, because the
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wake effect of the yaw change of turbine 1 will reach the downstream turbines with some
delay. We let turbine 1 respond to a reference by yawing with a maximum rate of 1◦/s,
and we restrict to positive yaw angles. If we prescribe that turbine 1 will adapt by making
a step change on its yaw reference setting, and stepping back to its original yaw setting
later, we can parameterize the solution using three parameters:

• ∆γT (1), the size of the yaw reference step change of turbine 1,

• k1, the time-step at which turbine 1 makes the yaw reference step change,

• k2, the time-step at which turbine 1 steps its yaw back to the initial settings.

Note that using the above notions, we can prescribe the following constraints on the
optimization parameters ∆γT, k1, k2:

−γT (1,0) <∆γT (1) < 0
0 < k1∆T < 200s
k1∆T < k2∆T < 400s

(5.32)

where γT (1,0) is the initial yaw setting of a turbine 1, and ∆T the sample time. First,
we search for the initial yaw settings for each turbine, which are the optimized yaw set-
ting for steady-state operation with the axial induction of all the turbines at a constant
aT = 1/3. We perform an exhaustive grid search for these optimal initial yaw settings us-
ing the FLORIS model, with an incremental step of 0.5◦ for each yaw setting, and find
that they are γT (1,0) = 9.5◦ for the front turbine, γT (2,0) = 19.5◦ for the middle turbine,
and γT (3,0) = 0◦ for the back turbine. Then, in the next step we use the model to perform
the optimization of parameters ∆γT (1), k1, k2 of the adaptive yaw control sequence, with
maximum total electrical energy production in the control horizon as the objective. We
again perform an extensive grid search but in each parameter set evaluation we now
simulate the dynamic system response to a particular yaw reference sequence with the
FLORIDYN model. In each of these simulations, we use a time-step ∆T = 5s, and a total
simulated time of 600s. The grid search of the solution space prescribed by the inequal-
ities (5.32), is first performed with an incremental step of 5 on k1 and k2 (i.e. 25s) and
2◦ on ∆γT (1), then the parameter search grid is refined around the optimal solution to
incremental step of 1 on k1 and k2 (5s) and 1◦ on ∆γT (1). A total of 735 FLORIDYN sim-
ulations are needed to search the parameter space in this way. On average it takes 0.51s
to evaluate a FLORIDYN simulation of the case in a MATLAB implementation on a 1.6
GHz PC, yielding a total calculation time of 375s to perform the parameter search. In
Figure 5.10 the resulting optimized yaw sequence, as well as the resulting turbine power
responses as predicted by the FLORIDYN model are shown (this case is referred to as
‘adaptive yaw’), and compared to the case where the yaw settings of each turbine are
held constant throughout the simulation and thus does not adapt to the shutdown of
turbine 2 (‘constant yaw’). Further the difference in cumulative electrical energy pro-
duction between the adaptive yaw control and the constant control is plotted. It can be
seen that a relatively small amount of energy production increase (0.19% of the total en-
ergy production) can be gained by the fact that turbine 1 reduces its yaw angle. Turbine
1 yaws at a time interval that is earlier than the interval of the shutdown of turbine 2,
such that the wake traveling delays in the systems are accounted for. Figure 5.11 shows
the wake velocity profiles predicted by FLORIDYN for the adaptive control case, with a
short description of the different steps in the adaptive yaw control procedure.
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Figure 5.10: Result of the control case study described in Section 5.5: turbine yaw angles (top) and predicted
power productions (middle) for the case where an optimized adaptive yaw control sequence is used, and a case
where the yaw is held constant. Also shown is the cumulative difference in energy production that is gained by
using the adaptive yaw control instead of constant yaw control in the simulated scenario.
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effects of T1 will reach T2
when T2 pitches...

...then the wake overlap
of T1 with T2 increases,
but this does not affect
total power since T2 is
switched off.

The wake overlap of T1
with T3 remains small at
all times. T1 already
starts to yaw back
already before T2
pitches...

...such that the wake
overlap of T1 with T2 will
reduce again.

Figure 5.11: Wake velocity profiles predicted by FLORIDYN for the adaptive yaw control case described in Sec-
tion 5.5 (left), colored dots are TrPs, grey lines are wake zone boundaries. Also, a short description is provided
of the different steps in the adaptive yaw control procedure (right).
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5.6. DISCUSSION, CONCLUSIONS AND FUTURE WORK

The results from the case studies are promising: FLORIDYN is an extension of the steady-
state FLORIS model to include the dynamics of the wake propagation, that is able to
provide a prediction of the wind plant dynamic response with reasonable accuracy when
compared to the results from SOWFA (a high-fidelity CFD model). An important feature
is that no additional tuning parameters were introduced in the part of the model that de-
scribes the wake expansion and recovery properties, and only two new parameters were
introduced in the state-space wake propagation model, such that the tuning process is
not further complicated to a large extend.

The wake propagation effects are for a large part described by a linear state-space
model. This allowed the development of a (linear) observer based on a Kalman filter
using conventional techniques. The filter makes corrections on the velocities in the wind
field to account for model inaccuracies and smaller-scale turbulence effects, based on
measured power data from the turbines.

A control example was provided in which it is shown that the scheduling of the yaw
settings can be optimized by taking into account dynamic effects in the wakes, mainly
consisting of delays that are dependent on the wake velocity profile. However, we did not
demonstrate a large increase of wind plant performance by going from control optimiza-
tion based on a steady-state model, such as the FLORIS model, to a dynamic model,
such as the FLORIDYN model.

Based on this experience, we expect the main benefit of using a control-oriented dy-
namic wake model is that the parameters of such a model can be optimized based on
the dynamic response of the wind plant (like was done for the case study in Section 5.3),
while a static model, such as the FLORIS model, is tuned based on time-averaged data
of a period in which the wakes are fully propagated through the wind plant (see the pro-
cedures described in Section 4.2 and 4.3.7). This could be an important benefit when ap-
plying model-based control optimization on a real wind plant with continuously chang-
ing conditions.

A key requirement for enabling online optimization of the control, is a low compu-
tational cost of the internal model of the controller. In the control case study, the rel-
atively low computational cost of the FLORIDYN model, allowed us to do an extensive
search for the optimized yaw sequence. As mentioned before, still there is a relatively
high computational cost when compared to FLORIS, because of the interpolation steps
that are needed to evaluate the dynamics of the interaction between wakes. Therefore,
more efficient optimization strategies should be explored in order to reduce the compu-
tation time of finding the optimized yaw settings. Also possibly the computational cost
of FLORIDYN can be further reduced by using alternative ways to model the dynamics of
the interaction, or simply by generating a more efficient implementation of FLORIDYN

in compiled code.

That said, this work is only a first exploration into the use of a control-oriented para-
metric model of wind plant dynamics based on heuristic description of the wake dy-
namic properties. The simulation examples provided in this chapter provide a proof of
concept, but they should be further validated. We recommend the following future de-
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velopments for the FLORIDYN model (or similar control-oriented dynamic wake mod-
els):

• Gathering validation data from relevant and realistic scenarios with changing wind
conditions from high-fidelity models like SOWFA, or with a real wind plant. One
of these scenarios should be a changing wind direction. This is a substantial task,
given the computational costs of high-fidelity models, and the uncontrollable na-
ture of the conditions in real wind plants. It has to be investigated to which extend
a simulation environment like SOWFA, in which the inflow conditions are gener-
ated in a highly-controlled fashion, is able to mimic the real-world changing inflow
scenarios, so that repeated simulation experiments can be performed with differ-
ent control strategies, under realistic conditions.

• Further validation of the FLORIDYN model, and developing extensions to include,
for example, changing wind directions and wake meandering.

• The further development of observers for the model. Most importantly in our view,
for further controls development, an observer should be developed that automat-
ically updates the wake parameters of the model under changing flow conditions
(turbulence, atmospheric stability) based on data measured at the turbines. Also,
a possible extension is the development of an observer that corrects the center-
line position of the wake to account for wake meandering effects. An example of
the latter concept, consisting of a particle filter that estimates the wake centerline
position based on measured turbine data, is provided in Fleming et al. (2014a).

• The exploitation of the model structure (a linear time-invariant state-space model
combined with a nonlinear static feedback term) in the calculation of optimized
control sequences, and/or the development of a more computationally efficient
implementation of the model, to come to a control scheme for online optimization
of the yaw-settings based on the predictions of the dynamic model.

• Exploring the possible benefits of an adaptive dynamic model-based control strat-
egy in terms of its effect on energy yield of the wind plant, and loads on the indi-
vidual turbines, in realistic wind scenarios and fault scenarios. As mentioned be-
fore in the case study provided in Section 5.5, there is only a small beneficial effect
from using a dynamic model for model-based control, rather than a static model,
but under time-varying conditions (e.g. a changing wind direction) the ability to
perform dynamic control of the flow in the wind plant may be more essential.





6
CONCLUSIONS AND

RECOMMENDATIONS

In this chapter, the main conclusions of the research presented in this thesis are sum-
marized (Section 6.1), and recommended directions for future research are presented
(Section 6.2).

6.1. CONCLUSIONS

In this thesis two research objectives have been addressed: the evaluation of the poten-
tial of the control degrees-of-freedom of the wind turbine to affect the interaction effects
between the turbines, and the development of data-driven algorithms for the optimiza-
tion of those control settings in order to improve wind plant performance. Below, the
conclusions on each of the objectives are presented.

6.1.1. EVALUATION OF WIND TURBINE CONTROL DEGREES-OF-FREEDOM

FOR WAKE CONTROL

As a general conclusion, high-fidelity simulation results show that there is more potential
for yaw-based wake redirection wind plant control than for axial-induction-based wind
plant control, to improve wind plant performance. Yaw-based control is predicted to
yield a 1.1% electricity production increase on an annual basis, on a full-size offshore
wind plant, which is considered a significant contribution towards the goal of reducing
the costs of wind energy.

axial-induction-based control The results of SOWFA high-fidelity simulations of a two-
turbine setup in conditions with low ambient turbulence conditions, in Chapter 2, show
that axial-induction-based control techniques, using adaptation of generator torque and
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collective blade pitch, have limited or no potential to increase electrical power produc-
tion, because wake expansion makes that much of the energy added to the flow by the
control changes, is lost to the atmosphere. In Chapter 3, a better potential of these tech-
niques on a full-size wind plant (1.4% electricity production increase on an annual basis)
is predicted using the Jensen engineering model, but it should be noted that further re-
search (Annoni et al., 2014a) indicates that there is a significant discrepancy between the
predictions of the SOWFA high-fidelity model, and engineering models in predicting the
results of axial-induction-based control.

wake redirection control In Chapter 2 and 4, yaw control has been shown to be suc-
cessful at inducing wake redirection and increasing the total power production of small
wind plant setups, simulated with the low ambient turbulence conditions in SOWFA. In
these simulations, both increases and reductions of fatigue loads result from yaw-based
wake redirection, depending on the settings used, but the load increases can partly be
mitigated by the use of standard load-reducing IPC. With optimized yaw settings, signif-
icant fatigue loads reductions could be achieved on a small wind plant setup. Based on
the FLORIS data-driven model, a 1.1% electricity production increase is predicted on an
annual basis, through using yaw-based wind plant control on a full-size offshore wind
plant, the Princess Amalia Windpark.

6.1.2. DATA-DRIVEN METHODS FOR WIND PLANT CONTROL

The main conclusion with respect to the development of wind plant control algorithms,
is that data-driven methods are needed in order optimize the control settings for the
specific ambient conditions in which the wind plant is operating, and that in developing
these data-driven methods, the time-efficiency of the control method has to be taken
into account in order to enable real-time implementation on the wind plant, in which
special attention has to be paid to the wake propagation delays between the turbines.

Two main approaches for the development of time-efficient data-driven wind plant
control were taken in this thesis: direct data-driven control development (control set-
tings optimization directly based on measured data), and data-driven model-based con-
trol development (control optimization based on models for which the parameters are
identified from measured data).

direct data-driven control In order to develop direct data-driven methods for real-
time wind plant control, the wake propagation delays between turbines have to be taken
into account in order to evaluate the time-efficiency of the optimization. Significant
improvement of the time-efficiency can be achieved by using knowledge of the plant
lay-out in the control strategy. This was demonstrated in Chapter 3, where it was shown
that gradient-based axial-induction-based control optimization techniques with a dis-
tributed approach in which the effect on neighboring turbines is taken into account only,
have a much faster convergence of the power optimization than is achieved with an ex-
isting method with full communication between the turbine.
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data-driven model-based approaches Data-driven model-based wind plant control
strategies are an effective way to optimize the yaw settings of each turbine in the plant
with the objective of electricity production increase. In Chapter 4 a parametric model
of steady-state wake deflection and velocity deficit was developed (FLORIS). This model
has a relatively small number of parameters that can be identified using time-averaged
electrical power measurements of the different turbines in the wind plant (a gray-box
system identification approach). The model is computationally efficient enough to en-
able real-time online wind plant control optimization, using a game-theoretic search
method.

The model can be further extended to include dynamics of the wake propagation de-
lays between the turbines, which are dependent on the velocity field in the wake (Chap-
ter 5). A feedback structure with a linear state-space model describes the propagation
of changes in the wake through the wind field. This model structure has a relatively low
complexity since only two tunable parameters are added to include the dynamics. This
model structure enables the development of an observer that uses Kalman filtering to
correct the flow field velocities on the basis of power measurements at the turbines. A
relatively small increase of wind plant performance can be gained by going from yaw
control optimization based on the steady-state model to yaw control based on the dy-
namic model. Therefore, the main practical benefit of including the dynamics, lies in
the fact that the gray-box system identification can be performed directly on the basis
of the dynamic responses of the wind plant, rather than based on time-averaged data,
which is a benefit when applying data-driven model-based control on a real wind plant
with continuously changing ambient conditions.

6.2. RECOMMENDATIONS

In this section, general recommendations are given for future research in the field of
wind plant control. For more specific recommendations, we refer to the different chap-
ters, in which more detailed suggestions for future work on the methods presented in
this thesis are made.

With respect to the further evaluation of the control degrees-of-freedom to affect the
wake properties, recommended future work aims at determining the influence of am-
bient atmospheric conditions (inflow turbulence, atmospheric stability, surface rough-
ness) on the ability to affect the wake interaction effects. Because turbulence promotes
wake recovery, it seems apparent that the level of ambient turbulence is negatively cor-
related with the potential of wind plant control to improve wind plant performance, but
the exact influence is not quantified yet. Ongoing research in axial-induction-based con-
trol by Annoni et al. (2014a) also proposes extensions to the FLORIS model in order to
take into account the effect of control settings themselves on turbulence and wake recov-
ery, and this is shown to be crucial in evaluating the potential of axial-induction-based
wind plant control.

With respect to direct data-driven methods, the main challenge for future work is
to test these techniques in more realistic simulation scenarios, or on a real wind plant.
Wind scenarios in which there is a change of wind direction, are especially interesting,
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since in wind plants the wake interaction effects are sensitive with respect to wind direc-
tion. Special-purpose filtering techniques are to be developed that remove the distor-
tions caused by small-scale turbulence in the measurements that the direct data-driven
methods use.

For the further development of control-oriented data-driven wind plant model, three
‘paths’ can be chosen, that are outlined below. We give recommendations for each of the
paths.

1. Extending parametric engineering wake models such that they emulate control-
relevant features of the wake, as in Chapter 4 and 5. The parameters are to be found from
high-fidelity, validated CFD models or measured data from a real wind plant (gray-box
system identification), and should be scheduled with the specific ambient conditions.

A control-relevant feature of the wake that is not treated in detail in the wind plant
models presented this thesis, are the wake meandering motions. Although on large-scale
wind turbines, yaw is a relatively slow control degree-of-freedom that deals with the large
inertia of the rotor, and is therefore not likely to be suited for compensation of the wake
meandering motions, still meandering could be taken into account as an uncertainty in
the wake position, when developing a robust control framework. In the static FLORIS
model, only the time-averaged effects of wake meandering are taken into account as an
increased wake expansion. In a dynamic wake propagation model such as FLORIDYN

however, the wake meandering should be taken into account, especially when designing
an observer that estimates the wake state from measured data (Fleming et al. (2014a)
presents an interesting particle filter approach for estimating the wake position from
measured data).

Further, ongoing research by Annoni et al. (2014a) has aimed at including the effects
of wake overlap in longer rows of turbines, on wake recovery.

For further controls development, an observer should be developed that automati-
cally updates the wake parameters of parametric model under changing flow conditions
(turbulence, atmospheric stability) based on data measured at the turbines. When it
comes to the model-based control optimization techniques, the applied game-theoretic
method has shown to be sufficiently efficient to enable real-time implementation on a
small wind plant setup, but possibly more efficient (gradient-based) optimization schemes
are needed to enable real-time control on larger wind plants. While in our simulation
examples with yaw control it was shown that load reduction can be a side-effect of en-
ergy yield maximization, possibly a more direct approach can be developed in which
(limitations on) estimated fatigue loads are taken into account in the model, and in the
objective of the optimization.

2. Obtaining wake interaction models through black-box system identification The
identification experiments should be repeated for different ambient conditions, and the
resulting models should be combined (scheduled), to describe a full range of ambient
conditions.
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Because a lot of system identification experiments need be performed to develop a
model for the full range of operational conditions, it is expected that the main value of
black-box approaches is in supporting the other paths; black-box system identification
could be used for finding specific unknown subsystems, for validation of other models,
and possibly for reduction of CFD-based models (path 3).

In wind plant system identification, it is of interest to exploit knowledge on the lay-
out of the wind plant and wind direction measurements, in order to find the topol-
ogy of the network that describes the turbine-to-turbine wake interactions in the plant.
Special-purpose system identification methods for networks with a known topology, such
as those presented in Dankers (2014), can then be used. An alternative approach is to
use system identification methods that deal with the topology reconstruction of inter-
connected systems from measured data, such as those presented in Torres Tapia (2014).

3. Developing wind plant models from a starting-point in which Navier-Stokes CFD

models are converted to control-oriented models through simplification, projection,
and order-reduction steps. Enabling real-time implementation is especially challenging
for this path, since current high-fidelity CFD wind plant models, such as SOWFA, have
a large computational complexity, and simplification may lead to significant changes in
the prediction, as the study in Annoni et al. (2014b) shows. In this work, special-purpose
numerical techniques that enable computationally efficient control synthesis for large-
scale distributed systems, such as those presented in Rice (2010), are of interest.

For all of the above paths, we recommend that wind plant controls are taken into ac-
count in the design stage of wind plants. Ongoing research in this direction is presented
in Fleming et al. (2014c), where optimization of control and wind plant topology is com-
bined. In this work, it is shown that wind plant control is applied, the turbines in a wind
plant may be placed closer together because the wake interaction effects are mitigated,
enabling a further growth of wind plant electrical energy production per given land area.

The above recommendations show that this thesis presented pioneering work in wind
plant controls, researching the feasibility of control concepts and solving practical issues
to enable real-time implementation, but that further research is needed to deepen the
knowledge on modeling and control solutions for wind plant optimization.
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SUMMARY

Wind turbines that are clustered in a wind plant, have interaction with each other through
the aerodynamics of the wind field in the wind plant. The aerodynamic interaction ef-
fects are caused by the turbine wakes, which are the flow structures that form behind
each turbine. The wake is characterized by a reduced flow velocity caused by the extrac-
tion of energy from the flow by the turbine, and an increased turbulence intensity caused
by the obstruction of the flow by the turbine. The velocity deficits will cause a decrease
of electrical power production of turbines standing in the path of a wake of another tur-
bine, and the increased turbulence may increase the fatigue loads on those downstream
turbines. Wind plant control that takes into account wake interaction effects in the coor-
dination of the control actions of the wind turbines, can enhance the performance of the
wind plant, in terms of total electrical energy production, and the loads on the individ-
ual wind turbines. Enhancing wind plant performance in this way, will contribute to the
reduction of the cost of offshore and onshore wind energy. In this thesis two research
objectives have been addressed: one is the evaluation of the potential of the different
control degrees-of-freedom of the wind turbine to affect the interaction effect between
the turbines, and the other is the development of data-driven algorithms for the opti-
mization of those control settings in order to improve wind plant performance.

The control degrees-of-freedom (DOFs) of a modern large-scale horizontal-axis wind
turbine are generator torque, collective and individual blade pitch, and rotor yaw. For
each of the control DOFs, we explored their ability to affect the wake interaction effects
in the wind plant, through high-fidelity computational simulations of setups with one or
more turbines. We researched two ways in which the DOFs can control the wake effects:
by axial-induction-based wake control, in which the energy extraction of the wind tur-
bine is changed in order to affect the velocity deficit in the wake, and by wake deflection,
in which the flow direction in the wake is manipulated in order to steer them away from
downstream turbines.

Axial-induction-based control can be performed by offsetting collective blade pitch
or generator torque from their turbine-level optimal settings, in order to increase the
power production of downstream turbines. The potential gain from using axial-induction-
based plant-wide instead of turbine-level optimized control, are dependent on the par-
ticular atmospheric conditions, the wind plant configuration, and the turbine character-
istics. Simulation cases presented in this thesis even show that there are circumstances
in which axial-induction-based control gives no total power production increase on the
wind plant, because wake expansion makes that much of the energy added to the flow
by the control changes on upstream turbines, is lost to the atmosphere instead of being
captured by downstream turbines.

A better potential is demonstrated for wake redirection control. Yaw control and
modified individual pitch control (IPC) were shown to be able to induce significant wake
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redirection. For the tested IPC-based techniques however, this wake redirection goes at
the cost of loads increases, making it a less suitable candidate for practical application.
Wake deflection through yaw offsets has been shown to be successful at increasing the
total power production of small wind plant setups in high-fidelity simulations. Both in-
creases and reductions of fatigue loads result from yaw-based wake redirection, depend-
ing on the settings used. The load increases can be partially mitigated using standard
load-reducing IPC.

Two main approaches for data-driven wind plant control development were taken
in this thesis: direct data-driven approaches, in which the control settings optimization
is directly based on measured data, and data-driven model-based control, in which the
optimization is based on models for which the parameters are identified from measured
wind plant data.

Direct data-driven algorithms for axial-induction-based control are presented that
optimize the axial-induction settings of each turbine in the plant with the objective of
power production increase. A speed-up of the optimization is achieved by using gradient-
based optimization techniques with a distributed approach in which the effect on neigh-
boring turbines is taken into account only. Using information on the spatial configura-
tion of the wind farm in this way, results in a much faster convergence of the power op-
timization than is achieved with an existing method with full communication between
the turbines. This is because there are significant delays between control actions on tur-
bines, and the response of turbines further downstream, because the wake effects need
to propagate through the wind field.

Further, a data-driven model-based wind plant control strategy was presented to op-
timize the yaw settings of each turbine in the plant with the objective of electricity pro-
duction increase. The optimization is based on predictions provided by a newly devel-
oped control-oriented model that predicts the effects of the yaw settings on the steady-
state wake deflection and velocity deficit. The model has a relatively small number of
parameters that can be identified using time-averaged electrical power measurements
of the different turbines in the wind plant (gray-box system identification). The model
is computationally efficient enough to enable real-time online wind plant control opti-
mization, using a game-theoretic search method. The application of the wind plant opti-
mization method in a high-fidelity CFD simulation of a small wind plant, demonstrated
an increase in electrical power production, and a reduction of wind turbine fatigue loads.
Based on the novel data-driven model, a 1.1% electricity production increase is predicted
on an annual basis, through using yaw-based wind plant control on the Princess Amalia
Windpark, a full-size offshore wind plant.

The control-oriented wind plant model was further extended to include dynamics of
the wake propagation delays between the turbines. The dynamic model has a feedback
structure in which a linear state-space model describes the propagation of changes in
the wake through the wind field. Only two tunable model parameters were added to in-
clude these dynamics, such that the tuning process is not further complicated to a large
extend. The model structure allowed the development of an observer that uses Kalman
filtering to correct the predicted flow field velocities on the basis of power measurements
at the turbines. A relatively small increase of wind plant performance was demonstrated
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by going from yaw control optimization based on the steady-state model, to optimiza-
tion based on the dynamic model. A practical benefit of including the dynamics is the
fact that the gray-box system identification can be performed directly on the basis of
the dynamic responses of the wind plant, rather than on time-averaged data. This is ex-
pected to be an important benefit when applying data-driven model-based control on a
real wind plant with continuously changing ambient conditions.

This thesis presented pioneering work in data-driven wind plant controls, research-
ing the feasibility of wake control concepts and solving practical issues to enable real-
time implementation.





SAMENVATTING

Windturbines die zijn gegroepeerd in een windpark, hebben interactie met elkaar via
de aerodynamica van het windveld in het windpark. De aerodynamische interactie-
effecten worden veroorzaakt door de zoggen van de turbines. Het zog van de turbine is
de stromingsstructuur die zich vormt achter de turbine. Het zog wordt gekarakteriseerd
door een stromingssnelheidsvermindering, veroorzaakt door de extractie van energie
uit de stroming door de turbine, en een toegenomen turbulentie-intensiteit, veroorzaakt
door de versperring van de stroming door de turbine. De snelheidsvermindering veroor-
zaakt een afname van de elektriciteitsproductie bij turbines die in het pad staan van het
zog van een andere turbine, en de toegenomen turbulentie kan de belastingen vermeer-
deren op die benedenstroomse turbines. Windparkregelsystemen die de zogsinteractie-
effecten in beschouwing nemen bij de coördinatie van de regelacties van de windturbi-
nes, kunnen de prestatie van het windpark verbeteren, voor wat betreft de totale elektri-
citeitsproductie en de belastingen op de afzonderlijke windturbines. Door op die manier
de windparkprestatie te verbeteren, kan worden bijgedragen aan de kostenvermindering
van windenergie op zee en op land. In dit proefschrift worden twee onderzoeksdoelen
behandeld: het eerste is de inschatting van het potentieel van de verschillende vrijheids-
graden van de turbine om de interactie-effecten tussen de turbines te beïnvloeden, en
het tweede is de ontwikkeling van op data gebaseerde algoritmes voor de optimalisatie
van de regelinstellingen om de windparkprestatie te verbeteren.

De vrijheidsgraden voor de regeling van een moderne grote windturbines met een
horizontale as, zijn generatorkoppel, collectieve en individuele bladhoek en de gierhoek
van de rotor (draaien om de verticale as, of ‘kruien’). Voor elk van deze vrijheidsgra-
den werd onderzocht hoe ze de zogsinteractie-effecten in het windpark beïnvloeden.
Daarbij werd gebruik gemaakt van nauwkeurige simulaties van opstellingen met een of
meer turbines. We onderzochten twee manieren waarop de vrijheidsgraden de zogsef-
fecten kunnen beïnvloeden: door op axiale-inductie gebaseerde zogsregeling, waarbij
de energie-extractie van de windturbine wordt veranderd om de snelheidsafname in het
zog te beïnvloeden, en door zogsafbuiging, waarbij de stromingsrichting in het zog wordt
veranderd om het weg te sturen van benedenstroomse turbines.

Bij op axiale-inductie gebaseerde zogsregeling wordt afgeweken van de op turbine-
niveau optimale collectieve bladhoek- of generatorkoppelinstellingen. De potentiele
winst van het gebruik van axiale-inductieregeling die op windpark- in plaats van op
turbineniveau optimaal is, hangt af van de specifieke atmosferische condities, de con-
figuratie van het windpark, en de turbinekarakteristieken. De simulatievoorbeelden in
dit proefschrift tonen zelfs aan dat er omstandigheden zijn waarin aanpassingen van de
axiale inductie geen vermogenstoename oplevert, omdat expansie van het zog ervoor
zorgt dat veel van de energie die aan de stroom wordt toegevoegd door middel van re-
gelverandering, verloren gaat aan de atmosfeer.
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Er is een beter potentieel aangetoond voor regelingen gebaseerd op zogsafbuiging.
Het is aangetoond dat zowel aanpassing van de gierhoek, als van de individuele blad-
hoekregeling, significante zogsafbuiging veroorzaakt. Voor de individuele bladhoekre-
geltechnieken geldt echter dat de zogsafbuiging ten koste gaat van belastingtoenames,
wat ze minder geschikt maakt voor praktische toepassing. Het is aangetoond in nauw-
keurige simulatie, dat zogsafbuiging door middel van gierhoekafwijkingen de totale elek-
triciteitsproductie van kleine windparkopstellingen kan doen laten toenemen. Zowel
toenames als afnames van vermoeiingsbelastingen kunnen het resultaat zijn van op gier-
hoek gebaseerde zogsafbuiging, afhankelijk van de instellingen die worden gebruikt. De
belastingtoename kan deels worden gemitigeerd door gebruik te maken van standaard
belastingsverminderende individuele bladhoeksregeltechnieken.

In dit proefschrift zijn twee richtingen genomen in de ontwikkeling van op data ge-
baseerde windparkregelingen: direct datagestuurde methodes, waarin de optimalisatie
van de regelinstellingen direct gebaseerd is op de gemeten data, en datagestuurde mo-
delgebaseerde regelingen, waarin de optimalisatie gebaseerd is op modellen waarvoor
de parameters worden geschat uit gemeten windparkdata.

In dit proefschrift zijn direct datagestuurde algoritmes voor op axiale-inductie ge-
baseerde regeling gepresenteerd, die de axiale-inductie instellingen optimaliseren voor
elke turbine in het windpark met vermogensproductietoename als doel. Een versnelling
van deze optimalisatie wordt bereikt door gebruik te maken van gradiëntgebaseerde op-
timalisatietechnieken met een gedistribueerde aanpak waarin alleen het effect van na-
burige turbines in beschouwing wordt genomen. Door op die manier gebruik te maken
van de spatiale configuratie van het windpark, kan een veel snellere convergentie van
de vermogensoptimalisatie worden bereikt dan met een bestaande methode die uitgaat
van volledige communicatie tussen de turbines. Dit komt doordat er grote vertragingen
zijn tussen de regelacties op de turbines, en de responsie van turbines verder stroomaf-
waarts, omdat de zogeffecten zich eerst door het windveld dienen voort te planten.

Verder werden datagestuurde modelgebaseerde windparkregelingsstrategieën gepre-
senteerd, die de gierhoekinstellingen van de turbines in het windpark optimaliseren met
vermogensproductietoename als doel. De optimalisatie is gebaseerd op voorspellingen
die gegeven worden door een nieuw ontwikkeld, op regeltechniek gericht model dat de
effecten van de gierhoekinstellingen op de stationaire zogsafbuigingen en -snelheden
voorspelt. Het model heeft een relatief klein aantal afstemparameters. Deze parameters
kunnen worden geïdentificeerd uit over de tijd gemiddelde elektrisch vermogensme-
tingen van de verschillende turbines in het windpark. Het model is rekenkundig effi-
ciënt genoeg om realtime windparkregelingsoptimalisatie mogelijk te maken, gebruik
makend van op speltheorie gebaseerde zoekmethode. De toepassing van de windpar-
kregelingsoptimalisatie in een nauwkeurige rekenkundige simulatie van de stromings-
dynamica in een klein windpark, resulteerde in een toename van de vermogenspro-
ductie van het windpark en een afname van de vermoeiingsbelastingen op de turbines.
Het nieuwe datagestuurde model voorspelt een elektriciteitsproductietoename van het
Prinses Amalia Windpark, een groot windpark op zee, van 1.1% op jaarbasis, als gebruik
wordt gemaakt van de geoptimaliseerde gierhoekregeling in het windpark.

Het op regeltechniek gerichte windparkmodel is uitgebreid met de dynamica van



SAMENVATTING 153

de voortplanting van het zog tussen the turbines. Het dynamisch model heeft een te-
rugkoppelingsstructuur waarin een lineair toestandsruimtemodel de voortplanting van
zogsveranderingen door het windveld beschrijft. Om deze dynamica toe te voegen, zijn
slechte twee modelparameters toegevoegd, zodat proces van het afstemmen van de pa-
rameters niet veel is bemoeilijkt. Met deze modelstructuur kon een toestandsschatter
(observer) worden ontwikkeld die Kalman-filtertechnieken gebruikt om snelheden in
het voorspelde stromingsveld te corrigeren op basis van het gemeten elektrisch vermo-
gen van de turbines. Een relatief kleine toename van de windparkprestatie werd behaald
door te gaan van optimalisatie van de gierhoekregeling op basis van het stationaire mo-
del, naar optimalisatie op basis van het dynamisch model. Een praktisch voordeel van
het toevoegen van de dynamica is het feit dat het afstemmen van de modelparameters
direct kan worden gedaan op basis van de dynamische responsie van het windpark, in
plaats van op data die gemiddeld is over de tijd. Naar verwachting is dit een belangrijk
voordeel wanneer datagestuurde modelgebaseerde regeling wordt toegepast in een echt
windpark met continu veranderende omgevingscondities.

Dit proefschrift bevat verkennend werk op het gebied van datagestuurde windpar-
kregelingen. In dit onderzoek verkenden we de haalbaarheid van concepten voor zogre-
geling in het windpark en droegen we oplossingen aan voor praktische problemen bij de
realtime implementatie van deze concepten.
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A felicidade é como a pluma Happiness is like a feather

Que o vento vai levando pelo ar That the wind carries through the air

Voa tão leve It flies so lightly

Mas tem a vida breve But it has a brief life

Precisa que haja vento sem parar It always needs the wind to be there

Freely translated from the song

‘A Felicidade’ by Antônio Carlos Jobim and Vinicius de Moraes
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