Multi-Agent Control of A fleet of Cybercars

Renshi Luo

Delft Center for Systems and Control
Delft University of Technology

September 5, 2013
Who I am
Who I am

- second year Ph.D candidate
Who I am

• second year Ph.D candidate

• member of Hybrid and Distributed Systems and Control group
Who I am

- second year Ph.D candidate
- member of Hybrid and Distributed Systems and Control group
- work with Ton van den Boom and Bart De Schutter
Do you drive car?
- accidents
• accidents
• congestion
- accidents
- congestion
- energy consumption
• accidents
• congestion
• energy consumption
• pollution
Public transport systems

- considered suitable solutions to those problems
Public transport systems

- considered suitable solutions to those problems
- e.g., buses, trams, subways, etc
Public transport systems

- considered suitable solutions to those problems
- e.g., buses, trams, subways, etc
- widely used and continuously improved
Public transport systems

- considered suitable solutions to those problems
- e.g., buses, trams, subways, etc
- widely used and continuously improved
- * predefined schedules and routes
Public transport systems

- considered suitable solutions to those problems
- e.g., buses, trams, subways, etc
- widely used and continuously improved
- * predefined schedules and routes

In terms of personal mobility, private cars still win!!
Public transport systems

- considered suitable solutions to those problems
- e.g., buses, trams, subways, etc
- widely used and continuously improved
- * predefined schedules and routes

In terms of personal mobility, private cars still win!!

Problems are still unsolved!!
New approach for personal mobility
New approach for personal mobility

Cybercars

- automated road vehicles
New approach for personal mobility

Cybercars

- automated road vehicles
- provide on-demand and door-to-door service
New approach for personal mobility

Cybercars

- automated road vehicles
- provide on-demand and door-to-door service
- mostly small-sized
New approach for personal mobility

Cybercars

- automated road vehicles
- provide on-demand and door-to-door service
- mostly small-sized
- energy efficient
Cybercars

pictures from www.cybercars.org
Cybernetic transportation system (CTS)

- promising solution to urban transportation challenges
Cybernetic transportation system (CTS)

- promising solution to urban transportation challenges
- formed by a fleet of cyberears
Cybernetic transportation system (CTS)

- promising solution to urban transportation challenges
- formed by a fleet of cybercars
- high flexibility and reactivity
Cybernetic transportation system (CTS)

- promising solution to urban transportation challenges
- formed by a fleet of cybercars
- high flexibility and reactivity
- emerged in Europe and first used at Schipol airport
Cybernetic transportation system (CTS)

- promising solution to urban transportation challenges
- formed by a fleet of cybercars
- high flexibility and reactivity
- emerged in Europe and first used at Schipol airport
- projects including **CyberCars**, **CyberMove** and **CyberCars-2, CityMobil**
Opportunity and Challenge
Opportunity and Challenge

Opportunity

automated driving technology has been well developed
Opportunity and Challenge

Opportunity
automated driving technology has been well developed

Challenge
lack of efficient cooperation strategy
Cooperation of cybercars
Cooperation of cybercars

Cooperation

- necessary for optimal performance of CTS
Cooperation of cybercars

Cooperation

- necessary for optimal performance of CTS

variety

- collision avoidance
- platoon merge and split
- dynamic routing
Cooperation of cybercars
Cooperation of cybercars

Multi-agent system
Cooperation of cybercars

Multi-agent system

- moving decision-making agents
Cooperation of cybercars

Multi-agent system

- moving decision-making agents
- extensive on-board processing and communication capabilities
Cooperation of cybercars

Multi-agent system

- moving decision-making agents
- extensive on-board processing and communication capabilities
- abundant information of environment
Cooperation of cybercars

Multi-agent system

- moving decision-making agents
- extensive on-board processing and communication capabilities
- abundant information of environment

Abstract object of our research !!
Fleet control problem of cybercars
Fleet control problem of cybercars

Existing research
Fleet control problem of cybercars

Existing research

- from conceptual point of view
Fleet control problem of cybercars

Existing research

- from conceptual point of view
- conceptual description of control system architecture and functions
Fleet control problem of cybercars

Existing research

- from conceptual point of view
- conceptual description of control system architecture and functions

Our research
Fleet control problem of cybercars

Existing research

- from conceptual point of view
- conceptual description of control system architecture and functions

Our research

- explore specific case, i.e., dynamic routing problem
Problem description
Problem description

Set up
Problem description

Set up

- dedicated roads network
Problem description

Set up

- dedicated roads network
- cybercars are free to make its desired route choices
Problem description

Set up

- dedicated roads network
- cybercars are free to make its desired route choices
- traffic densities in all roads decide velocities
Problem description

Set up

- dedicated roads network
- cybercars are free to make its desired route choices
- traffic densities in all roads decide velocities
- energy consumption depend on velocities and variation of velocities
Problem description
Problem description

Modeling
Problem description

Modeling

- discrete-time
Problem description

Modeling

- discrete-time
- discrete-event
Problem description

Modeling

- discrete-time
- discrete-event

Objectives
Problem description

Modeling
- discrete-time
- discrete-event

Objectives
- minimizing total time spent (TTS)
Problem description

Modeling

- discrete-time
- discrete-event

Objectives

- minimizing total time spent (TTS)
- minimizing total energy consumption (TEC)
Model predictive control (MPC)

figure from Ph.D thesis of L.D. Baskar
Centralized MPC

*figure from Journal paper of J.M. Maestre
Distributed MPC

figure from Journal paper of J.M. Maestre
Research guide
Research guide

Modeling

- discrete-time modeling & discrete-event modeling
Research guide

Modeling
- discrete-time modeling & discrete-event modeling

Centralized control
- desired solution of distributed control
Research guide

Modeling
- discrete-time modeling & discrete-event modeling

Centralized control
- desired solution of distributed control

Distributed Control
- decomposing the problem
Research guide

Modeling
- discrete-time modeling & discrete-event modeling

Centralized control
- desired solution of distributed control

Distributed Control
- decomposing the problem
- extending existing distributed control methods
Research guide

Modeling
- discrete-time modeling & discrete-event modeling

Centralized control
- desired solution of distributed control

Distributed Control
- decomposing the problem
- extending existing distributed control methods
- developing new distributed control methods
Review
Review

- motivation
Review

- motivation
- specific research problem
Review

- motivation
- specific research problem
- potential control scheme
Review

- motivation
- specific research problem
- potential control scheme
- research guide
Thank You!