From Feedback Control to Real-Time Business Decision Making in the Process Industry

Wolfgang Marquardt
Lehrstuhl für Prozesstechnik
RWTH Aachen

DCSC Symposium: Systems and Control: Challenges in the 21st Century
June 7-8, 2004, Delft University of Technology, Delft, NL
From *growing market* volume and *limited competition* to *market saturation* and *global competition* in the 21st century:

- internet and e-commerce facilitate complete market transparency,
- transportation cost continue to decrease,
- engineering and manufacturing skills are available globally.

Economic success requires to quickly *transform new ideas into marketable products*:

- product innovation to open-up new market opportunities,
- process design for best-in-class plants to maximize lifecycle profits,
- efficient and agile manufacturing to make best use of existing assets.
From growing market volume and limited competition to market saturation and global competition in the 21st century:

- Internet and e-commerce facilitate complete market transparency,
- Transportation costs continue to decrease,
- Engineering and manufacturing skills are available globally.

Economic success requires to quickly transform new ideas into marketable products:

- Product innovation to open up new market opportunities,
- Process design for best-in-class plants to maximize lifecycle profits,
- Efficient and agile manufacturing to make best use of existing assets.
Operational Strategies – the Status

- plant in isolation
- steady-state operation
- set-point control
- disturbance rejection
- limited flexibility
- largely autonomous

Corporate objectives

Units, group of units, plant, group of plants, ...

Market

Supply chain

Environment

Production planning system

Operation support system

Purchasing & procurement

Supplier

Marketing & sales

Customer
Manufacturing in the Future

Real-time Business Decision Making in the Process Industries

- Operational strategies
- Reengineering the plant
- Synchronous or asynchronous
- Rolling window prediction adaptation
- Performance indicators
- Feedback

- The plant as part of the supply chain
- The disturbances
- Delivery on demand
- Varying quality specs
- Fluctuating prices
- Time-varying environment
- Corporate strategy
- Advancing technologies
- Saturating global markets
- Tightening legal regulations
- ...

- Flexible production
- Smooth dynamics
- Lean inventories
- High capital productivities
- Sustainable production
- ...

...
General Operational Objectives

Optimal operation of chemical processes

Why should they be constant over time?

Process model:

\[0 = f(x, u, p, d) \]

\[x(t_0) = x_0 \]

\[y = g(x) \]
Optimization-based Control and Operations

Dynamic data reconciliation (combined estimation problem)

$$\min_{x_r,0,d_r} \Phi_r (y_r, \eta, x_r,0, d_r, t_c, t_f)$$

s.t.

$$0 = f(\eta, x_r, u_r, d_r)$$
$$y_r = g(x_r)$$
$$x_r(t_r) = x_r,0$$
$$u_r = U(u_c(\cdot))$$
$$0 \geq h_r(x_r, d_r)$$
$$t \in [t_r, t_c]$$

Dynamic optimization (open/closed loop)

$$\min_{u_c} \Phi_c (x_c, u_c, t_c, t_f)$$

s.t.

$$0 = f(\eta, x_c, u_c, d_c)$$
$$y_c = g(x_c)$$
$$x_c(t_c) = x_r(t_c)$$
$$d_c = D(d_r(\cdot))$$
$$0 \geq h_c(x_c, u_c)$$
$$t \in [t_c, t_f]$$

2 coupled problems!
Direct Solution Approach

• solution of optimal control reconciliation problems at controller sampling frequency

• computationally demanding

• model complexity limited \Rightarrow \text{large models}

• lack of transparency, redundancy and reliability

(\text{Terwiesch et al., 1994; Helbig et al., 1998; Wisnewski & Doyle, 1996; Biegler & Sentoni, 2000; Diehl et al., 2002; van Hessem, 2004})
Vertical (Time-Scale) Decomposition

- generalizes steady-state real-time optimization and constrained predictive control
- requires (multiple) time-scale separation, e.g. $d(t) = d_0(t) + \Delta d(t)$ with trend $d_0(t)$ and zero mean fluctuation $\Delta d(t)$

$u_c(t) = u_c(t) + \Delta u(t)$

Φ, h

$
\begin{align*}
\eta_0(t) & \xrightarrow{\delta_0} \text{long time scale dynamic data reconciliation} \\
\Delta \eta(t) & \xrightarrow{\delta_c} \text{short time scale dynamic data reconciliation} \\
\text{time scale separator} & \\
\text{optimizing feedback control system} & \\
\end{align*}
$

decision maker

$\text{optimal trajectory design}$

$\text{tracking controller}$

$\text{process including base control}$

Real-time Business Decision Making in the Process Industries
Real-time Dynamic Optimization

- dynamic optimization - a versatile means for problem formulation
- focus will be on trajectory design
- improvement of numerical methods

Real-time Business Decision Making in the Process Industries
Mathematical problem formulation

\[
\min_{u(t), p, t_f} \Phi(x(t_f)) \quad \text{objective function (e.g. cost)}
\]

s.t.

\[
\begin{align*}
M &\Leftrightarrow F(x, u, p, t), \quad t \in [t_0, t_f], \\
0 &= x(t_0) - x_0, \\
0 &\geq P(x, u, p, t), \quad t \in [t_0, t_f], \\
0 &\geq E(x(t_f))
\end{align*}
\] \quad \text{DAE system (process model)}

\quad \text{path constraints (e.g. temp. bound)}

\quad \text{endpoint constraints (e.g. prod. spec.)}

Degrees of freedom: \quad u(t) \quad \text{time-variant control variables}

\quad p \quad \text{time-invariant parameters}

\quad t_f \quad \text{final time}
Sequential Approach (Single Shooting)

Control vector parameterization
\[u_i(t) \approx \sum_{k \in \Lambda_i} c_{i,k} \phi_{i,k}(t) \]

Parameterization functions
\[\phi_{i,k}(t) \]

Parameters
\[c_{i,k} \]

Reformulation as nonlinear programming problem (NLP)
\[
\begin{align*}
\min_{c,p,t_f} \Phi(x(c, p, t_f)) \\
\text{s.t.} \quad & 0 \geq P(x, c, p, t_i), \quad \forall t_i \in T, \\
& 0 \geq E(x(t_f))
\end{align*}
\]

DAE system solved by underlying numerical integration

Gradients for NLP solver typically obtained by integration of sensitivity systems
Real-time Business Decision Making in the Process Industries

Improved Algorithms – Sequential Approach

- **Sensitivity integration** is expensive
 - Improve efficiency of sensitivity integration
 - New solver for sensitivity integration

- **State integration** is expensive
 - Reduce number of sensitivity parameters
 - Reduce model complexity

- **Methods for model reduction**

- **Control grid adaptation strategy**
Different **representations** of the same function ...

... for problem discretization:

$$ u = \sum_{(j,k) \in \Lambda} c_{j,k} \phi_{j,k}(t) $$

... for grid point elimination analysis:

$$ u = c_{0,0} \phi_{0,0}(t) + \sum_{(j,k) \in \Psi} d_{j,k} \psi_{j,k}(t) $$

Real-time Business Decision Making in the Process Industries
Adaptive Refinement Algorithm

Mesh analysis
- Concepts from signal analysis
- Grid point elimination
- Grid point insertion

Repetitive procedure
- Re-optimize problem on refined mesh
- Profile from previous solution as initial guess
- Decouple optimization and adaptation

until stopping criterion met.
isothermal semi-batch reactor
(Srinivasan et al, 2003)

reactions: \(A + B \rightarrow C \), \(2B \rightarrow C \)
conditions: semi-batch, isothermal

objective: maximize production of \(C \) at given final time \(t_f \)
control vars.: feed rate of \(B \)
constraints: input bounds, constraints on \(c_B \) and \(c_C \) at \(t_f \)

model: 3 differential and 2 algebraic equations
Adaptation Strategy
Performance Comparison

objective function value
computation time

- error-controlled computations
- intermediate results available after short computation times
- favorable for on-line applications
Integration of NCO in Numerical Algorithm

Theoretical Analysis

- true solution contains different arcs
- sequence and structure of arcs is determined by necessary conditions of optimality (NCO)
- NCO hard to assess for large nonlinear problems (theory complicated, partly even lacking)

Is there a way to detect and exploit switching structure during numerical solution?
1. Solve problem to obtain a (possibly adaptive) single-stage solution

2. Analyze the results of the NLP to determine the different arcs in the solution structure

3. Reformulate as a multi-stage problem according to switching structure, resolve the problem with lengths of arc intervals as additional degrees of freedom with adaptive algorithm
non-isothermal semi-batch reactor
(Srinivasan et al, 2003)

reactions: $A + B \rightarrow C$, $2B \rightarrow C$

conditions: semi-batch, non-isothermal exothermic reaction

objective: maximize production of C at given final time t_f
control vars.: feed rate of B and reactor temperature
constraints: input bounds, constraints on c_B and c_C at t_f

model: 4 differential and 4 algebraic equations
Results

MV 1: Feed rate

MV 2: Temperature

Path constraint 1: heat

Path constraint 2: volume

Real-time Business Decision Making in the Process Industries
Results

MV 1: Feed rate

MV 2: Temperature

methodology handles problems with multiple controls and complex switching structures and provides quasi-analytical solutions

recently successfully applied to the Bayer INCOOP benchmark problem, a polymerization plant with 4 manipulated variables and ~ 2000 DAEs

currently applied to the Shell INCOOP benchmark problem, an intermediate organic products plant, ~ 10,000 DAEs

Real-time Business Decision Making in the Process Industries
Real-time Dynamic Optimization

integration of dynamic optimization and model predictive control

- models, formulations, algorithms, ...
- when to trigger an update of trajectory?
- how to account for control performance on optimization level?
- ...

Real-time Business Decision Making in the Process Industries
Alternative 1: NCO Tracking

Bonvin, Srinivasan et al., 2003

- minimal parameterization of the nominal optimal solution: sequence / type of arcs
- assume non-changing switching structure due to uncertainty
- implement a linear multi-variable (decentralized, switching) control system to track the NCO
- supervisory control on dynamic optimization level
 - check potential changes of switching structure
 - quantitatively assess optimality loss
 - trigger dynamic optimization and new switching structure detection
Alternative 1: NCO Tracking

Bonvin, Srinivasan et al., 2003

- minimal parameterization of the nominal optimal solution: sequence / type of arcs
- assume non-changing switching structure due to uncertainty
- implement a linear multi-variable (decentralized, switching, control) system to track the NCO

Recently successfully applied to the Bayer INCOOP benchmark problem, a polymerization plant with 4 manipulated variables and ~ 2000 DAEs (joint work with Bonvin et al.)

Recent supervision control on dynamic optimization level
- check potential changes of switching structure
- quantitatively assess optimality loss

- track singular arc
- adjust switching times
- switch potential structure changes due to uncertainty, motivation for supervisory level
- trigger dynamic optimization and new switching structure detection
Alternative 2: LTV-MPC for Trajectory Tracking

Dynamic real-time optimization (D-RTO), fast solution updates when possible, even for changing switching structure.

Cheap sub-optimal feasible trajectory updates.

Linear time-varying MPC in delta-mode for trajectory tracking, fast time-scale.

Re-optimization with adaptation of control discretization mesh.

Re-optimization on coarse control discretization.

D-RTO trigger and fast updates.

Updated y_{ref}, u_{ref}.
Fast Update and D-RTO Trigger Algorithm

estimates \(p^j, \hat{x}^j \)

sensitivity integration to update \(g^j, g_z^j, g_p^j, f_z^j \) for the controls from the previous iteration \(j-1 \)

pre-computed \(L_{zz}, L_{zp} \)

solution of fast update QP problem

\[
\begin{align*}
\hat{z}_r^j &= \hat{z}_r^{j-1} + \Delta z, y_r^j, G^j, \lambda^j \\
\end{align*}
\]

evaluate optimality error

\[
\begin{align*}
\epsilon_{opt}^j &= \frac{\| L_z^j(\bullet) \|_{\infty}}{\| \lambda^j \|_2}, \epsilon_{inf}^j = \frac{\| g^j(\bullet) \|_{\infty}}{\| z^j \|_2} \\
\end{align*}
\]

if \(\epsilon_{opt}^j > \tau_{opt} \) and \(\epsilon_{inf}^j > \tau_{inf} \) perform a re-optimization for optimal updates

\[
\begin{align*}
\hat{z}_r^j, y_r^j \\
\end{align*}
\]
Closed-loop Optimization Results

Williams-Otto semi-batch reactor

\[\Delta h_1 = +10\% \quad \text{and} \quad \Delta T_{in} = -10^\circ C \quad \text{at} \quad t = 250 \text{ sec} \]
Real-time Planning and Scheduling

integration of planning & scheduling with model predictive control

- models, formulations, algorithms, ...
- integrated or decomposed problem formulations
- how to account for process performance and uncertainty on the planning level
- ...

Real-time Business Decision Making in the Process Industries
An Illustrating Example

a typical problem
- scheduling of different polymer grades production
- optimization of grade transitions

to be cast in a multi-stage dynamic optimization problem with logical constraints (a so-called MLDO problem)
Disjunctive Programming Formulation

\[\min_{z_k, u_k, p, Y} \Phi := \sum_{k=1}^{n} \Phi_k(z_k(t_k), p, t_k) + \sum_{i=1}^{m} b_i \] (MLDO)

- **Objective:**

- **Dynamic model:**

- **Constraints:**

- **Initial conditions:**

- **Stage transition conditions:**

- **Disjunctions:**

- **Propositional logic:**

\[\Omega(Y) = \text{True.} \]
A Sample Result

quality variable 1

quality variable 2

manipulated variable 1

manipulated variable 2

- polyolefin reactor, ca. 80 DAEs
- six grades production campaign
- no due dates constraints
- MLDO formulation
- solved by disjunctive programming in 4 major iterations in < 5 min CPU
- optimal sequence 1-2-4-6-3-5

Real-time Business Decision Making in the Process Industries
Conclusions

• any-time economically optimal operation
 – rather than set-point following and disturbance rejection
 – requires real-time business decision making (RT-BDM)

• RT-BDM problems are dynamic optimization problems

• RT-BDM problem formulation, decomposition & analysis
 are largely open fields

• dynamic optimization technology is a key enabler
 – how to deal with uncertainty ?
 – how to decompose and re-integrate ?
 – how to provide consistent models on different time-scales ?
Conclusions

- any-time economically optimal operation
 - rather than set-point following and disturbance rejection
 - requires real-time business decision making (RT-BDM)

- RT-BDM problems are dynamic optimization problems

- RT-BDM problem formulation, decomposition & analysis are largely open fields

- dynamic optimization technology is a key enabler
 - how to deal with uncertainty?
 - how to decompose and re-integrate?
 - how to provide consistent models on different time-scales?

Great opportunities for Systems and Control Community in theory and applications
Collaborators

Ton Backx and coworkers, IPCOS & TU Eindhoven
Larry Biegler, CMU
Dominique Bonvin, EPFL
Okko Bosgra and co-workers, TU Delft
Wolfgang Dahmen, RWTH.IGPM
Andreas Kroll, ABB
Jitendra Kadam, RWTH.LPT
Adrian Prata, ABB
Jan Oldenburg, RWTH.LPT
Martin Schlegel, RWTH.LPT
Bala Srinivasan, EPFL
Klaus Stockmann, RWTH.LPT

Funding

European Commission
Deutsche Forschungsgemeinschaft
BMBF
Bayer Technology Services
Shell Chemicals