The Smart Highway – Modern Traffic Control

Prof. Hans Hellendoorn DCSC & Siemens

Traffic measures

Traffic measures

- Lights
 - Traffic lights
 - Ramp metering
- Information
 - Dynamic Route Information Panels
 - Dynamic speed limits
 - RDS-TMC
 - Travel information
- Dedicated lanes
 - Dynamic left lane
 - Emergency hard shoulder, peak lane
 - Dynamic lane marking (light emitting road marking)
- Road pricing

Traffic control – remarks

- Control loop extremely large loop with many uncertainties
- Disturbances have a very high impact on the traffic system (accidents, road work, bomb alarm)
- Hybrid control combines discrete and continuous control in one scheme
- Model predictive control takes into account multiple constraints and uses models of the system

Examples of projects

- Multi agent control
- Freeway and urban traffic control
- Traffic information and traffic control
- Shock waves
- Autonomous vehicles

Coordinated ramp metering

- Links, services, measures
- Length of the onramp
- Coordination stream up
- Hierarchical solution is limited

Link and services agents

- Link agents observe the local traffic situation and determine local actions, they can discuss local actions with other link agents
- Service-agents collect the demands of link agents, they decide a tactical solution for the link agents

Four link agents without (left) and with (right) control

The onramps

Problems

- Long term short term behavior with ramp metering
- Coordination of more or less independent units

A network of freeway and urban traffic

- Computes flow, density and velocity
- Urban: short time steps, queuing •

•

Five simulation scenario's

- Marginally saturated intersections
- Morning rush, traffic traveling into the city
- Evening rush, traffic leaving the city
- Congestion at one of the urban intersections
- Congestion on the freeway

Simulation results: Freeway I

Density

Velocity

Simulation results: Off-ramp

Delft

Simulation results: On-ramp

16

Simulation results: Urban queue lengths

June 9, 2004

Delft

Model Predictive Control

- Control signal: offsets, green times
- Cost function: Total time spent

TTS = *Tu* * *Svehicles(urban)* + *Tf* * *Svehicles(freeway)*

Scenario	Improvement
Normal traffic	7.6%
Morning rush hour	6.2%
Evening rush hour	8.2%
Urban congestion	3.9%
Freeway congestion	6.4%

Model Predictive Control

- Keep traffic waiting at origins
- More green for crossing traffic
- Improve flow towards the freeways

Traffic information and traffic control

Control strategy

Minimize **simultaneously**:

- total time spent
- jam building at onramp
- difference between displayed and realized travel times
- variation in control signal

using

travel time information and ramp metering

Model predictive control

Effect of the controller

Without control (left) and with MPC (right)

June 9, 2004

Deviation in travel time information with MPC <u>without</u> and <u>with</u> prediction error minimization in cost function

June 9, 2004

Results

- Cost function with prediction error minimization
 guarantees optimal and precise travel times
- MPC algorithm for integral control can significantly reduce the total time spent (~20%)
- Prototype traffic control system possible in MATLAB, quick implementation on the road

Shock waves

June 9, 2004

Network traffic local vs. global

- coordination
 - blocking of other streams

• influences possible on whole route

Experimental Setup

Model Predictive Control

without control

with control

June 9, 2004

Results

- Prediction horizon: 7 minutes
- Control horizon: 5 minutes
- Introduction of speed limits reduced TTS from 815 veh⁻h to 737 veh⁻h (9.6%)
- Congestion resolved in ca. 2 hours instead of 3 hours
- MPC suitable for coordinating ramp metering and speed limits
- Speed limits useful for congestion prevention/reduction

Autonomous driving

- Demo setup consisting of three vehicles with IRcommunication
 - Communication up to 300m
 - Multi-hop

Overview of the closed-loop system

Design of the inner loop(1)

- Acceleration control for fast reaction
- Model-free control or control method robust to model uncertainties must be chosen
- Sliding Mode Control (SMC) with a simple model is chosen:

• Model:
$$ma + f = bu$$

• Control output:
$$u = -$$

t:
$$u = \frac{(\frac{-\varepsilon}{\lambda} + a_{ref})\hat{m} + \hat{f}}{\hat{b}} - \frac{k}{\hat{b}}\operatorname{sat}\left(\frac{S}{\phi}\right)$$

- Two SMC controllers have been used for brake and throttle because of different dynamics
- Gearbox has been controlled by shift algorithm

Design of the inner loop(2)

- Brake and throttle should not be applied at the same time therefore the following switching criterion has been used:
 - $a_{ref} a_{res} > s_1$
 - a_{ref} $a_{res} < s_2$
 - switch to brake control • $s_2 \le a_{ref}$ - $a_{res} \le s_1$ do not switch

Design of the outer loop

 Design of the outer loop is done in a simulation environment with ATS/CAR vehicle models developed at TNO Automotive

- Main objective: keep a headway of d_{ref} to front vehicle
 - Used time headway: $h = h_0 c\Delta v$
 - Desired headway: $d_{ref} = d_0 + hv_{veh}$
- Additional term to achieve 'natural' driving behaviour:

$$a_{MND} = \frac{-(v_2 - v_1)^2}{2(d - d_{ref} + dx)}$$

Conclusions

- Traffic control is dependent of good models
- Traffic measures can be combined, but this is risky
- Large test sites with more cities and long highways will be extremely difficult to control

