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Real-time Business Decision Making in the Process Industries

The Business Climate

From growing market volume and limited competition
to market saturation and global competition in the 21st century:

• internet and e-commerce facilitate complete market transparency,
• transportation cost continue to decrease,
• engineering and manufacturing skills are available globally.

Economic success requires to quickly transform new ideas into
marketable products: 

• product innovation to open-up new market opportunities,
• process design for best-in-class plants to maximize lifecycle profits,
• efficient and agile manufacturing to make best use of existing

assets.
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Operational Strategies – the Status

• plant in isolation
• steady-state operation
• set-point control
• disturbance rejection
• limited flexibility
• largely autonomous

production planning system

operation support system
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&

procurement

customer

marketing
&

sales

units,
group of units,
plant,
group of plants,
...

units,
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plant,
group of plants,
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operation support
system
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market
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corporate
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Manufacturing in the Future

operational strategies
reengineering the plant

flexible production
smooth dynamics
lean inventories
high capital productivities
sustainable production
...

synchronous or asynchronous
rolling window prediction adaptation

performance

indicators

delivery on demand
varying quality specs
fluctuating prices
time-varying environment
corporate strategy
advancing technologies
saturating global markets
tightening legal regulations
...

the disturbances the requirements

feedback

the plant as part of
the supply chain
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General Operational Objectives

optimal operation
of chemical processes

economy

model uncertainties
disturbances

constraints
• equipment, safety, environment
• capacity, quality, reproducability

optimal profiles

manipulated
variables

state
variables

Why should they be
constant over time?
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Optimization-based Control and Operations

optimal feedback
control system

measurements manipulated
variables

dynamic data reconciliation
(combined estimation problem

dynamic optimization
(open/closed loop)

2 coupled problems !

h,

cu
ry~

],[

),(0

))((U

)(

)(

),,,(0

0,

cr

rrr

cr

rrr

rr

rrrr

ttt

dxh

uu

xtx

xgy

duxxf

∈
≥

⋅=
=
=
= &

),,,,,(min 0,
,0,

fcrrrr
dx

ttdxy
rr

ηΦ

s.t.

],[

),(0

))((D

)()(

)(

),,,(0

fc

ccc

rc

crcc

cc

cccc

ttt

uxh

dd

txtx

xgy

duxxf

∈
≥

⋅=
=
=
= &

),,,(min fcccc
u

ttux
c

Φ

s.t.



Real-time Business Decision Making in the Process Industries

Direct Solution Approach

• solution of optimal control
reconciliation problems at
controller sampling frequency

• computationally demanding

• model complexity limited
� large models ?

• lack of transparency,
redundancy and reliability

(Terwiesch et al., 1994;
Helbig et al., 1998;
Wisnewski & Doyle, 1996;
Biegler & Sentoni, 2000
Diehl et al., 2002,
van Hessem, 2004)
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Vertical (Time-Scale) Decomposition

• generalizes steady-state
real-time optimization and 
constrained predictive
control

• requires (multiple) time-
scale separation, e.g.
d(t) = d0(t) + ∆d(t)
with trend d0(t) and 
zero mean fluctuation ∆d(t)

optimizing feedback
control system
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Real-time Dynamic Optimization

• dynamic optimization -
a versatile means for
problem formulation

• focus will be on
trajectory design

• improvement of 
numerical methods

optimizing feedback
control system
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A Closer Look on Dynamic Optimization

Mathematical problem formulation
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Sequential Approach (Single Shooting)

Control vector parameterization
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Improved Algorithms – Sequential Approach

Sensitivity integration
is expensive

Reduce number
of sensitivity parameters

Improve efficiency
of sensitivity integration

Reduce
model complexity

State integration
is expensive

Control grid
adaptation strategy
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Multiscale Representation
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Adaptive Refinement Algorithm

Repetitive procedure

• Re-optimize problem on refined mesh

• Profile from previous solution as initial 
guess

• Decouple optimization and adaptation

refine

• Concepts from signal analysis

• Grid point elimination

• Grid point insertion

Mesh analysis

coarse initial mesh

eliminate refine

wavelet

analysis

re-solve   optimization

until 
stopping 
criterion 
met.

re-solve   optimization

…
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A Simple Illustrating Example

isothermal semi-batch reactor
(Srinivasan et al, 2003)

reactions: A+B→C, 2B →C
conditions: semi-batch, isothermal

objective: maximize production of C at given final time tf
control vars.:  feed rate of B
constraints: input bounds, constraints on cB and cC at tf

model: 3 differential and 2 algebraic equations

M

cooling

feed
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Adaptation Strategy
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• error-controlled computations
• intermediate results available after short computation times
• favorable for on-line applications
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Theoretical Analysis

• true solution contains different arcs
• sequence and structure of arcs is

determined by necessary conditions of  
optimality (NCO)

• NCO hard to assess for large nonlinear
problems (theory complicated, partly
even lacking)
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Is there a way to 
detect and exploit switching structure

during numerical solution?

Integration of NCO in Numerical Algorithm
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Detection and Exploitation of Solution Structure

2. Analyze the results of the NLP to 
determine the different arcs in the
solution structure

3. Reformulate as a multi-stage problem
according to switching structure, 
resolve the problem with lengths of arc
intervals as additional degrees of 
freedom with adapative algorithm

piecewise
linear

piecewise
constant

1. Solve problem to obtain a (possibly
adaptive) single-stage solution
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A Simple Illustrating Example – Re-visited

non-isothermal semi-batch reactor
(Srinivasan et al, 2003)

reactions: A+B→C, 2B →C
conditions: semi-batch, 

non-isothermal
exothermic reaction

objective: maximize production of C at given final time tf
control vars.:  feed rate of B and reactor temperature
constraints: input bounds, constraints on cB and cC at tf

model: 4 differential and 4 algebraic equations

M

cooling

feed
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Results
MV 1: Feed rate MV 2: Temperature

Path constraint 1: heat Path constraint 2: volume
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Results
MV 1: Feed rate MV 2: Temperature

Path constraint 1: heat Path constraint 2: volume

� methodology handles problems with multiple controls and
complex switching structures and provides quasi-analytical
solutions

� recently successfully applied to the Bayer INCOOP benchmark
problem, a polymerization plant with 4 manipulated 
variables and ~ 2000 DAEs

� currently applied to the Shell INCOOP benchmark problem, 
an intermediate organic products plant, ~ 10.000 DAEs
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Real-time Dynamic Optimization

integration of dynamic
optimization and  
model predictive control

• models, formulations, 
algorithms, ... 

• when to trigger an
update of trajectory?

• how to account for
control performance on 
optimization level ?

• ...

optimizing feedback
control system
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Alternative 1: NCO Tracking

• minimal parameterization of the
nominal optimal solution:
sequence / type of arcs

• assume non-changing switching
structure due to uncertainty

• implement a linear multi-variable 
(decentralized, switching) control
system to track the NCO

• supervisory control on dynamic optimization level
– check potential changes of switching structure
– quantitatively assess optimality loss
– trigger dynamic optimization and new switching structure detection

Bonvin, Srinivasan et al., 2003 

adjust switching
times

track singular arc
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Alternative 1: NCO Tracking

• minimal parameterization of the
nominal optimal solution:
sequence / type of arcs

• assume non-changing switching
structure due to uncertainty

• implement a linear multi-variable 
(decentralized, switching) control
system to track the NCO

• supervisory control on dynamic optimization level
– check potential changes of switching structure
– quantitatively assess optimality loss
– trigger dynamic optimization and new switching structure detection

Bonvin, Srinivasan et al., 2003 

� recently successfully applied to the Bayer INCOOP
benchmark problem, a polymerization plant with 4 
manipulated variables and ~ 2000 DAEs
(joint work with Bonvin et al.)

� switching structure changes due to uncertainty, 
motivation for supervisory level

adjust switching
times

track singular arc
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t∆

t~∆ MPC

Alternative 2: LTV-MPC for Trajectory Tracking

refref uy ,
updated

D-RTO trigger  and fast updates    

Re-optimization with adaptation 
of control discretization mesh

Re-optimization on coarse control 
discretization

linear time-varying
MPC in delta-mode
for trajectory tracking,
fast time-scale

dynamic real-time
optimization (D-RTO), 
fast solution updates
when possible,
even for changing
switching structure

cheap sub-optimal 
feasible trajectory
updates
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Fast Update and D-RTO Trigger Algorithm
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%101 +=∆b and                        at t = 250 sec C10o−=∆ inT

Closed-loop Optimization Results
Williams-Otto semi-batch reactor
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Real-time Planning and Scheduling

integration of planning
& scheduling with
model predictive control

• models, formulations, 
algorithms, ... 

• integrated or
decomposed
problem formulations

• how to account for
process performance
and uncertainty on the
planning level

• ...

optimizing feedback
control system
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An Illustrating Example

a typical problem
• scheduling of different polymer grades production
• optimization of grade transitions

to be cast in a multi-stage dynamic optimization problem with logical
constraints (a so-called MLDO problem)

tim
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Disjunctive Programming Formulation
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A Sample Result
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• polyolefine reactor, ca. 80 DAEs
• six grades production campaign
• no due dates constraints
• MLDO formulation
• solved by disjunctive programming

in 4 major iterations in < 5 min CPU
• optimal sequence 1-2-4-6-3-5
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Conclusions

• any-time economically optimal operation
– rather than set-point following and disturbance rejection
– requires real-time business decision making (RT-BDM)

• RT-BDM problems are dynamic optimization problems

• RT-BDM problem formulation, decomposition & analysis
are largely open fields

• dynamic optimization technology is a key enabler
– how to deal with uncertainty ?
– how to decompose and re-integrate ?
– how to provide consistent models on different time-scales ?
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Conclusions

• any-time economically optimal operation
– rather than set-point following and disturbance rejection
– requires real-time business decision making (RT-BDM)

• RT-BDM problems are dynamic optimization problems

• RT-BDM problem formulation, decomposition & analysis
are largely open fields

• dynamic optimization technology is a key enabler
– how to deal with uncertainty ?
– how to decompose and re-integrate ?
– how to provide consistent models on different time-scales ?
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