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MM\\. rlf\, Lv... = Clustering (MST)

= Group genes into functional units

A based on correlations in expression

L]
'l "/\/ = Expresses co-regulation and not
o causality
L]

\ . \”» = System identification approach
= Build dynamic models for gene

VA
. L regulatory networks
[\/-\\’ = Estimate model from genome-wide
scale expression data
9

L]
/\/\ : /\J\v = Infer “causal relationships”

/\[\ between genes from
microarray data

5C Symposium, June 7-8, 2004

i3
(1,C)" TUDelft

Genetic network modeling

Constrained modeling
= Remove redundancy
= Increase sparseness
= Increase robustness

Comparison using artificial example
Preliminary study
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Mathematical model

= Allows to make prediction under different conditions
= Estimate model parameters by fitting predicted and measured
expression profiles

Current modeling techniques

= (Dynamic) Bayesian models (Murphy, Pe'er, ...,
= Non-linear models (Weaver, Wahde, ...,
= Linear models ( , ..., D'haeseleer)

Linear models
= Continuous valued, analytical solutions exists
= Allows for (math.) incorporation (biologically motivated) constraints
= Allows to study small sample size problem
= Gained knowledge re-usable for more complex models
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= Thousands of genes (/) and tens
of microarray measurements (7)

= Small sample size problem

any point on line

is valid solution |& For example: 2 Genes, 2 arrays

For both genes only one equation
Error can be made zero by:

Solve weights wj;

= A of solutions gives
prediction!
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Genetic network modeling
Linear model
Constrained modeling

= Increase sparseness
= Increase robustness

Comparison using artificial example
Preliminary study
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Remove redundancy (ambiguity)
Reducing number of genes by exploiting their co-regulation

Increase sparseness (Arnone: limited connectivity)

Reducing number of weights by allowing only a few non-
zero weights (a few incoming connections)

Increase robustness (regularization)
Inference should be somewhat insensitive to small amounts

of noise
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Group signals that
behave similarly
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Redundancy
= Co-regulation
= Ambiguity due to noise in the data

Remove redundancy
= Cluster genes
= Construct “meta-genes”

Model similar (grouped) signals in
same way
= Find regulation between “meta-
genes”
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(Spellman; CDC 15 Subset)

= Threshold at 2
113 genes

= Mean-Variance
Normalization

= 14 Prototypes !!!
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* Current model
Gene is possibly influenced by genes

= Practice

Gene is influenced only by
number of genes

(6-8 regulatory sites (Arnone))
But we don't know which ones!

= Greedy search approach
= Find gene that best predicts g,

= Extend current set with that gene that
when included gives the best prediction

= Repeat until convergence
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Genetic network modeling
Linear model

Constrained modeling
= Remove redundancy

= Increase robustness
= Comparison using artificial example
= Preliminary study
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Greedy search
Structural Power vs. No. Genes (Cn=4, Nt=20, Psnr = 40dB ) = Forward (previous methOd)
e w———ys = Backward
__ Genesicalgoriem Beam search
— forward = Expand only the & most
" backward promising solutions

\»/\_;':'1 = N=1, equal to greedy search
Floating search

= Greedy expand but allow to
withdraw previous made choices

Stochastic search
= Genetic algorithm

0
100 200 300 400 500 600 700 800 900 1000
No. Genes

Comparison
= Beam search outperforms others
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Genetic network modeling
Linear model
Constrained modeling

= Remove redundancy
= Increase sparseness

Comparison using artificial example
Preliminary study

7-8 June, 2004

Independent noise on each
measurement

Now solving weights w;

different offset different direction
Different sets of solutions !

Solution that “fits” all solutions is
most robust
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* From initial dataset G, create K
new datasets G, in which each
measurement is slightly perturbed

= Divide into input Xand target Y

= Problem (re)formulation

(1,C)T ai

LS solution on
noise injected
b dataset

Linear model

Find W by minimizing squared
error (Least Squares solution)

If K*T> Nthen LS solution exists

Noise strength o2 determines
robustness !
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Bishop
Noise injection = Regularization

= Equivalent to ridge regression

Regularization term (Tikhonov)

= Analytical solution exists

Linear model

Positive constant on diagonal of XX
RIDGE / NI prevents singularity
solution S w2 = const .

——

Importance of regularization = Small 2: WRDGE= WS

controlled by 72 same role as o*
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= Some solutions have limited

: . . connectivi
Most robust Moore-penrose solution Robust solution )

exact solution r Limited connectivity

(pinv solution) = Choose solution
= Minimal connectivity

= Most robust against noise

= In other words: select exact = Lasso regression
solution which is most robust, ie

,,
= Still an exact solution !!! = Small iz WSso= W

= Large 1 : Shrinks coefficients
to zero!
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* Methods
PINV
One solution
LASSO/RIDGE
Change tuning parameter
Search
Select best input gene
PCA
Select inputs in PCA mapped space

= RIDGE/PCA
Tend to behave similar

= LASSO
“soft-thresholding” weights

= SVD analysis reveals

Largest principal
component

- i

- W)
Wasso(ﬂ)
weer )

u;
d:

7

principal components X
amount of variance

Smallest principal

component = Ridge regression shrinks
directions with smallest variance
most
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. G ti t Kk deli = Generation of the data
enetic hetwork modeling = For varying number of genes (x-axis of the plot)

= Linear model = Fixed connectivity (C=4)
= Random generation of W

= Constrained modeling = For each gene 7=17 time points generated from random initial state
= Remove redundancy = Noise added to these time points (40dB PSNR)

= Increase sparseness = Measured

= Increase robustness = Inferential power: Correlation between true Wand estimated W
= Averages of 40 repetitions of the experiment

= Parameter setting methods done using leave-one-out-
procedure

= Preliminary study
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—— reference (random) —— reference (random)

-~ cluster

Data: 16 transitions pairs

D um, June 7-8, 200

Data: 16 transitions pairs
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—— reference (random) o\ —— reference (random)

-/ cluster A -/ cluster

=/ pinv (perfect datafit) =/ pinv (perfect datafit)
—t— ridge regression (loo)

Data: 16 transitions pairs Data: 16 transitions pairs
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—— reference (random)
-~ cluster

=7 pinv (perfect datafit)
—f— ridge regression (loo)

—E+ lasso regression (100)
e_greedy seach (o0) [ "/~

: 16 transitions pairs

—— reference (random)
-~ cluster

=7 pinv (perfect datafit)
—f— ridge regression (loo)

lasso regression (loo) .
Data: 16 transitions pairs
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. . As a result of the small sample size problem
Genetic network modellng Studying models under noisy conditions is essential (PSB, BIOS

Linear model 2001, results not shown)

a a Constraining models is necessary to be able to find ‘sensible’
Constrained modeling colutiong o

= Remove redundancy Need to be careful when using more complex models (since they
= Increase sparseness suffer more from the small sample size problem)

= Increase robustness When properly constrained suggestions for new
relationships between genes can be made

Comparison using artificial example

Further improve modeling by exploiting additional
constraints

5 <2
(1,C)T TUDelft (1,c)T TU Delft




DCSC Symposium 2004

= Dealing with small sample size problem
= How to cope with pseudo structure
= Experimental design: Predicting most valuable next experiment
(significance analysis: Which predicted link should be examined first)

= Integrative approach, i.e How to integrate:

= Different experiments: E.g. knock-out and time series, data generated
in different labs

Different types of data: E.g. sequence data, protein-protein
interaction, metabolite concentrations

Data bases information: How to bias solutions towards existing
knowledge in databases

Data from different organisms: E.g. conserved pathways
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