

Regression networks Mathematical model Allows to make prediction under different conditions Estimate model parameters by fitting predicted and measured expression profiles Current modeling techniques • (Dynamic) Bayesian models (Murphy, Pe'er, ..., van Berlo) • Non-linear models (Weaver, Wahde, ..., Au Yeung, van Roon) Linear models (*Someren*, ..., D'haeseleer) Linear models Continuous valued, analytical solutions exists • Allows for (math.) incorporation (biologically motivated) constraints Allows to study small sample size problem Gained knowledge re-usable for more complex models DCSC Symposium, June 7-8, 200-**T**UDelft (I,C)^T Appeared in Pharm accorenom ics 2002

DCSC Symposium 2004

7-8 June, 2004

Outline	Artificia
 Genetic network modeling Linear model Constrained modeling Remove redundancy Increase sparseness Increase robustness Comparison using artificial example Preliminary study 	 Generati For vary Fixed co Random For each Noise ach Measure Inferent Average Paramete procedure
DCSC Symposium, June 7-8, 2004 27	DCSC Symposium, June 7-8,
(I,C) [™] ŤUDelft	(I,C) [⊤]

<section-header>Artificial example: Set-up • Generation of the data • For varying number of genes (*-axis of the plot). • Fixed connectivity (C=4) • Random generation of W • For each gene 7=17 time points generated from random initial state • Noise added to these time points (40dB PSNR) • Measured • Inferential power: Correlation between true W and estimated W • Averages of 40 repetitions of the experiment • Parameter setting methods done using leave-one-outprocedure

Outline	Some g
 Genetic network modeling Linear model Constrained modeling Remove redundancy Increase sparseness Increase robustness Comparison using artificial example Preliminary study 	 As a res Studyin 2001, r Constra solution Need to suffer r When pr relation Further constraint
DCSC Symposium, June 7-8, 2004 35	DCSC Symposium, June 7-8
(I,C) [™] ŤUDelft	(I,C) [⊤]

DCSC Symposium 2004

Future directions Dealing with small sample size problem How to cope with pseudo structure • Experimental design: Predicting most valuable next experiment (significance analysis: Which predicted link should be examined first) • Integrative approach, i.e How to integrate: Different experiments: E.g. knock-out and time series, data generated in different labs Different types of data: E.g. sequence data, protein-protein interaction, metabolite concentrations • Data bases information: How to bias solutions towards existing knowledge in databases • Data from different organisms: E.g. conserved pathways **T**UDelft

(I,C)^T