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Genetic Network Modeling

Clustering (MST)
Group genes into functional units 
based on correlations in expression
Expresses co-regulation and not 
causality

System identification approach 
Build dynamic models for gene 
regulatory networks 
Estimate model from genome-wide 
scale expression data

Infer “causal relationships” 
between genes from 
microarray data
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Regression networks

Mathematical model
Allows to make prediction under different conditions
Estimate model parameters by fitting predicted and measured 
expression profiles

Current modeling techniques
(Dynamic) Bayesian models (Murphy, Pe’er, …, van Berlo)
Non-linear models (Weaver, Wahde, …, Au Yeung, van Roon)
Linear models (Someren, …, D’haeseleer)

Linear models
Continuous valued, analytical solutions exists
Allows for (math.) incorporation (biologically motivated) constraints
Allows to study small sample size problem
Gained knowledge re-usable for more complex models

Appeared in: Pharm acogenom ics2002
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Linear model
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error model

wiring diagram

:ijw

finding wij by minimizing ES wrt wij

wij=0 : no interaction between gi and gj
wij>0 : gj is activating gi
wij<0 : gj is repressing gi
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Limited measurements

Thousands of genes (N) and tens 
of microarray measurements (T)

Small sample size problem

For example: 2 Genes, 2 arrays
For both genes only one equation
Error can be made zero by:

Solve weights wij

A SET of solutions gives PERFECT
prediction!
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Dealing with limited measurements?

Remove redundancy (ambiguity)
Reducing number of genes by exploiting their co-regulation

Increase sparseness (Arnone: limited connectivity)
Reducing number of weights by allowing only a few non-
zero weights (a few incoming connections)

Increase robustness (regularization)
Inference should be somewhat insensitive to small amounts 
of noise
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Remove redundancy

Redundancy
Co-regulation
Ambiguity due to noise in the data

Remove redundancy
Cluster genes
Construct “meta-genes”

Model similar (grouped) signals in 
same way

Find regulation between “meta-
genes”

1g
2g
3g
4g

1c
2c

1m
2m

Calculate ‘prototype’ per 
group: Meta-gene

Group signals that 
behave similarly

Appeared in: ISM B 2000
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Yeast Cell Cycle Data 

Threshold at 2
113 genes

Mean-Variance 
Normalization

14 Prototypes !!!

FULL CONNECTIVITY !

(Spellman; CDC 15 Subset)

Appeared in: ISM B 2000
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Increase sparseness

Current model
Gene is possibly influenced by ALL genes

Practice
Gene is influenced only by limited
number of genes 
(6-8 regulatory sites (Arnone))
But we don’t know which ones! 

Greedy search approach
Find gene that best predicts gi
Extend current set with that gene that 
when included gives the best prediction
Repeat until convergence
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Appeared in: ICSB 2001
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backward

beam(10)

forward

Other search techniques

Greedy search
Forward (previous method)
Backward

Beam search
Expand only the N most 
promising solutions
N=1, equal to greedy search

Floating search
Greedy expand but allow to 
withdraw previous made choices

Stochastic search
Genetic algorithm

Comparison
Beam search outperforms others

Appeared in: ICSB 2001
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Increase robustness

Independent noise on each 
measurement

Now solving weights wij

Different sets of solutions !
Solution that “fits” all solutions is 
most robust
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Appeared in: Com putational and Statistical Approaches to Genom ics, 2002
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Noise injection

From initial dataset G0 create K
new datasets Gk in which each 
measurement is slightly perturbed

Divide into input X and target Y

Problem (re)formulation
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Noise injection

Linear model

Find W by minimizing squared 
error (Least Squares solution)

If K*T > N then LS solution exists

Noise strength σ 2 determines 
robustness !
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dataset

Appeared in: Com putational and Statistical Approaches to Genom ics, 2002
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Noise injection
Bishop
Noise injection = Regularization

Regularization term (Tikhonov)

Linear model

Importance of regularization 
controlled by η2 same role as σ2
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Ridge regression

Equivalent to ridge regression

Analytical solution exists

Positive constant on diagonal of XTX
prevents singularity

Small λ: WRIDGE=WLS
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Moore-penrose solution

Moore-penrose solution

In other words: select exact 
solution which is most robust, ie

Still an exact solution !!!
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exact solution
(pinv solution)

DCSC Symposium, June 7-8, 2004

(I,C)T
24

Lasso regression

Some solutions have limited 
connectivity

Choose solution 
Minimal connectivity
Most robust against noise

Lasso regression

Small µ: WLASSO=Wls

Large µ : Shrinks coefficients 
to zero!
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PCA equivalence

SVD analysis reveals

uj: principal components X
dj: amount of variance

Ridge regression shrinks 
directions with smallest variance 
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Appeared in: Com putational and Statistical Approaches to Genom ics, 2002
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Comparison regularization

Methods
PINV 
One solution
LASSO/RIDGE
Change tuning parameter
Search
Select best input gene
PCA
Select inputs in PCA mapped space

RIDGE/PCA 
Tend to behave similar
LASSO 
“soft-thresholding” weights
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Appeared in: Com putational and Statistical Approaches to Genom ics, 2002
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Artificial example: Set-up

Generation of the data
For varying number of genes (x-axis of the plot)
Fixed connectivity (C=4)
Random generation of W
For each gene T=17 time points generated from random initial state
Noise added to these time points (40dB PSNR)

Measured
Inferential power: Correlation between true W and estimated W
Averages of 40 repetitions of the experiment

Parameter setting methods done using leave-one-out-
procedure
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Appeared in: Com putational and Statistical Approaches to Genom ics, 2002
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Data: 16 transitions pairs
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Some general conclusions

As a result of the small sample size problem
Studying models under noisy conditions is essential (PSB, BIOS 
2001, results not shown)
Constraining models is necessary to be able to find ‘sensible’ 
solutions
Need to be careful when using more complex models (since they 
suffer more from the small sample size problem)

When properly constrained suggestions for new  
relationships between genes can be made

Further improve modeling by exploiting additional 
constraints
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Future directions

Dealing with small sample size problem
How to cope with pseudo structure
Experimental design: Predicting most valuable next experiment
(significance analysis: Which predicted link should be examined first)

Integrative approach, i.e How to integrate:
Different experiments: E.g. knock-out and time series, data generated 
in different labs
Different types of data: E.g. sequence data, protein-protein 
interaction, metabolite concentrations
Data bases information: How to bias solutions towards existing 
knowledge in databases
Data from different organisms: E.g. conserved pathways 


