### **Systems & control Inspired by Biology**



Systems & control: challenges in the 21st century

**Richard van der Linde** 

Delft University of Technology, Delft Biorobotic Laboratory & Altran Technologies Netherlands

June 9, 2004





- Who are we ?
- Introduction biorobotics
- Lessons learnt so far
- Conclusions
- Challenges for the 21<sup>st</sup> century



#### The world



June 9, 2004



### What do we do?

Biorobotics is robotics inspired by biological systems

Key projects in the DBL:

- Efficient & stable walking 1995 STW
- Safe manipulator 1999 TUD
- Biocompatible grasping

1999 TUD2002 VENI









4



- Who are we ?
- Introduction biorobotics
- Lessons learnt so far
- Conclusions
- Challenges for the 21<sup>st</sup> century



### A new generation of robotics is coming



rehabilitation







wheelchair robotics home robotics entertainment



medical robotics



agro robotics



space robotics





### **Interaction with biological systems requires a different control approach**

#### **Biological inspiration = Biorobotics**

Useful properties of biological systems:

- **stable** interaction
- **adaptive** to environmental conditions
- **safe** interaction
- **simple** solutions

Because we design for biological systems

### **Human CNS control scheme**



F.C.T. van der Helm



# Also, biological and artificial systems have different system properties !

|                                | human                    | techniqu  | le             |
|--------------------------------|--------------------------|-----------|----------------|
| <ul> <li>delay time</li> </ul> | 50-120 ms                | 0.1 - 5   | ms             |
| • # sensors hand               | 17.000                   | ~ 10 -    | 40             |
| • # sensors eye                | 12 Mp                    | ~ 0.3 - 1 | . Мр           |
| • # actuators                  | 639                      | ~ 20 -    | 40             |
| • # DOFs                       | ~ 200                    | ~ 20 -    | 40             |
| • # op. units                  | 50 - 100 e <sup>12</sup> | 4 - 100   | e <sup>7</sup> |
| • power cons.                  | 100 W                    | 4000 \    | W              |
|                                |                          |           |                |

#### **Different solutions !!!**





- Who are we ?
- Introduction biorobotics
- Lessons learnt so far
- Conclusions
- Challenges for the 21<sup>st</sup> century



#### **Problem:**

**Energy consumption** (price, complexity, non-natural)





•43 kg

June 9, 2004



#### Solution:

Exploiting ballistic motion, creating stable limit cycles







2000

gravity powered devices



2001



June 9, 2004

M. Wisse

#### **Problem:**

Activation & control

#### Solution:

phasic variation of passive stiffness









#### A simulation result:





#### **Problem:**

How to make efficient active springs

#### Solution:

Pneumatic (McKibben) muscles





stretch force curve of McKibben muscle







developed pneumatic components + PC104 controller

> Baps •3.4 kg •16 W (15 W elec.) •11 steps •3D

#### The first steps (2002)





#### **Problem:**

Achieving cycle robustness

#### Solution 2:

Mechanical Optimisation (spherical feet, DSF)



elft

#### **Successful solution**

simple reflexes:

- stretching the knee
- swinging the hip

Max •10 kg •LEGO brick control •∞ steps •2D





#### **Problem:**

Achieving cycle stability in 3D

#### Solution:

#### Adaptation of reflexive control ?







#### Limit cycle dead beat control





1995



2001



2002

Van der Linde, Frankenhuyzen, Wisse, Schwab, Hobbelen

(muscle) powered devices

2003

**P robust 3D stopping turning etc...** 



June 9, 2004

#### **Problem:**

Arm movement in audience

#### Solution:

Passive compliant motion



human movement control Lambda model (Feldman)







22

4 DOF Gravity compensation mechanism of hand mass





#### 6 DOF passive compliant activation



#### Optimisation of muscle configuration







## **To be solved:** dynamic position control



25

### **Biocompatible grasping**

#### **Problem:**

Instabilities during hard contact (e.g. hammer effect)



![](_page_25_Picture_4.jpeg)

![](_page_25_Picture_6.jpeg)

### **Biocompatible grasping**

#### Solution:

asymmetric teleoperation force feedback control approach

![](_page_26_Figure_3.jpeg)

![](_page_26_Picture_5.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_27_Picture_2.jpeg)

### **Biocompatible grasping**

![](_page_28_Picture_1.jpeg)

#### stable for hard objects

![](_page_28_Picture_3.jpeg)

29

![](_page_29_Picture_0.jpeg)

- Who are we ?
- Introduction biorobotics
- Lessons learnt so far
- Conclusions
- Challenges for the 21<sup>st</sup> century

![](_page_29_Picture_7.jpeg)

### Conclusion

In biological systems a plethora of control mechanisms seem to be present on different different functional levels, some of which are are active, some of which are passive. Being inspired by these mechanisms has resulted in biorobotic solutions that are **simple**, **adaptive, stable & safe.** 

![](_page_30_Picture_3.jpeg)

![](_page_31_Picture_0.jpeg)

- Who are we ?
- Introduction biorobotics
- Lessons learnt so far
- Conclusions
- Challenges for the 21<sup>st</sup> century

![](_page_31_Picture_6.jpeg)

### The 21<sup>st</sup> century ?

Åström [2004]

Control engineering has a soul but no body

#### Van der Linde [2004]

Biorobotics has a body but needs more soul

![](_page_32_Figure_5.jpeg)

![](_page_32_Picture_6.jpeg)

33

Delf