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Modeling for control

Points for discussion:

• Choice of model class is crucial

• ‘Data-based modeling’ needs a model class

• Model class of linear systems is very useful, but has severe

limitations

• For physical systems we need model classes which are also

’physics-based’

• Which capture basic conservation laws (whose existence is

independent of any numerical values!)

• Model class must be ‘closed under interconnection’, in order to

build up models for complex systems
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Prevailing trend in modeling and simulation of complex

(lumped-parameter) physical systems:

Network or object-oriented modeling

Advantages:

• ‘Handle complexity by modularity’.

• Modularity and flexibility.

• Re-usability (‘libraries’)

• Suited to design/control

• Multi-domain physics (electrical, mechanical, thermal,

chemical, ..)
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Disadvantage of current network modeling: it generally leads to a

large set of differential and algebraic equations (DAE’s), seemingly

without any structure.

(In contrast with ‘global’ physical modeling methods.)

Aim: to identify the underlying physical structure of network

models in order to obtain models suited for analysis, simulation and

control of broad classes of (nonlinear) physical systems.



Systems and Control: Challenges in the 21st century, Delft, June 2004 5

Network modeling leads to

open dynamical systems

that interact with other systems via a set of external variables.

Basic starting point for this talk:

Interaction between system components is modeled by

variables that describe energy exchange between components:

the power-port point of view

Two main reasons:

• For lumped systems with components from different physical

domains this has proved to be successful; e.g., bond graphs.

• Assumption naturally leads to a (generalized) Hamiltonian

description of the system components and the complex

system, also capturing other conservation laws.
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Motivating example Two inductors with magnetic energies

H1(ϕ1), H2(ϕ2) (ϕ1 and ϕ2 magnetic flux linkages), and capacitor

with electric energy H3(Q) (Q charge). V denotes the voltage of

the source.

Q

C

ϕ1 ϕ2

V

L1 L2

Question: How to write this simple network as a “Hamiltonian

system” in a modular way?
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Equations for the individual components of the LC-circuit:

Inductor 1 ϕ̇1 = f1 (voltage)

(current) e1 = ∂H1

∂ϕ1

Inductor 2 ϕ̇2 = f2 (voltage)

(current) e2 = ∂H2

∂ϕ2

Capacitor Q̇ = f3 (current)

(voltage) e3 = ∂H3

∂Q

If the elements are linear then

H1(ϕ1) =
1

2L1
ϕ2

1, H2(ϕ2) =
1

2L2
ϕ2

2, H3(Q) =
1

2C
Q2
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Kirchhoff’s interconnection laws in f1, f2, f3, e1, e2, e3, f = V, e = I are
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leading to the interconnected Hamiltonian system









ϕ̇1

ϕ̇2

Q̇









=









0 0 −1

0 0 1

1 −1 0





















∂H
∂ϕ1

∂H
∂ϕ2

∂H
∂Q













+









1

0

0









f

e = ∂H
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with H(ϕ1, ϕ2, Q) := H1(ϕ1) + H2(ϕ2) + H3(Q) total energy.
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General definition of a port-Hamiltonian system

Ingredients (X ,F ,D, H):

• Energy-storing elements with energy-variables xi living in a

total state space X .

• Flow variables f ∈ F = R
m and conjugated effort variables

e ∈ F∗ = R
m, terminating on dissipative elements and

ports/sources.

• Interconnection structure: Dirac structure D

(fx, ex, f, e) ∈ D(x) ⊂ TxX × T ∗
xX × F ×F∗

• Total energy: H(x1, · · · , xk).
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PSfrag replacements

ẋ

∂H
∂x

(x)

fx

ex

f

e

D(x)H(x)

Figure 1: Port-Hamiltonian system

The dynamical system defined by the relations

(−ẋ(t),
∂H

∂x
(x(t)), f(t), e(t)) ∈ D(x(t)), t ∈ R

is called the port-Hamiltonian system (X ,F ,D, H).
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Particular case is a Dirac structure D(x) ⊂ TxX × T ∗
xX × F × F∗

given as the graph of the skew-symmetric map




fx

e
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



−J(x) −g(x)

gT (x) 0




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ex

f



 ,

leading to a Hamiltonian input-state-output system

(fx = −ẋ, ex = ∂H
∂x

(x))

ẋ = J(x)∂H
∂x

(x) + g(x)f, x ∈ X , f ∈ R
m

e = gT (x)∂H
∂x

(x), e ∈ R
m
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General LC-circuits

Kirchhoff’s current and voltage laws

[

AL
T AC

T
]
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defines a Dirac structure between flows and efforts

fx = (IC , VL) = (−Q̇,−φ̇)

ex = (VC , IL) = (∂H
∂Q

, ∂H
∂φ

)

with Hamiltonian H(Q, φ) the total energy.

Leads to port-Hamiltonian system in implicit form

−φ̇ = ALλ

∂H
∂Q

= ACλ

0 = AL
T ∂H

∂φ
− AC

T Q̇

Can be transformed into more convenient form.
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Mechanical systems with kinematic constraints

Consider a mechanical system with constraints on the generalized

velocities q̇, described as

AT (q)q̇ = 0.

This leads to constrained Hamiltonian equations

q̇ = ∂H
∂p

(q, p)

ṗ = −∂H
∂q

(q, p) + A(q)λ + B(q)f

0 = AT (q)∂H
∂p

(q, p)

e = BT (q)∂H
∂p

(q, p)

with H(q, p) total energy, and λ the constraint forces.

Dirac structure is defined by symplectic form on T ∗Q together with

constraints AT (q)q̇ = 0 and force matrix B(q).

Can be extended to general multi-body systems.
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Electro-mechanical system
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Coupling between domains via H(q, p, ϕ) = mgq + p2

2m
+ ϕ2

2k1(1−
q

k2
) .
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Dirac structures, and therefore port-Hamiltonian systems, admit

different equational representations, with different properties.

Hamiltonian DAE’s

Represent the Dirac structure D in kernel representation as

D = {(fx, ex, f, e) | Fx(x)fx + Ex(x)ex + F (x)f + E(x)e = 0},

with

(i) ExFT
x + FxET

x + EFT + FET = 0,

(ii) rank [Fx

...Ex

...F
...E] = dim(X × F).

Since the flows fx and efforts ex corresponding to the

energy-storing elements are given as fx = −ẋ, ex = ∂H
∂x

,

the port-Hamiltonian system is described by the DAE’s

Fx(x(t))ẋ(t) = Ex(x(t))
∂H

∂x
(x(t)) + F (x(t))f(t) + E(x(t))e(t)
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Canonical coordinates

For simplicity take F × F∗ to be void (no ports).

If the generalized Dirac structure on X is integrable then there

exist coordinates (q, p, r, s) for X such that

D = {(fq, fp, fr, fs, eq, ep, er, es) ∈ TxX × T ∗
xX}















fq = −ep, fp = eq

fr = 0, 0 = es

Hence the port-Hamiltonian system on X takes the form

q̇ = ∂H
∂p

(q, p, r, s)

ṗ = −∂H
∂q

(q, p, r, s)

ṙ = 0

0 = ∂H
∂s

(q, p, r, s)
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f2

e2

ek

DI

e1

fk

f1

X1, F1, D1, H1

Xk, Fk, Dk, Hk

e

f

X2, F2, D2, H2

Interconnected system is a port-Hamiltonian system (X ,F ,D, H),

with H = H1 + · · · + Hk, and D based on D1, · · · ,Dk,DI.
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This is a starting point for control.

Control by Interconnection

Connect the plant port-Hamiltonian system to a controller

port-Hamiltonian system.PSfrag replacements

P C
f

e

Figure 2: Control by Interconnection

Closed-loop system is again a port-Hamiltonian system with total

energy Hcl = HP + HC, and closed-loop Dirac structure Dcl based

on DP and DC.
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Port-Hamiltonian systems are more than energy-conserving (or

energy-dissipating if resistive elements are included): the Dirac

structure also determines conserved quantities independent of the

energy function.

By deliberate choice of DC we may generate Casimir functions K

for the closed-loop system, and use the candidate Lyapunov

function (even for unstable plant systems!)

V := HP + HC + K

Addition of energy-dissipating elements may result in asymptotic

stabilization.

This can be seen as (dynamic) impedance control.
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Second scheme:

Interconnection-Damping Assignment by State Feedback

Use state feedback to transform the plant port-Hamiltonian system

into another port-Hamiltonian system with desired properties:

IDA-PBC method (Ortega, vdS, Maschke, Spong, Blankenstein, ..).

PSfrag replacements

P

α(x)

f

e

When applied to mechanical systems this method is equivalent to

the method of Controlled Lagrangians,

developed by Bloch, Leonard, Marsden, et al..
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Systems theory of physical systems

• Theory of composition/interconnection

• Compositional analysis

• Equivalence of components and exact model reduction

• Approximate model reduction and abstraction

• Identification of system parameters

• Coupling of physical systems to discrete transition systems:

embedded systems theory
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Summary sofar

• Complex lumped systems (from different physical domains) are

modeled as port-Hamiltonian systems, in a modular way.

• Models are suited for analysis, design and control.

Identification of Hamiltonian structure has already shown to be

important for stability analysis, derivation of simulation

models, model analysis and control.

• Also physical systems with switching topology can be studied

within this framework (walking robots, power converters, .. .)

Next question:

How to incorporate distributed-parameter components?
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Example

Transmission line

PSfrag replacements

Va
Ia

Vb
Ib

a b

Figure 3: Transmission line

Telegrapher’s equations define the boundary control system

∂Q
∂t

(z, t) = − ∂
∂z

I(z, t) = − ∂
∂z

φ(z,t)
L(z)

∂φ
∂t

(z, t) = − ∂
∂z

V (z, t) = − ∂
∂z

Q(z,t)
C(z)

Va(t) = V (a, t), Ia(t) = I(a, t)

Vb(t) = V (b, t), Ib(t) = I(b, t)
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Transmission line as port-Hamiltonian system

Define flows fx = (fE , fM ) and efforts ex = (eE , eM ):

electric flow fE : [a, b] → R

magnetic flow fM : [a, b] → R

electric effort eE : [a, b] → R

magnetic effort eM : [a, b] → R

together with boundary flows f = (fa, fb) and efforts e = (ea, eb).
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defines an infinite-dimensional Dirac structure !
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Interconnection

Interconnection of an infinite-dimensional port-Hamiltonian system

with a finite-dimensional port-Hamiltonian system leads to a mixed

finite- and infinite-dimensional port-Hamiltonian system.

“All” techniques of finite-dimensional port-Hamiltonian systems

carry over to the infinite-dimensional and mixed case.

Spatial discretization of infinite-dimensional components

First step: discretization of Dirac structure to finite-dimensional

Dirac structure. How to do this? Discretize the variables in a

different way, depending on their geometric content: mixed finite

element methods.

By restriction of the Hamiltonian to the resulting finite-dimensional

space of energy variables, this leads to an approximating

finite-dimensional port-Hamiltonian system.
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Conclusions

• Unified framework for analysis, simulation and control of

complex lumped-parameter linear and nonlinear systems with

components from different physical domains.

• Port-Hamiltonian description of open distributed-parameter

systems (telegrapher’s equations, Maxwell’s equations,

n-dimensional wave equation, compressible ideal fluids, ..).

• Mixed finite-element discretization to finite-dimensional

port-Hamiltonian systems, and incorporation in port-based

simulation tools.

◦ Analysis and control of infinite-dimensional port-Hamiltonian

systems (with Hans Zwart and Javier Villegas).

◦ Extension to discrete/hybrid interaction ... .

See http://www.math.utwente.nl/~schaftaj


