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Modeling for control
Points for discussion:
e Choice of model class is crucial
e ‘Data-based modeling’ needs a model class

e Model class of linear systems is very useful, but has severe
limitations

e For physical systems we need model classes which are also
'physics-based’

e Which capture basic conservation laws (whose existence is
independent of any numerical values!)

e Model class must be ‘closed under interconnection’, in order to
build up models for complex systems
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Prevailing trend in modeling and simulation of complex
(lumped-parameter) physical systems:

Network or object-oriented modeling
Advantages:
e ‘Handle complexity by modularity’.
e Modularity and flexibility.
e Re-usability (‘libraries’)
e Suited to design/control

e Multi-domain physics (electrical, mechanical, thermal,
chemical, ..)
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Disadvantage of current network modeling: it generally leads to a
large set of differential and algebraic equations (DAE’'s), seemingly
without any structure.

(In contrast with ‘global’ physical modeling methods.)

Aim: to identify the underlying physical structure of network
models in order to obtain models suited for analysis, simulation and
control of broad classes of (nonlinear) physical systems.
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Network modeling leads to

open dynamical systems
that interact with other systems via a set of external variables.
Basic starting point for this talk:

Interaction between system components is modeled by
variables that describe energy exchange between components:

the power-port point of view
TwO main reasons:

e For lumped systems with components from different physical
domains this has proved to be successful; e.g., bond graphs.

e Assumption naturally leads to a (generalized) Hamiltonian
description of the system components and the complex
system, also capturing other conservation laws.
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Motivating example Two inductors with magnetic energies
Hi(p1), Ha(p2) (o1 and o magnetic flux linkages), and capacitor
with electric energy H3(Q) (Q charge). V denotes the voltage of

the source.

Ol 0

Question: How to write this simple network as a “Hamiltonian
system’” in a modular way?
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Equations for the individual components of the LC-circuit:

Inductor 1 1 = f1 (voltage)
(current) ey = Gt

Inductor 2 Yo = fo (voltage)
(current) ey, = ggj

Capacitor Q = f3 (current)
(voltage) e3 = %

If the elements are linear then
Hi(p1) = 5103 Hal2) = 503 Ha(Q) = 507
11 —2L1901, 2(¥2 —2L2902, 3 ~ 50
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Kirchhoff’'s interconnection laws in fi, fo, f3,e1,eq0,e3, f =V, e =1 are

—f 0 0 1 -—1][e
— f9 B O 0 -1 0 €9
=11 0 o |es|
e | |1 0 0 of]|f

leading to the interconnected Hamiltonian system

- — - oOH -
41 0 0 —1] |2 |
: _ oOH
Q 1 -1 0 OH 0
| | 4 1 %0 g
_ OoH
e = Bor

with H(p1,p2,Q) := Hi(p1) + Ha(p2) + H3(Q) total energy.
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General definition of a port-Hamiltonian system
Ingredients (X, F,D, H):

e Energy-storing elements with energy-variables z; living in a
total state space X.

e Flow variables f € 7 = R™ and conjugated effort variables
e c F*=R"™, terminating on dissipative elements and
ports/sources.

e Interconnection structure: Dirac structure D

(fx76x7f76) c D(LU) - Tx-X X T;X XFXF*

e Total energy: H(zy, - ,xg).
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Figure 1: Port-Hamiltonian system

The dynamical system defined by the relations

(= (1), %—Iz(x(t)), f(t),e(t)) € D(z(t)), teR

is called the port-Hamiltonian system (X, F,D, H).
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Particular case is a Dirac structure D(x) C T, X x Ty X x F x F*
given as the graph of the skew-symmetric map

fx _ _J(x> _g(x) €x
e | 9@ 0 || f
leading to a Hamiltonian input-state-output system
(fe = —T,e5 = %—Z(x)>
i o= J@)E(x)+g(@)f, zeX, feR™

e = g"(x)% () e € R™
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General LC-circuits

Kirchhoff's current and voltage laws

At AT
| |

defines a Dirac structure

fa: —

€r —

—¢

oH
oQ
0

= 0,

between flows and efforts
(107 VL) —
(V07IL) —

with Hamiltonian H(Q, ¢) the total energy.
Leads to port-Hamiltonian system in implicit form

= Ap)
= AcA

— A,

TOH _
¢

(8_H OH
0Q " ¢

ActQ

)

Can be transformed into more convenient form.

12
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Mechanical systems with kinematic constraints

Consider a mechanical system with constraints on the generalized
velocities ¢, described as

A (q)g = 0.

This leads to constrained Hamiltonian equations

aH@m)

G (a,p) + A(@A+ B(g) f
= ( )% (a,D)
e = B"(¢9)%, (¢.p)
with H(q,p) total energy, and A\ the constraint forces.

Dirac structure is defined by symplectic form on T*() together with
constraints A% (¢)¢ = 0 and force matrix B(q).

o T R
|

Can be extended to general multi-body systems.
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Electro-mechanical system

- _ o [oH] -
) 0 1 0 9q 0
OH
| — oH _ Y
pl=1-1 0 0 a—p+ov,l—6¢
0 0—% oH 1
R i 5 L

2

Coupling between domains via H(q,p, p) = mgq + % — 2k1(f—i)'
k2




Systems and Control: Challenges in the 21st century, Delft, June 2004

Dirac structures, and therefore port-Hamiltonian systems, admit
different equational representations, with different properties.

Hamiltonian DAE’s
Represent the Dirac structure D in kernel representation as
D= {(fe ez, f,€) | Fro(x)f2 + Ex(x)es + F(x)f + E(x)e = 0},

with
() EF'+F,E'+FEFT +FET =0,

(i)  rank [F:E,:F:E] = dim(X x F).

Since the flows f, and efforts e, corresponding to the

energy-storing elements are given as f, = —i, e, = 2,
the port-Hamiltonian system is described by the DAE's

Fop(x(t))(t) = Ex(x(t))%—i](x(t)) + F(x(t)) f(t) + E(z(t))e(t)
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Canonical coordinates

For simplicity take F x F* to be void (no ports).

If the generalized Dirac structure on X is integrable then there
exist coordinates (q,p,r,s) for X such that

D — {(fQ7fp7f’l“7f876q76p767“768) S TxX X T;X}

¢
fo = —¢ep, fp = g

\ f?‘ — 07 O — 68
Hence the port-Hamiltonian system on X takes the form

¢ = Sgprs)
p — _%—Z(Q7P7T78)
Po= 0

0 OH

— _S(Q7p7r7 S)



Systems and Control: Challenges in the 21st century, Delft, June 2004

Interconnected system is a port-Hamiltonian system (X, F,D, H),
with H = Hy+---+ Hi, and D based on Dy,--- ,Dy,Dy.

17
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This is a starting point for control.
Control by Interconnection

Connect the plant port-Hamiltonian system to a controller
port-Hamiltonian system.

P C

Figure 2: Control by Interconnection

Closed-loop system is again a port-Hamiltonian system with total

energy H.,;, = Hp + Ho, and closed-loop Dirac structure D, based
on Dp and Dg¢.
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Port-Hamiltonian systems are more than energy-conserving (or
energy-dissipating if resistive elements are included): the Dirac
structure also determines conserved quantities independent of the

energy function.

By deliberate choice of Do we may generate Casimir functions K
for the closed-loop system, and use the candidate Lyapunov
function (even for unstable plant systems!)

Vi.=Hp+Ho+ K

Addition of energy-dissipating elements may result in asymptotic
stabilization.

This can be seen as (dynamic) impedance control.
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Second scheme:

Interconnection-Damping Assignment by State Feedback

Use state feedback to transform the plant port-Hamiltonian system
into another port-Hamiltonian system with desired properties:
IDA-PBC method (Ortega, vdS, Maschke, Spong, Blankenstein, ..).

P

When applied to mechanical systems this method is equivalent to
the method of Controlled Lagrangians,

developed by Bloch, Leonard, Marsden, et al..
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Systems theory of physical systems

Theory of composition/interconnection

Compositional analysis

Equivalence of components and exact model reduction
Approximate model reduction and abstraction
Identification of system parameters

Coupling of physical systems to discrete transition systems:
embedded systems theory

21
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Summary sofar

e Complex lumped systems (from different physical domains) are
modeled as port-Hamiltonian systems, in a modular way.

e Models are suited for analysis, design and control.
Identification of Hamiltonian structure has already shown to be
important for stability analysis, derivation of simulation
models, model analysis and control.

e Also physical systems with switching topology can be studied
within this framework (walking robots, power converters, .. .)

Next question:
How to incorporate distributed-parameter components?
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Example

Transmission line

Figure 3: Transmission line

Telegrapher’s equations define the boundary control system

(1) = 2zt = L%
2(z,t) = —EZV(zt) = _%%ég)
Vo) = Viat), 1,(t) = I(a,t)
Vo(t) = V(bt), L) = I(bt)
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Transmission line as port-Hamiltonian system

Define flows f, = (fg, far) and efforts e, = (eg, enr):
electric flow fe:la,b] = R
magnetic flow faoila,b) — R
electric effort eg : la,b] = R

magnetic effort ey :[a,b] - R

together with boundary flows f = (f,, f») and efforts e = (eq, €ep).

)

JE _ 0 92 €E
o)
i Y | | 0z 0 11 CM ]
fa,b . L 0 €E|a,b
€a,b 0 1 €M|a,b

defines an infinite-dimensional Dirac structure !
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Interconnection

Interconnection of an infinite-dimensional port-Hamiltonian system
with a finite-dimensional port-Hamiltonian system leads to a mixed
finite- and infinite-dimensional port-Hamiltonian system.

“All" techniques of finite-dimensional port-Hamiltonian systems
carry over to the infinite-dimensional and mixed case.

Spatial discretization of infinite-dimensional components

First step: discretization of Dirac structure to finite-dimensional
Dirac structure. How to do this? Discretize the variables in a

different way, depending on their geometric content: mixed finite
element methods.

By restriction of the Hamiltonian to the resulting finite-dimensional
space of energy variables, this leads to an approximating
finite-dimensional port-Hamiltonian system.

25
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Conclusions

e Unified framework for analysis, simulation and control of
complex lumped-parameter linear and nonlinear systems with
components from different physical domains.

e Port-Hamiltonian description of open distributed-parameter
systems (telegrapher’'s equations, Maxwell’'s equations,
n-dimensional wave equation, compressible ideal fluids, ..).

e Mixed finite-element discretization to finite-dimensional
port-Hamiltonian systems, and incorporation in port-based
simulation tools.

o Analysis and control of infinite-dimensional port-Hamiltonian
systems (with Hans Zwart and Javier Villegas).

o Extension to discrete/hybrid interaction ... .

See http://www.math.utwente.nl/~schaftaj



