Semistability of Randomly Switched Systems and Its Applications in Networked Systems

Jianghai Hu

Purdue University

July 8, 2013
Outline

• Semistability definition
• Networked systems examples
 • Consensus problems
 • Network localization
• Semistability characterization
• Convergence characterization
• Conclusion and future directions
A discrete-time switched linear system

\[x(t + 1) = A_{\sigma(t)}x(t), \quad t = 0, 1, \ldots \]

- A finite number of modes \(\mathcal{M} = \{1, \ldots, m\} \)
- The switching sequence \(\sigma = \{\sigma(t)\}_{t=0,1,...} \) with \(\sigma(t) \in \mathcal{M} \)
- Solution starting from \(z \) under switching sequence \(\sigma \) is \(x(t; z, \sigma) \)

Different perspectives of switching sequence \(\sigma \)
- Control input: one can specify \(\sigma \) fully (e.g. switching stabilization)
- Perturbation: need to assume the worst (e.g. absolute stability)
- Random signal (mean square stability)
Assumption: Assume all A_i, $i \in \mathcal{M}$, have a common eigenvalue 1 with a common corresponding eigenvector $v \neq 0$

- Common eigenspace $\Omega_e := \bigcap_{i \in \mathcal{M}} \mathcal{N}(I - A_i) \neq \{0\}$
- A continuum of equilibrium points in Ω_e

Definition (Exponential Semistability)

The SLS is exponentially semistable under arbitrary switching if starting from any initial state z and under any switching sequence σ, there exist $x_e(z, \sigma) \in \Omega_e$ and constants $\rho > 0$, $0 \leq r < 1$ such that

$$\|x(t; z, \sigma) - x_e(z, \sigma)\| \leq \rho r^t \|z - x_e(z, \sigma)\|, \forall t$$
Suppose the switching sequence $\sigma(t)$ is random

- i.i.d. sequence with $P(\sigma(t) = i) = p_i$
- A Markov chain

Definition (Mean Square Exponential Semistability)

The SLS is mean square exponentially semistable if starting from any initial state z, there exists a random $x_e(z) \in \Omega_e$ such that

$$\mathbb{E} \left[\| x(t; z) - x_e(z) \|^2 \right] \leq \rho r^t \| z - \mathbb{E}[x_e(z)] \|^2, \forall t$$
Consensus Problem

- A sensor network with a communication graph $G = (V, E)$
- Initial sensor data $x(0) = [x_1(0) \cdots x_n(0)]^T$
- A distributed algorithm to compute an average of sensor data: at each round each sensor updates its value to average of neighbors:

$$x(t+1) = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{bmatrix} x(t)$$

- Laplacian matrix L_G always has an eigenvalue 1 with eigenvector

$$1 = [1 \cdots 1]^T \in \mathcal{N}(I - L_G)$$
If the graph G is connected, then $\dim \mathcal{N}(I - L_G) = 1$, with all other eigenvalues λ satisfying $|\lambda| < 1$. The distributed algorithm will reach consensus $\bar{x} = w^T x(0)$ where w is a left eigenvector of L_G for $\lambda = 1$

$x(t) \rightarrow \bar{x} \cdot \mathbf{1}$ as $t \rightarrow \infty$

- Each sensor data $x_i(t) \rightarrow \bar{x} = \begin{bmatrix} 2/13 & 4/13 & 2/13 & 3/13 & 2/13 \end{bmatrix} x(0)$
Unconnected Graph G

If the graph G is unconnected, then L_G has multiple eigenvalues at 1:

$$\dim \mathcal{N}(I - L_G) = \#\{\text{connected components of } G\} > 1$$

The algorithm will reach consensus within each connected component, but not a global one

- $x(t) \rightarrow [a \ a \ a \ b \ b]^T \in \mathcal{N}(I - L_G)$ as $t \rightarrow \infty$
Suppose the network switches between two topologies G_1 and G_2 according to some switching signal $\sigma(t) \in \{1, 2\}$, $t = 0, 1, \ldots$

$$x(t + 1) = L_{G_{\sigma(t)}} x(t), \quad t = 0, 1, \ldots$$

$$\dim \mathcal{N}(I - L_{G_1}) = 2$$

$$\dim \mathcal{N}(I - L_{G_2}) = 4$$

Observation: $\mathcal{N}(I - L_{G_1}) \cap \mathcal{N}(I - L_{G_2}) = \text{span}(1)$ is of dimension one
Suppose the graph switches among \(\{G_i, i \in I\} \)

Proposition

\[
\dim \bigcap_{i \in I} \mathcal{N}(I - L_{G_i}) = 1 \text{ if and only if the union graph } \bigcup_{i \in I} G_i \text{ is connected. In this case if the switching signal } \sigma \text{ is such that each } G_i, \ i \in I, \text{ appears infinitely many times, then consensus will be reached}
\]

- Consensus \(\bar{x} \) depends on both \(x(0) \) and switching signal \(\sigma \)
- What is \(\bar{x} \) and how fast will the algorithm converge to consensus?
Suppose $G_{\sigma(t)}$, $t = 0, 1, \ldots$, is a sequence of random graphs in $\{G_i, i \in I\}$

- i.i.d.; Markov chain; non-Markov switching policy, etc.

Definition (Recurrent Graphs)

For each realization of G_{σ}, its recurrent graphs are those graphs G_i that appear infinitely often in the sequence G_{σ}

Proposition

If the union graph of all recurrent graphs is connected with probability one, then $x(t) \to \bar{x} \cdot 1$ *as* $t \to \infty$ *a.s.*

- The consensus \bar{x} is a random variable whose distribution depends on $x(0)$ and the random switching policy σ
- How fast is consensus reached and how is \bar{x} distributed?
Network Localization Problem

- Localization is essential in networks (of sensors, robots, vehicles)
- Distributed localization using relative measurements
 - **Distance-based**: relative distances between neighbors
 - **Direction-based**: relative angles, i.e. Angle of Arrival (AOA)

(NCSU WILAN Lab) (DARPA)
Distance-Based vs. Direction-Based Localization

Distance-Based Localization
- Easier implementation (RSS [Savarese'01], TDOA [Savvides'01])
- Nonlinear equations, ambiguity
- [Eren’04], [Aspnes’06], [Priyantha’03]

Direction-Based Localization
- Easier to solve (linear equations)
- Higher equipment cost
- Sensitivity to measurement errors
- [Eren’06], [Rong’06], [Ash’07]
A formation graph $G = (V, p, K)$ is given by

- Set of vertices: $V = \{1, \ldots, n\}$
- Vertices' positions $p = [p_1 \cdots p_n]^T$
- Connectivity matrix $K = [k_{ij}]$ with $k_{ij} \geq 0$. Two vertices are connected if $k_{ij} > 0$

Problem (AOA Localization)

Suppose each vertex can measure the orientations of its neighbors. Recover the shape of the formation graph

- Ambiguity: absolute position, scale
At least two anchors needed to remove ambiguity

An anchored formation graph is a formation graph with a subset A of vertices identified as anchors

Problem (AOA Localization with Anchors)

Knowing the absolute positions of anchors and orientations of edges, recover the absolute positions of all vertices

AOA localizable

Not AOA localizable
Mechanical analogy: formation graph as a spring network

- After perturbing vertex positions by \(\Delta \mathbf{p} \), the resistance force
 \[
 \mathbf{f} = \mathbf{S} \cdot \Delta \mathbf{p} + o(\|\Delta \mathbf{p}\|)
 \]

- \(\mathbf{S} \in \mathbb{R}^{2n \times 2n} \) is the **stiffness matrix**
 - Elastic energy stored is \(J \sim \frac{1}{2} \Delta \mathbf{p}^T \mathbf{S} \Delta \mathbf{p} \)
 - Null space of \(\mathbf{S} \) at least 3-dimensional: translations, rotations
Stiffness Matrix Example

Stiffness matrix S is structurally similar to Laplacian matrix L_G

![Graph showing the structure of the stiffness matrix](image)

- **Observation:** S is completely determined by AOA information
 - The (i, j)-th 2-by-2 block is the projection matrix onto $p_i - p_j$
 - Each row blocks add up to zero

- For anchored formation, partition $S = \begin{bmatrix} S_{ff} & S_{fa} \\ S_{af} & S_{aa} \end{bmatrix}$
AOA Localizability

Theorem ([Zhu’13])

For an anchored formation, its AOA localization problem has a unique solution if and only if S_{ff} is nonsingular.

- If S_{ff} is nonsingular, the anchored formation is called **fixable**.
AOA Localization Algorithm

Rotations are in null space of stiffness matrix S

$$S \begin{bmatrix} p_1^{\perp} \\ \vdots \\ p_n^{\perp} \end{bmatrix} = \begin{bmatrix} S_{ff} & S_{fa} \\ S_{af} & S_{aa} \end{bmatrix} \begin{bmatrix} p_f^{\perp} \\ p_a^{\perp} \end{bmatrix} = 0$$

where p_i^{\perp} is p_i rotated 90° counterclockwise

If the formation is fixable, then

$$p_f^{\perp} = -S_{ff}^{-1}S_{fa}p_a^{\perp}$$

- Due to structural resemblance to L_G, a consensus-type distributed algorithm can be designed to solve the equation iteratively

G. Zhu and J. Hu, Distributed network localization using angle-of-arrival information, ACC'2013
Anchor-less AOA Localization

Simpler Problem: With AOA information only and no anchors, recover the formation shape (but not its size and absolute position).

Decompose the stiffness matrix S as $S = D + F$

- Diagonal part $D = \text{diag}(S_{ii})$
- Off diagonal part F

From $Sp^\perp = 0$, we have $p^\perp = -D^{-1}F p^\perp$

- A_G has eigenvalue 1, with other eigenvalues satisfying $|\lambda| < 1$
- $\dim \mathcal{N}(I - A_G) = \mathcal{N}(S) \geq 3$, representing ambiguity:
 - Translations and rotations of p^\perp
 - Translations and scalings of p

Iterative AOA localization algorithm:

$$p^\perp(t + 1) = A_G \cdot p^\perp(t), \quad t = 0, 1, \ldots$$
Rigid Graph

Definition (Rigid Graph)

A formation graph is called rigid if \(\dim \mathcal{N}(S) = 3 \)

Proposition

For a rigid formation graph, starting from any initial \(p^\perp(0) \), the iteration

\[
p^\perp(t + 1) = A_G \cdot p^\perp(t), \quad t = 0, 1, \ldots
\]

will converge to some \(p(\infty) \) that differs from the true vertex positions \(p \) by a translation and a scaling.
Simulation

initial guess

5 iterations

10 iterations

50 iterations

100 iterations

ground truth
For nonrigid graphs, $\dim \mathcal{N}(I - A_G) \geq 4$

$$p^\perp(t + 1) = A_G \cdot p^\perp(t)$$

may converge to a wrong formation shape

- In general, $\dim \mathcal{N}(I - A_G) - 3$ is the number of linearly independent directions of infinitesimal perturbations of vertex positions that preserve edge lengths
Switching Formation Graphs

Suppose the formation graph switches among \(\{G_i, i \in \mathcal{I}\} \)

Proposition

\[
\dim \cap_{i \in \mathcal{I}} \mathcal{N}(I - A_G) = 3 \text{ if and only if the union graph } \bigcup_{i \in \mathcal{I}} G_i \text{ is rigid. In this case if the switching signal } \sigma \text{ is such that each } G_i \text{ appears infinitely often, then the localization algorithm }
\]

\[
p^\perp(t + 1) = A_{G_{\sigma(t)}} p^\perp(t)
\]

will converge to the correct formation shape
Suppose the formation graph G_σ switches randomly among $\{G_i, i \in \mathcal{I}\}$.

Proposition ([Zhu’13])

*If with probability one the union of the recurrent formation graphs for the random switching signal σ is rigid, then the localization algorithm

$$p^\perp(t + 1) = A_{G_{\sigma(t)}} p^\perp(t)$$

will converge to the correct formation shape a.s.*

- What is the mean square convergence rate?
- What is the equilibrium distribution?
Characterizing Semistability

Assumption: Assume $\Omega_e := \cap_{i \in \mathcal{M}} \mathcal{N}(I - A_i) \neq \{0\}$ for the SLS

$$x(t + 1) = A_{\sigma(t)}x(t), \quad t = 0, 1, \ldots$$

Change of coordinates: Let $\hat{x} := Ox$ where $O = \begin{bmatrix} O_e^\perp & O_e \end{bmatrix} \in \mathbb{R}^{n \times n}$

- O_e^\perp has orthonormal columns spanning Ω_e^\perp
- O_e has orthonormal columns spanning Ω_e

In the new coordinates, the SLS becomes $\hat{x}(t + 1) = \hat{A}_{\sigma}\hat{x}(t)$, with

$$\hat{A}_i = \begin{bmatrix} \hat{A}_{i,11} & 0 \\ \hat{A}_{i,21} & I \end{bmatrix}, \quad i \in \mathcal{M}$$

Theorem ([Shen’CDC01])

The SLS is exp. semistable under arbitrary switching if and only if the SLS $\{\hat{A}_i\}_{i \in \mathcal{M}}$ is exp. semistable under arbitrary switching. Moreover, the convergence rate is given by the joint spectrum radius of $\{\hat{A}_i\}_{i \in \mathcal{M}}$.
Joint Spectral Radius

Definition (Joint Spectral Radius)

The joint spectral radius of a set of square matrices \(\mathcal{A} = \{ A_i \}_{i \in \mathcal{M}} \) is

\[
\rho_\mathcal{A} := \lim_{t \to \infty} \sup_{\sigma} \left\{ \| A_{\sigma(t-1)} \cdots A_{\sigma(0)} \|^{1/t} \right\}
\]

- \(\rho_\mathcal{A} \) is the maximal trajectory growth rate of SLS with subsystems \(\mathcal{A} \)
- SLS is exponentially stable if and only if \(\rho_\mathcal{A} < 1 \)
- Computing \(\rho_\mathcal{A} \) is NP-hard [Tsitsiklis&Blondel’97]
- Many approximation algorithms [Theys’05, Junger’09, Hu’11]

Example:

\[
A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \rho_\mathcal{A} = \frac{1 + \sqrt{5}}{2} = 1.618
\]
Characterizing M.S. Semistability

Proposition ([Shen’13])

The random SLS $x(t+1) = A_{\sigma(t)}x(t)$ is m.s. semistable if and only if the following SLS is output m.s. exponentially stable

$$x(t+1) = A_{\sigma(t)}x(t), \quad y(t) = Cx(t)$$

where $C = O_{e\perp}$ is the projection matrix onto subspace Ω_e^{\perp}

- If $\sigma(t)$ is i.i.d. with $\mathbb{P}(\sigma(t) = i) = p_i$, above is equivalent to

 $$\mathbb{E} \left[\sum_{t=0}^{\infty} C^T A_{\sigma(t)} C \right] < \infty$$

- Difficult to characterize for general case
Convergence Point in Ω_e

SLS in new coordinates: $\hat{x}(t + 1) = \hat{A}_\sigma \hat{x}(t)$, with

$$\hat{A}_i = \begin{bmatrix} \hat{A}_{i,11} & 0 \\ \hat{A}_{i,21} & 1 \end{bmatrix} \quad \text{and} \quad \hat{x}(t) = \begin{bmatrix} \hat{x}_e^\perp(t) \\ \hat{x}_e(t) \end{bmatrix}$$

Suppose SLS is (m.s.) exponentially semistable. Then $\hat{x}(t) \to \begin{bmatrix} 0 \\ \hat{x}_e^\perp(\infty) \end{bmatrix}$

$$\hat{x}_e^\perp(\infty) = \hat{x}_e^\perp(0) + \sum_{t=0}^{\infty} A_{\sigma(t)} \hat{x}_e(t)$$

- The above converges as $\hat{x}_e(t) \to 0$
- $\hat{x}_e^\perp(\infty)$ depends on $\hat{x}_e(0)$ and σ
- For random switching policy σ, $\hat{x}_e^\perp(\infty)$ is a random variable
- Distribution of $\hat{x}_e^\perp(\infty)$ difficult to characterize (may be fractional)
Conclusions

- Propose the concepts of semistability of SLS
- Two networked systems examples where semistability is relevant
 - Consensus problem
 - AOA localization problem
- Conditions for characterizing semistability and convergence point

Future Directions:

- More efficient approaches for characterizing semistability
- General random switching policies
- More application examples

Main references:

- Semistability of switched linear systems with applications to distributed sensor networks: A generating function approach, J. Shen, J. Hu and Q. Hui, CDC'11
- A distributed continuous-time algorithm for network localization using Angle-Of-Arrival information, G. Zhu, Y. Kim and J. Hu, Automatica’13