
Modeling & Control of Hybrid Systems

Chapter 6 – Optimization­Based Control
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1. Optimal control of hybrid systems

2. MPC for MLD and PWA systems

3. MPC for MMPS and continuous PWA systems

4. Game-theoretic approaches
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1. Optimal control of a class of hybrid systems

1. Optimal control for hybrid manufacturing systems

2. Example

3. Optimality conditions
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1.1 Optimal control for hybrid manufacturing systems

• Manufacturing system: jobs move through network of work cen-

ters

• Jobs have

– temporal state (event-driven): waiting time, departure time, . . .

– physical state (time-driven): temperature, size, weight, chemi-

cal composition, . . .

• Trade-off between

– temporal requirements on job completion times

– physical requirements on quality of completed jobs

assume higher quality → longer processing times
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part arriving
at ai

queue

server

service time
si(ui)

job finished
at xi

control variable
ui

• Single-stage, single-server queueing system

• N jobs (each job corresponds to mode)

• Buffer with capacity > N

• As job i is processed, physical state zi evolves according to

żi = gi(zi,ui, t) with zi(τi) = ζi

with τi time instant at which processing begins
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part arriving
at ai

queue

server

service time
si(ui)

job finished
at xi

control variable
ui

• Control variable ui is used to attain final desired physical state:

If si(ui) is service time and Γi(ui) is target quality set, then

si(ui) = min{t > 0 | zi(τi+ t) ∈ Γi(ui)}

• Temporal state xi represents time when job is completed:

If ai is arrival time of job i, then

xi = max(xi−1,ai)+ si(ui) (Lindley equation) hs opt ctrl.5



Optimal control for hybrid manufacturing systems (cont.)

Optimal control problem:

min
u1,...,uN

J =
N

∑
i=1

Li(xi,ui)

subject to evolution equations for zi and xi

where L(xi,ui) is cost function associated with job i

→ classical discrete-time optimal control problems except for

• i does not count time steps

→ not really an issue

• max is non-differentiable for ai = xi−1

→ prevents use of standard gradient-based techniques

→ use non-differentiable calculus, generalized gradient
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1.2 Example

• Steel heating/annealing manufacturing processes

• Involves slowly heating and cooling strips to some desired tem-

peratures

• Higher level controller determines furnace reference temperature

+ amount of time strip is held in furnace

• Physical state zi represents temperature and

depends on line speed ui and furnace reference temperature Fi:

żi(t) =−
Fi− zi(t0)

L
ui+Ks

(
F4

i − z4
i (t)

)
for t > t0

• Constraint: umin 6 ui 6 umax
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1.2 Example (continued)

• Temporal state:

xi: time when job starts processing at furnace, i.e.

strip completely inside furnace

yi: time when job completes processing

xi = max(ai,xi−1)+ s1(ui) and yi = xi+ s2(ui)

with s1(ui) elapsed time for whole body of strip to enter furnace

(is dependent on length of strip),

and s2(ui) processing time for each point of strip to run through

furnace (is dependent on length of furnace)

• Two control objectives:

1. reduce temperature errors w.r.t. furnace reference temperature

2. reduce entire processing time
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1.2 Example (continued)

• Thus, optimal control problem is

min
u1,...,uN

J =
N

∑
i=1

(
θ(ui)+φ(yi)

)

subject to physical and temporal evolution equations

with

– φ(yi) cost related to jobs departing at time yi

e.g., φ(yi) = (yi−di)
2, with di due date

→ penalizes tardiness, and early completion (inventory cost)

– θ(ui) penalizes deviation from reference temperature Fi:

θ(ui) = |Fi− zi(L/ui)|
2+β

∫ L/ui

0
(Fi− zi(t))

2dt

where L/ui is time each point of strip stays in furnace
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1.3 Optimality conditions

• Define augmented cost:

J̄(x,λ ,u) =
N

∑
i=1

(
Li(xi,ui)+λi(max(xi−1,ai)+ si(ui)− xi)

)

where λ is co-state

• Assumption: costs Li and si are continuously differentiable

• Ignoring non-differentiabilities associated with max,

standard first-order necessary conditions for optimality require

∂ J̄

∂ui

= 0,
∂ J̄

∂λi

= 0,
∂ J̄

∂xi

= 0 for i = 1, . . . ,N
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1.3 Optimality conditions (continued)

• Results in

– Stationarity condition:
∂Li(xi,ui)

∂ui

+λi

dsi(ui)

dui

= 0

– Temporal state equation: xi = max(xi−1,ai)+ si(ui)

with x0 =−∞

– Co-state equation: λi =
∂Li(xi,ui)

∂xi

+λi+1

d max(xi,ai+1)

dxi

with final

boundary condition

λN =
∂LN(xN,uN)

∂xN

• Defines two-point boundary-value problem (TPBVP)
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How to deal with non-differentiability

• max is Lipschitz continuous + differentiable except for xi = ai+1:

d max(xi,ai+1)

dxi

=

{

0 if xi < ai+1

1 if xi > ai+1

• Use generalized gradient :

Let f : Rn → R be locally Lipschitz continuous, and let S(u) de-

note set of all sequences {um}
∞
m=1 that satisfy

• um → u as m → ∞

• gradient ∇ f (um) exists for all m

• limm→∞ ∇ f (um) = φ exists

Then generalized gradient ∂ f (u) is defined as convex hull of all

limits φ corresponding to some sequence {um}
∞
m=1 in S(u)
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How to deal with non-differentiability (continued)

• Properties of generalized gradient:

– if f is continuously differentiable in some open set containing

u, then ∂ f (u) = {∇ f (u)}

– if u is local minimum, then 0 ∈ ∂ f (u)
→ this becomes first-order optimality condition in

non-smooth optimization

• See lecture notes for computation of ∂ J̄

• Note: presence of idle period results in decoupling

hs opt ctrl.13



2. MPC for MLD systems

1. Model predictive control (MPC)

2. MPC for MLD and PWA systems
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2.1 Model predictive control (MPC)

• Very popular in process industry

measurements

model

optimization

prediction

actions
control

objective,
constraints

system
inputs

control

MPC controller

• Model-based

• Easy to tune

• Multi-input multi-output

(MIMO)

• Allows constraints on

inputs and outputs

• Adaptive / receding horizon

• Uses on-line optimization

→ apply to MLD, PWA, and MMPS systems while keeping advan-

tages
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MPC (continued)

At sample step k:

• Use model to predict

measurements

model

optimization

prediction

actions
control

objective,
constraints

system
inputs

control

MPC controller

system output over

prediction period [k,k+Np]
for given input sequence

u(k), . . . ,u(k+Np−1)

Np: prediction horizon

ũ(k) = [uT(k) . . . uT(k+Np−1) ]T

• Define performance criterion J(k) over [k,k+Np], e.g.,

J(k) = tracking error+λ · input effort/energy

• Constraints on u, x, y
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MPC problem

• Find at sample step k input sequence ũ(k) that minimizes J(k)
subject to system equations + constraints

k

future

predicted outputs

+ +Nc k+Np

control horizon prediction horizon

setpointpast

k k1 ... ...

computed control inputs
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MPC problem (continued)

Receding horizon principle:

• Compute optimal input sequence ũ(k)

• Implement only first sample u(k)

• Update model & shift interval

• Restart optimization

Extra condition to reduce computational complexity:

control horizon Nc

u(k+ j) = u(k+Nc−1) for j = Nc, . . . ,Np−1

→ smoother controller signal & stabilizing effect
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2.2 MPC for MLD systems

• Consider MLD system:

x(k+1) = Ax(k)+B1u(k)+B2δ (k)+B3z(k)

y(k) =Cx(k)+D1u(k)+D2δ (k)+D3z(k)

E1x(k)+E2u(k)+E3δ (k)+E4z(k)6 g5,

• x(k) = [ xr
T(k) xb

T(k) ]T with xr(k) real-valued, xb(k) boolean

z(k): real-valued auxiliary variables

δ (k): boolean auxiliary variables

• Consider equilibrium state/input/output (xeq,ueq,yeq) → (δeq,zeq)

• x̂(k+ j|k): estimate of x at sample step k+ j based on information

available at sample step k
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2.2 MPC for MLD systems (continued)

• Stabilize system to equilibrium state:

J(k) =
Np

∑
j=1

‖x̂(k+ j|k)− xeq‖
2
Qx
+‖u(k+ j−1)−ueq‖

2
Qu
+

‖ŷ(k+ j|k)− yeq‖
2
Qy
+‖δ̂ (k+ j−1|k)−δeq‖

2
Qδ
+

‖ẑ(k+ j−1|k)− zeq‖
2
Qz

with Q. >
(−)

0

• End-point condition: x̂(k+Np|k) = xeq

• Control horizon constraint:

u(k+ j) = u(k+Nc−1) for j = Nc, . . . ,Np−1
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2.2 MPC for MLD systems (continued)

• Property:

If feasible solution exists for x(0), then MPC input stabilizes sys-

tem, i.e.,

lim
k→∞

x(k) = xeq lim
k→∞

‖y(k)− yeq‖Qy = 0 lim
k→∞

‖z(k)− zeq‖Qz = 0

lim
k→∞

u(k) = ueq lim
k→∞

‖δ (k)−δeq‖Qδ
= 0
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Algorithms for MLD-MPC

→ mixed-integer quadratic programming (MIQP)

• Successive substitution of system equations:

→ x̂(k+ j|k) is linear function of x(k), ũ, δ̃ and z̃

Also holds for ŷ(k+ j|k)

• Define Ṽ (k) =
[
ũT(k) δ̃T(k) z̃T(k)

]T

→ contains both real-valued and integer-valued components

• Results in

min
Ṽ (k)

ṼT(k)S1Ṽ (k)+2(S2+ xT(k)S3)Ṽ (k) (1)

subject to F1Ṽ (k)6 F2+F3x(k) , (2)

= MIQP problem
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Algorithms for MLD-MPC (continued)

• MIQP = NP-hard

• For small-sized problems: cutting plane methods, decomposi-

tion methods, logic-based methods, branch-and-bound methods

(tree search)

• Software:

– Multi-Parametric Toolbox (MPT) : http://control.ee.ethz.ch/˜mpt/

– Hybrid toolbox : http://www.ing.unitn.it/ bemporad/hybrid/toolbox/

– TOMLAB, CPLEX, Xpress

– NAG, Matlab NAG Toolbox
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3. MPC for continuous PWA systems

1. Equivalence of continuous PWA and MMPS systems

2. Canonical forms of MMPS functions

3. Model predictive control for MMPS systems

4. Algorithms for MMPS-MPC

5. Example
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3.1 Equivalence of continuous PWA and MMPS systems

PWA systems

• Continuous PWA function f : Rn → R:

– domain space divided into polyhedral regions R(1), . . . ,R(N)

– in each region R(i) f can be expressed as

f (x) = αT
(i)x+β(i)

– f is continuous over border of any two regions

• Continuous PWA system:

x(k) = Px(x(k−1),u(k))

y(k) = Py(x(k),u(k))

with Px, Py vector-valued continuous PWA functions
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PWA systems (cont.)

• Note: continuous PWA model can be used as approximation of

general nonlinear continuous state space model

x(k) = Nx(x(k−1),u(k))

y(k) = Ny(x(k),u(k))
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Max-min-plus-scaling (MMPS) systems

• MMPS function f is constructed recursively:

f := xi |α | max( fk, fl) | min( fk, fl) | fk + fl |β fk

with fk, fl again MMPS functions

• Examples:

∗ 5x1−max(x2+ x3,5x1−2x2)

∗ max
(
x1,min(x2,x3)

)
+max

(
x2−8x3+min(x1,5x2),−7x1

• Note: MMPS function is continuous

• MMPS system:
x(k) = Mx(x(k−1),u(k))

y(k) = My(x(k),u(k))

with Mx, My vector-valued MMPS functions
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Equivalence of continuous PWA and MMPS systems

• Previous result: (General) PWA systems are equivalent to con-

strained MMPS systems

• Any MMPS function is also continuous PWA

• A continuous PWA function f can be rewritten as

f = max
j

min
i

(αT
i x+βi)

→ f is also MMPS function

• So classes of continuous PWA functions and MMPS functions

coincide
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Equivalence of continuous PWA and MMPS systems (cont.)

• Continuous PWA systems and MMPS systems are equivalent:

→ for given continuous PWA model there exists MMPS model

(and vice versa) such that input-output behaviors coincide

⇒ use properties & techniques from continuous PWA sys-

tems for MMPS systems and vice versa
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3.2 Canonical forms of MMPS functions

• Any MMPS function f : Rn → R can be rewritten into min-max

canonical form

f = min
i

max
j
(αT

(i, j)x+β(i, j))

or into max-min canonical form

f = max
i

min
j
(γT

(i, j)x+δ(i, j))
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Example

f (x) = min(8x+6,1)−2max
(

min(2x+1,1−2x),−2x
)

= max
(
min(12x+6,4x+1,−4x−1),min(12x+6,4x−1)

)

= min
(
max(4x−1,−4x−1),12x+6,4x+1

)

−1 0 1
−6

0

4

−1 0 1
−6

0

4

−1 0 1
−6

0

4

x

xx

f

ff
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3.3 MPC for MMPS systems

• Use MMPS model

x(k) = Mx(x(k−1),u(k))

y(k) = My(x(k),u(k))

as

– model of MMPS system

– equivalent model of continuous PWA system

– approximation of general smooth nonlinear system

• Prediction horizon: Np

• Estimate ŷ(k+ j|k) of output at sample step k+ j:

ŷ(k+ j|k) = Fj(x(k−1),u(k), . . . ,u(k+ j))

→ Fj is MMPS function! hs opt ctrl.32



3.3 MPC for MMPS systems (continued)

• Reference signal: r

• Cost criterion J: reference tracking (Jout) vs control effort (Jin):

J(k) = Jout(k)+λJin(k) with λ > 0

• Some possible cost functions:

Jout,1(k) = ‖ỹ(k)− r̃(k)‖1 Jout,∞(k) = ‖ỹ(k)− r̃(k)‖∞

Jin,1(k) = ‖ũ(k)‖1 Jin,∞(k) = ‖ũ(k)‖∞

with
ũ(k) =

[
uT(k) . . . uT(k+Np−1)

]T

ỹ(k) =
[

ŷT(k|k) . . . ŷT(k+Np−1|k)
]T

r̃(k) =
[

rT(k) . . . rT(k+Np−1)
]T

Note: |x|= max(x,−x) → cost functions are MMPS functions
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3.3 MPC for MMPS systems (continued)

• Constraints on input and output signals:

Cc(k,x(k−1), ũ(k), ỹ(k))> 0
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3.4 Algorithms for MMPS-MPC

• Nonlinear optimization (SQP, ELCP):

→ local minima, excessive computation time

• MPC for mixed logical-dynamical (MLD) systems

[Bemporad, Morari]:

→ mixed real-integer quadratic programming

problems

• New approach based on canonical forms:

→ collection of linear programming problems
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LP-based algorithm

Assume: linear (or convex) constraint in ũ(k)

P(k)ũ(k)+q(k)> 0

Recall: J(k) is MMPS function

⇒ J(k) = max
i

(
min

j
(γT

(i, j)ũ+δ(i, j))
)

= min
i

(
max

j
(αT

(i, j)ũ+β(i, j))
)

⇒ min
ũ

J(k) = min
ũ

min
i

(
max

j
(αT

(i, j)ũ+β(i, j))
)

= min
i

min
ũ

(
max

j
(αT

(i, j)ũ+β(i, j))
)

︸ ︷︷ ︸

→ LP!
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LP-based algorithm (cont.)

LP i:

min
ũ

t

s.t.

{

t > αT
(i, j)ũ+β(i, j) for all j

Pũ+q > 0

⇒ set of linear programming problems!
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3.5 Example

PWA model:

y(k) = x(k) =

{

0.5x(k−1)+4u(k)−1 if 0.5x(k−1)+3.8u(k)6 2

0.2u(k)+1 if 0.5x(k−1)+3.8u(k)> 2

Equivalent MMPS model:

y(k) = x(k) = min(0.5x(k−1)+4u(k)−1, 0.2u(k)+1)

Constraints:

−0.2 6 ∆u(k)6 0.2 and u(k)> 0 for all k

Let Nc = Np = 2 and J(k) = Jout,∞(k)+λJin,1(k)

= ‖ỹ(k)− r̃(k)‖∞+λ‖ũ(k)‖1
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3.5 Example (continued)

After substitution:

J(k)=max
(
min(t1, t2),s1,s2,min(t3, t4, t5),s3,s4,s5

)

with ti,si affine functions of x1(k−1),u(k),u(k+1),r(k)

Min-max canonical form:

J(k) = min
(
max(t1, t3,s1,s2,s3,s4,s5),max(t1, t4,s1,s2,s3,s4,s5),

max(t1, t5,s1,s2,s3,s4,s5),max(t2, t3,s1,s2,s3,s4,s5),

max(t2, t4,s1,s2,s3,s4,s5),max(t2, t5,s1,s2,s3,s4,s5)
)

→ solve 6 LPs
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3.5 Example (continued)

CPU time for closed-loop MPC over period [1,15]:

Method CPU time (s)

LP 0.55

SQP 4.90

MLD 2.74

ELCP 198.82
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4. Game-theoretic approaches

• Safety-critical applications such as collision avoidance in free

flight or automated highways

→ guarantee safety even in case intentions of other aircraft/vehicle

are not known (non-cooperative game)

if (partial) communication possible → cooperative game

• Consider continuous-time system

ẋ = f (x,u,d)

with u control inputs (corresponding to 1st player), and d distur-

bance inputs (corresponding to 2nd player/adversary)

• Assume safety constraints can be represented by set

F = {x ∈ X | S(x)> 0}
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Game-theoretic approach

• Let t0 6 tend and consider cost function

J : X ×U ×D × [t0, tend]→ R : (x,u(·),d(·), t) 7→ S(x(tend))

where U and D denote admissible control and disturbance func-

tions

• Cost is function of final state x(tend) only!

→ J is cost associated with trajectory starting at x at time t ∈ [t0, tend]
with inputs u(·) and d(·), and ending at time t = tend at the final

state x(tend)

• Define value function

J⋆(x, t) = max
u∈U

min
d∈D

J(x,u,d, t)

hs opt ctrl.42



Game-theoretic approach (cont.)

• The set

{x ∈ X | min
τ∈[t,tend]

J⋆(x,τ)> 0}

contains all states for which system can be forced by control u to

remain in safe set F for at least |tend− t| time units, irrespective of

disturbance function d

• Value function J⋆ can be computed using Hamilton-Jacobi equa-

tions

- (numerical) solution of Hamilton-Jacobi equations is tremen-

dous task

+ approach provides systematic way to check safety properties

for continuous-time systems and certain classes of hybrid sys-

tems
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5. Summary

• Optimal control of hybrid systems

• MPC for MLD and PWA systems

• MPC for MMPS and continuous PWA systems

• Game-theoretic approaches
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