
Worked solutions for Exam of October 2013

“Optimization in Systems and Control” (SC4091)

QUESTION 1: Optimization methods I

Please note that for some questions more than one answer might be correct. However, below

only one answer is listed. Furthermore, the footnotes are for further clarification only and are not

considered to be a required part of the answers.

Answers

P1. (a) We first write the maximization problem as a minimization problem, also taking into

account that exp(·) is a non-decreasing function, which means that we can also minimize

its argument instead. This yields

min
x∈R3

x2
1 +2x1x2 + x2

2 + x2
3 − x1 −3x2 +4x3 . (1)

The first constraint of the given problem contains a 1-norm and it can be expanded as

follows:

|x1|+ |x2|+ |x3|6 1 ,

or equivalently

x1 + x2 + x3 6 1

x1 + x2 − x3 6 1

x1 − x2 + x3 6 1

x1 − x2 − x3 6 1

...

−x1 − x2 − x3 6 1

(8 constraints in total). Note that these are linear1 constraints.

Since the function log(·) in the second constraint is non-decreasing and since the first

constraint ensures that the argument of the log(·) function is always strictly positive, we

can recast the constraint as

4+ x1 + x2 − x3 6 e ,

which is a linear constraint.

It is easy to verify that the (simplified) objective function as given in (1) is convex (as it

can be written as (x1 + x2)
2 + x2

3 − x1 − 3x2 + 4x3, which is a sum of convex functions2).

1Or better: affine.
2Alternatively, it can be verified that the Hessian of this objective function is positive semi-definite.

1



Hence, we have a convex quadratic programming (QP) problem. Since the modified sim-

plex algorithm is not listed, we select the next best option in the list of algorithms, i.e., the

interior point algorithm (M11).

(b) The corresponding stopping criterion is3

| fQP(xk)− fQP(x
∗)|6 ε ,

where xk is the current iteration point, fQP is the objective function of the QP problem (cf.

(1)), and ε is a small positive number.

P2. (a) Although the objective function is convex, the constraint is not: in standard form the

constraint is 4−‖x‖2 6 0, and −‖x‖2 is a concave function, not a convex one. Hence,

we have a nonlinear, non-convex optimization problem with inequality constraints. The

gradient and Hessian can be computed easily. Therefore, the most appropriate method

from the given list of algorithms is a multi-start penalty function method with steepest

descent line minimization (M9).

(b) The corresponding stopping criterion is: there exists a (scalar) µk such that

‖∇ f (xk)+∇g(xk)µk ‖2 6 ε1

|µT
k g(xk) |6 ε2

µk >−ε3

g(xk)6 ε4 ,

where xk is the current iteration point, f is the objective of the minimization problem, g is

the inequality constraint function (when the constraint is written in the form g(x)6 0), and

ε1, ε2, ε3, ε4 are small positive numbers.

P3. (a) Since (·)3 is non-decreasing, we can also minimize its argument. By introducing

dummy variables α1, . . . , α5 with αi > |xi| and subsequently minimizing each αi, we

can write the given optimization problem as

min
α ,x∈R5

1+α1 +3α2 +α3 +2α4 +3α5

s.t. −αi 6 xi 6 αi for i = 1, . . . ,5

−3 6 5+3x1 + x2 − x3 + x4 − x5 6 3

3+2x1 +3x2 > 2

4x3 +3x4 > 2

2x5 +8 > 2 .

3Note that the points returned by the interior point algorithm are always feasible by construction; so we do not

have to check explicitly where the constraint violation is small enough.
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So we have a linear programming problem, and the most suited method is the simplex

algorithm for linear programming (M1).

(b) Since the simplex algorithm finds the optimal solution in a finite number of steps, no

stopping criterion is required4.

P4. (a) The first term of the objective function is of the form 1/y6 with y > 1 (due to the first

constraint). Since the domain of this function is convex, and since its second derivative

(i.e., (−6)(−7)1/y8) is always positive for y > 1, the function f1 : [1,∞)→ R : y 7→ 1/y6

is convex. Since replacing the argument of a convex function by an affine expression

preserves convexity, the first term of the objective function is convex.

As for the second term of the objective function, first note that the function f2 : y 7→ cosh |y|
is convex. Indeed, |y| is convex (and nonnegative), and cosh(·) is also convex, and non-

decreasing for nonnegative arguments. If we then replace y by the affine expression x1 +
4x2 +5x3 −100, convexity is preserved.

Since the overall objective function is a linear combination (with positive weights) of two

convex functions, it is also convex.

The first constraint is linear and thus convex.

Since log10(·) is a non-decreasing function, the second constraint can be rewritten as

(x1 −2)2 +(x2 −3)2 +(x3 −4)2
6 100 .

Since f3 : y 7→ y2 is convex and since convexity is preserved by considering an affine argu-

ment and by addition, this constraint is also convex.

So we have a convex optimization problem, and therefore we select the interior point al-

gorithm (M11).

(b) The corresponding stopping criterion is5

| f (xk)− f (x∗)|6 ε ,

where xk is the current iteration point, f is the objective function, and ε is a small positive

number.

P5. (a) As we have a nonlinear equality constraint, the given problem is a nonlinear non-convex

optimization problem with equality constraints. It is not possible to use the constraint to

eliminate one of the variables. The gradient and Hessian of the objective function and of

the constraint function can be computed easily. Hence, the most appropriate method is

a multi-start Lagrange method with the Levenberg-Marquardt direction for the line mini-

mization (M6).

4However, in practice a maximum number of iterations is usually specified.
5The points returned by the interior point algorithm are always feasible by construction; so we do not have to

check explicitly where the constraint violation is small enough.

3



(b) The corresponding stopping criterion is: there exists a λk such that

‖∇ f (xk)+∇h(xk)λk ‖2 6 ε1

‖h(xk)‖2 6 ε2

where xk is the current iteration point, f is the objective of the minimization problem, h is

the equality constraint function (when the constraint is written in the form h(x) = 0), and

ε1, ε2 are small positive numbers.

P6. (a) By introducing a scalar dummy variable t such that t 6 min(|4x1 − 3x2 + 8x3 − 5|, |−
2x1+7x2−x3+1|) and subsequently maximizing t, and by taking into account that a con-

straint of the form t 6 |α| with α ∈ R is equivalent to t 6 α or t 6−α , the maximization

of the objective function can be rewritten as

max
x∈R3, t∈R

t

s.t.
(

t 6 4x1 −3x2 +8x3 −5

or t 6−(4x1 −3x2 +8x3 −5)
)

and
(

t 6−2x1 +7x2 − x3 +1

or t 6−(−2x1 +7x2 − x3 +1)
)

.

So we get a total of 4 problems with a linear objective function and linear constraints.

Taking into account that f1 : y 7→ 2y is a non-decreasing function and that ‖x‖∞ = maxi |xi|,
the constraints of the original optimization problem can be rewritten as

7x1 −2x2 +5x3 6 6

−3 6 xi 6 3 for i = 1,2,3 ,

which are also linear.

Hence, we have 4 times a linear programming problem and we have to take the overall

maximum of the obtained solutions. The most suited method is the simplex algorithm for

linear programming (M1).

(b) Since the simplex algorithm finds the optimal solution in a finite number of steps, no

stopping criterion is required6.

P7. (a) By taking into account that f1 : y 7→ arctan(y) is a non-decreasing function, and by

simplifying the constraints, we obtain the following quadratic programming (QP) problem:

min
x∈R3

4x2
1 +2x1x2 +2x1x3 +4x2

2 +2x2x3 +4x2
3 − x1 + x2 − x3

s.t. −5 6 3x1 − x2 +6x3 6 5

−9 6 x1 + x2 + x3 6 9 .

6However, in practice a maximum number of iterations is usually specified.
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By investigating the Hessian of the objective function of this QP problem, which is given

by

H =





8 2 2

2 8 2

2 2 8





and which is positive definite (as all leading principal minors are positive), or by noticing

that the objective function of the QP problem can also be rewritten as (x1 + x2 + x3)
2 +

3x2
1 + 3x2

2 + 3x2
3 +(−x1 + x2 − x3), which is a sum of convex functions, it can be asserted

that this objective function is convex (and quadratic). Since the modified simplex algorithm

is not listed, we select the next best option in the list of algorithms, i.e., the interior point

algorithm (M11).

(b) The corresponding stopping criterion is7

| fQP(xk)− fQP(x
∗)|6 ε

where xk is the current iteration point, fQP is the objective function of the QP problem, and

ε is a small positive number.

P8. (a) The maximization problem can be recast as a minimization problem: minν∈R10 (−‖G‖∞).
Clearly, the objective function is not convex. Since the ∞-norm of a transfer function has

to be computed numerically, and since the number of variables is large, it will be very

time-consuming to compute the gradient and the Hessian of the objective function numer-

ically. Therefore, we should select a gradient-free unconstrained8 optimization method

from the list of algorithms. Hence, we could select multi-start simulated annealing (M10)

or a multi-run genetic algorithm (M12).

(b) Corresponding suitable stopping criteria are that the temperature in the simulated an-

nealing algorithm is less than some threshold (T 6 Tfinal), or — for the genetic algorithm

— that the maximum number of generations has been reached.

P9. (a) The objective function is non-convex due to the terms 3x1x3 and 2x4x5 (which cannot

be absorbed into a square of an affine function as could be done in e.g. Problem P7 above).

Since ‖x‖∞ = maxi |xi| the constraints can be rewritten as linear constraints:

−7 6 x1 +2x2 +8x3 −9x4 +8x5 6 7

− x1 +3x2 − x3 +6x4 + x5 > 2

−3 6 xi 6 3 for i = 1,2, . . . ,5 .

7The points returned by the interior point algorithm are always feasible by construction; so we do not have to

check explicitly where the constraint violation is small enough.
8As the transfer function is stable by construction, the stability requirement does not lead to any additional

constraints on ν .
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So we have a nonlinear non-convex optimization problem with linear inequality con-

straints. The gradient and the Hessian of the objective function can be computed easily.

A suitable method is multi-start gradient projection with quadratic line minimization (M2)

or — alternatively — a multi-start penalty function method with steepest descent line min-

imization (M9).

(b) The corresponding stopping criterion is: there exists a vector µk such that

‖∇ f (xk)+∇g(xk)µk ‖2 6 ε1

|µT
k g(xk) |6 ε2

µk >−ε3

g(xk)6 ε4 ,

where xk is the current iteration point, f is the objective of the minimization problem, g is

the inequality constraint function (when the constraints are written in the form g(x) 6 0),

and ε1, ε2, ε3, ε4 are small positive numbers.

For the penalty function approach we could also use ‖∇ ftot(xk)‖2 6 ε with ε > 0 and where

ftot is the sum of the original objective function and the penalty function.

P10. (a) Since f1 : x 7→ 3
√

x is a non-decreasing function, we can also minimize its argument:

min
x∈R4

(x1 +6x2 +8x3 −9x4 −10)2 . (2)

Next, we can use the constraint to eliminate x1:

x1 =
5− (3x2

2 +2x2
2x2

3 +4x2
3x2

4 +8x4
4)

1+ x2
3

.

If we fill this out in the simplified objective function (cf. (2)), we get an unconstrained

optimization problem with a non-convex nonlinear objective function. The gradient and

the Hessian can be computed easily. Hence, the most appropriate algorithm is a multi-start

line search method with the Levenberg-Marquardt direction.

(b) The corresponding stopping criterion is ‖∇ felim(xk)‖2 6 ε where xk is the current iter-

ation point, felim is the objective function obtained by elimination of x1, and ε > 0.
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QUESTION 2: Optimization methods II

Answers

1. The following elements should be present in your answer:

• The steepest descent direction in a point xk is given by −∇ f (xk) and it indicates the

direction in which the function will locally decrease most rapidly in the neighborhood

of xk.

• The general n-dimensional optimization problem is turned into a 1-dimensional opti-

mization problem of the form

s∗ = argmin
s

f (xk − s∇ f (xk)) .

The new iteration point is then xk+1 = xk − s∗∇ f (xk).
Optionally, it could be stated that the algorithm can be stopped if ‖∇ f (xk)‖2 6 ε for

some small positive scalar ε .

• A 2-dimensional9 picture should be included with contour lines; this picture should

illustrate that the gradient is orthogonal to the contour lines, the optimal point on a

search line is found as the intersection with a contour for which the given search line

is a tangent line, and as a consequence, all search lines are orthogonal to each other.

In addition, optionally, a plot could be included that shows how the general n-dimensional

optimization problem is turned into a 1-dimensional optimization problem.

2. If we denote the objective function by f , we have

∇ f =

[

4x− y−8

2y− x

]

and H f =

[

4 −1

−1 2

]

.

a) The objective function is convex since H f is positive definite (as its leading principal

minors are all positive) or since f (x,y) can also be written as 7
4
x2+

(

x
2
− y

)2−8x+10,

which is a sum of convex functions.

b) The points where a local optimum is reached, are found by determining the points for

which ∇ f (x,y) = 0. This yields
{

4x− y−8 = 0

2y− x = 0 .

From the second equation it follows that x = 2y; filling this out in the first equation

yields 7y−8 = 0, or y = 8
7
.

We thus find one optimum: (x∗,y∗) =
(

16
7
, 8

7

)

.

The corresponding function value is f (x∗,y∗) = 6
7
.

Since the function is convex, the point (x∗,y∗) is a (global) minimum.

9Note that if you only consider a function of only 1 variable, the line minimization actually is equivalent to the

original optimization problem.
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c) In the point (x0,y0) = (0,0) we have ∇ f (0,0) =
[

−8 0
]T

. Hence, we have to search

along the line defined by x = 0+8s, y = 0, or equivalently x = t, y = 0. This results

in

min
t

2t2 −8t +10 .

The optimal t value is found by setting the derivative equal to 0, or 4t −8 = 0, which

yields t∗ = 2. This results in the following new iteration point: (x1,y1) = (2,0).
We have f (2,0) = 2.

Since ∇ f (2,0) =
[

0 −2
]T

, we next have to search along the line defined by x = 2,

y = 2s, or equivalently x = 2, y = t. This results in

min
t

2 ·4+ t2 −2t −16+10 = min
t

t2 −2t +2 .

The optimal t value is found by setting the derivative equal to 0: 2t − 2 = 0, which

yields t∗ = 1. This results in the following new iteration point: (x2,y2) = (2,1).
We have f (2,1) = 1.
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QUESTION 3: Controller design

Answers

a) We have10

e = r− (P2Ke+P1(d +Ke)) = r−P1d −P2Ke−P1Ke ,

which results in

e =
1

1+(P1 +P2)K
(r−P1d) .

This leads to

u = Ke =
1

1+(P1 +P2)K
(Kr−KP1d)

and

y = P1(d +u) = P1d +
P1

1+(P1 +P2)K
(Kr−KP1d)

=
1

1+(P1 +P2)K

(

KP1r+
(

P1 +(P1 +P2)KP1 −KP2
1

)

d
)

=
1

1+(P1 +P2)K
(KP1r+P1(1+P2K)d) .

Hence,

M =
1

1+(P1 +P2)K







K −KP1

KP1 P1(1+P2K)

1 −P1






.

b) The closed-loop system will be internally stable if all transfer functions from any external

input (in our case r and d) to any internal signal are stable. Apart from the signals e, y,

and u, the other internal signals in the given system are the output of P2, and the outputs of

the middle and the rightmost summing junctions in the figure. However, since P2 is stable,

and since addition preserves stability, it is sufficient to show that any controller in K will

result in stable transfer matrix M.

First we substitute the given expression for K into M. Since

1

1+(P1 +P2)K
=

1

1+(P1 +P2)
Q

1−(P1+P2)Q

=
1− (P1 +P2)Q

1− (P1 +P2)Q+(P1 +P2)Q

= 1− (P1 +P2)Q

10For the sake of brevity of notation we drop the arguments k and q.
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and

P1(1+P2K) = P1

(

1+P2
Q

1− (P1 +P2)Q

)

= P1
1− (P1 +P2)Q+P2Q

1− (P1 +P2)Q

=
P1(1−P1Q)

1− (P1 +P2)Q
,

we have

M =







Q −QP1

QP1 P1(1−P1Q)

1− (P1 +P2)Q −P1(1− (P1 +P2)Q)






.

Since M contains sums and products of P1, P2, and Q, which are all stable transfer func-

tions, and since stability is preserved under addition and multiplication, all entries of M

are also stable transfer functions.

So any controller in K indeed internally stabilizes the closed-loop system.
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