
Worked solutions for the Exam of October 2014

“Optimization in Systems and Control” (SC4091)

QUESTION 1: Optimization methods I

Please note that for some questions more than one answer might be correct. However, below

only one answer is listed. Furthermore, the footnotes are for further clarification only and are not

considered to be a required part of the answers.

The various εs appearing in the stopping criteria below are all assumed to be small positive

numbers.

Answers

P1. (a) Multi-start barrier function approach + line search method with Levenberg-Marquardt

direction (M10)

(b) Although the objective function of this problem is convex, the constraint is not convex1,

since in the standard form we get 3+x1−2x2+x3−2x4−‖x‖1 ≤ 0, of which the first affine

part does not affect convexity while the second part (−‖x‖1) is not convex. The gradient

and Hessian of the objective function and the Jacobian of the constraints can be computed

analytically. This implies that — from the list of available methods — the best suited

optimization algorithm is a multi-start barrier function approach in combination with a

line search method with the Levenberg-Marquardt direction (M10).

(c) The most appropriate stopping criterion is2: there exists a µk such that

‖∇ f (xk)+∇g(xk)µk ‖2 ≤ ε1

|µT
k g(xk) | ≤ ε2

µk ≥−ε3

g(xk)≤ ε4

where xk is the current iteration point, f is the objective of the minimization problem, and

g is the inequality constraint function (written in the form g(x)≤ 0).

P2. (a) Simplex algorithm for linear programming (M1)

1Alternatively, by expanding the 1-norm the constraint can be rewritten as a union of 24 = 16 affine/convex

constraints, and then the problem can be recast into solving 16 times a convex optimization problem. So we could

also use the ellipsoid algorithm (M11) 16 times. More specifically, a constraint of the form ‖x‖1 ≥ L where L is an

affine function, can be rewritten as |x1|+ |x2|+ |x3|+ |x4| ≥ L or equivalently x1 +x2+x3 +x4 ≥ L or x1 +x2+x3 −
x4 ≥ L or x1 + x2 − x3 + x4 ≥ L or . . . or −x1 − x2 − x3 − x4 ≥ L, i.e., the union of 24 = 16 affine constraints.

2There are no equality constraints; so the equality constraint function h does not appear here.
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(b) Since log is a monotonically increasing function, we can also minimize its argument

instead. So the new objective function becomes 1+ |x1|+3|x2|+ |x3|+2|x4|+3|x5|. The

first term (i.e., the constant 1) does not influence the optimum and can be omitted. Note

that the scaling factors of the other terms are positive. By introducing a variable α ∈R
5 the

problem can then be recast into the constrained problem min
α ,x

α1 + 3α2 +α3 + 2α4 + 3α5

subject to αi ≥ |xi| or equivalently αi ≥ xi and αi ≥−xi for i = 1,2, . . . ,5, which are affine

constraints.

The constraint (5+3x1 + x2 − x3 + x4 − x5)
3 ≤ 27 can be rewritten as 5+3x1 + x2 − x3 +

x4 − x5 ≤ 3, which is an affine constraint.

The constraint max(|3+2x1 +3x2|, |4x3 +3x4|, |2x5 +8|)≤ 15 can be rewritten as

|3+2x1 +3x2| ≤ 15

|4x3 +3x4| ≤ 15

|2x5 +8| ≤ 15

or equivalently

−15 ≤ 3+2x1 +3x2 ≤ 15

−15 ≤ 4x3 +3x4 ≤ 15

−15 ≤ 2x5 +8 ≤ 15 ,

which are affine constraints.

Hence, we have a linear programming problem and therefore the most suited optimization

algorithm is the simplex algorithm (M1).

(c) Since the simplex algorithm finds the optimal solution in a finite number of steps, no

stopping criterion is required3.

P3. (a) Ellipsoid algorithm (M11)

(b) The objective function can be written as x2
1+(x1+x2)

2+(2x3+x4)
2+6x2

4−3x1−4x2+
8x3+1. Quadratic functions and affine functions are convex; moreover, a sum with positive

weights of convex functions is also convex. Hence, the objective function is convex4.

The function exp is convex, and a sum of convex functions is also convex. Hence, the first

constraint is convex.

The second and the third constraint are affine and thus convex.

Hence, we have a convex optimization problem. The gradients of the objective function

of the constraint functions can be computed analytically. Therefore, the most appropriate

3However, in practice a maximum number of iterations is usually specified.

4Alternatively, the Hessian of the objective function can be computed: H =







4 2 0 0

2 2 0 0

0 0 8 4

0 0 4 14







and it can be

verified that H is positive definite.
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algorithm is the ellipsoid algorithm (M11).

(c) A suitable stopping criterion is5

| f̃ (xk)− f̃ (x∗)| ≤ ε f and g(xk)≤ εg ,

where xk is the current iteration point, x∗ is the (yet unknown) optimum of this optimiza-

tion problem, f̃ denotes the objective function (after rewriting the problem as a convex

minimization problem), and g̃ denotes the constraint function (with the constraint recast in

the form g̃(x)≤ 0 with g̃ convex).

P4. (a) Multi-start barrier function approach + line search method with Levenberg-Marquardt

direction (M10)

(b) The objective function is non-convex due to the terms x1x3 and x4x5 (which cannot be

absorbed into a square here).

The first and the third constraints can be rewritten as affine constraints:

x1 +2x2 +8x3 −9x4 +8x5 ≤ 2

−3 ≤ xi ≤ 3 for i = 1, . . . ,5

The second constraint can be written as the union of two affine constraints (so actually the

constraint is non-convex):

− x1 +3x2 − x3 +6x4 + x5 ≥ 2

or − x1 +3x2 − x3 +6x4 + x5 ≤−2

As we have a nonlinear, non-convex objective function, a multi-start optimization method

is required. The gradient and Hessian of the objective function can be computed analyti-

cally. So in this case and given the list of available algorithms, which contains an algorithm

(M10) that is Hessian-based, a multi-start barrier function approach in combination with a

line search method with the Levenberg-Marquardt direction (M10) is the most suited opti-

mization algorithm.

(c) The most appropriate stopping criterion is: there exists a µk such that

‖∇ f (xk)+∇g(xk)µk ‖2 ≤ ε1

|µT
k g(xk) | ≤ ε2

µk ≥−ε3

g(xk)≤ ε4

where xk is the current iteration point, f is the objective function of the minimization

problem, and g is the inequality constraint function (written in the form g(x)≤ 0).

5In addition, ‖xk − x∗‖2 ≤ εx could also be added.
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P5. (a) Multi-start Lagrange method + Davidon-Fletcher-Powell quasi-Newton algorithm (M7)

(b) The constraint is non-convex (due to the sin term). So we have a nonlinear, non-convex

optimization problem with an equality constraint. It is not possible to use the constraint

to eliminate one of the variables. The gradient and Hessian of the objective function can

be computed analytically. So in this case a multi-start Lagrange method in combination

with the Davidon-Fletcher-Powell quasi-Newton algorithm (M7) is the most appropriate

optimization approach.

(c) The most appropriate stopping criterion is:

‖∇ f (xk)+∇h(xk)λk ‖2 ≤ ε1

|h(xk)| ≤ ε2

where xk is the current iteration point, f is the objective function of the minimization

problem, and h is the equality constraint function (written in the form h(x) = 0).

P6. (a) Simplex algorithm for linear programming (M1)

(b) By introducing an auxiliary variable t, the maximization of the objective function can

be rewritten as max
t,x

t subject to t ≤ 4x1 −3x2 +8x3 −5 and t ≤−2x1 +7x2 − x3 +1.

It can be shown that the constraint 7|x1|+2|x2|+5|x3| ≤ 10 is equivalent to the following

system of affine constraints6:

x1 +2x2 +5x3 ≤ 10

7x1 +2x2 −5x3 ≤ 10

7x1 −2x2 +5x3 ≤ 10

7x1 −2x2 −5x3 ≤ 10

−7x1 +2x2 +5x3 ≤ 10

−7x1 +2x2 −5x3 ≤ 10

−7x1 −2x2 +5x3 ≤ 10

−7x1 −2x2 −5x3 ≤ 10 .

The constraint 32x1−8x2+5x3 ≥ 27 is equivalent to the affine constraint 2x1 −8x2 +5x3 ≥ 3.

So we have a linear programming problem and the best suited algorithm is the simplex

algorithm (M1).

(c) Since the simplex algorithm finds the optimal solution in a finite number of steps, no

stopping criterion is required.

6This is allowed since the coefficients of |xi| are all positive. Compare this with P1, where the coefficients of |xi|
were negative after rewriting the constraint in the form g(x)≤ 0.
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P7. (a) Multi-start Levenberg-Marquardt algorithm (M4)

(b) The objective function is convex, but the constraint is non-convex. By considering the

constraint as a quadratic equation in the variable x1, we obtain:

x1 =
−2x3 ±

√

4x2
3 +4(9x2

3 +5x2
2 +2x2x3 +4x3x4 +12x2

4 +9)

2

(note that the term under the square-root sign is always nonnegative). Using this expres-

sion to eliminate x1 results in two unconstrained optimization problems; the solution with

the lowest objective function value will then yield the optimal solution of the original

optimization problem. As the unconstrained optimization problems have a non-convex,

nonlinear objective function, we need a multi-start approach. The gradient and Hessian of

the objective function and the Jacobian of the constraints can be computed analytically. So

the most appropriate algorithm is the multi-start Levenberg-Marquardt algorithm (M4).

(c) The most appropriate stopping criterion is

‖∇ f̃ (x̃k)‖2 ≤ ε ,

where x̃k and f̃ are respectively the current iteration point and the objective function of the

optimization problems obtained after elimination of the variable x1.

P8. (a) Ellipsoid algorithm (M11)

(b) The arctan function is a monotonically increasing function. So we can also minimize

its argument. The expression 4x2
1 + 2x1x2 + 2x1x3 + 4x2

2 + 2x2x3 + 4x2
3 − x1 + x2 − x3 can

be written as (x1 + x2 + x3)
2 + 3x2

1 + 3x2
2 + 3x2

3 − x1 + x2 − x3, which is a sum of convex,

quadratic functions and of an affine function. As the sum of convex functions is also

convex, the given quadratic expression is thus convex.

The first constraint is also convex since the left-hand side of the inequality is the sum of

convex, quadratic functions and since the sum of convex functions is also convex.

The second constraint can be rewritten as |x1 + x2 + x3|−4 ≤ 0, which is convex since the

absolute value function is convex and since a convex function with an affine argument is

also convex.

So we have a convex optimization problem. The gradients of the objective function of the

constraint functions can be computed analytically. Hence, the most appropriate algorithm

is the ellipsoid algorithm (M11).

(c) A suitable stopping criterion is7

| f̃ (xk)− f̃ (x∗)| ≤ ε f and g(xk)≤ εg ,

where xk is the current iteration point, x∗ is the (yet unknown) optimum of this optimiza-

tion problem, f̃ denotes the objective function (after rewriting the problem as a convex

7In addition, ‖xk − x∗‖2 ≤ εx could also be added.
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minimization problem), and g̃ denotes the constraint function (with the constraint written

in the form g̃(x)≤ 0 with g̃ convex).

P9. (a) Multi-start genetic algorithm (M12)

(b) The roots of a 14-th degree polynomial can in general not be expressed in closed form

and they should thus be computed numerically. Moreover, the objective function is not

convex (due to the non-convex relation between the parameters z and the roots ρ of the

polynomial). So we have a nonlinear non-convex optimization problem. Therefore, a

multi-start optimization method is required. The gradient and Hessian of the objective

function cannot be computed analytically. The numerical computation of the roots will in

general be time-consuming and as such it is better not to use numerical computation of the

gradient and Hessian of the objective function, but rather we should select a gradient-free

optimization method. So in this case a multi-start genetic algorithm (M12) is the most

suited optimization algorithm8.

(c) A suitable stopping criterion is an upper bound on the number of generations.

P10. (a) Ellipsoid algorithm (M11)

(b) The maximization problem can be recast as a minimization problem: minx(3x2
1+2x2

2+
8x2

3 − x1 −3x2 +4x3 −8)5. As the function x 7→ x5 is a monotonically increasing function,

we can minimize its argument instead. This results in the minimization of the convex,

quadratic objective function 3x2
1 +2x2

2 +8x2
3 − x1 −3x2 +4x3 −8.

The first constraint can be rewritten as (see also P6 above):

x1 + x2 + x3 ≤ 3

x1 + x2 − x3 ≤ 3

x1 − x2 + x3 ≤ 3

x1 − x2 − x3 ≤ 3

−x1 + x2 + x3 ≤ 3

−x1 + x2 − x3 ≤ 3

−x1 − x2 + x3 ≤ 3

−x1 − x2 − x3 ≤ 3 ,

which is a system of affine constraints.

The second constraint can be rewritten as cosh(2x1 + 3x2 − 7x3) ≤ 5 or equivalently

−acosh(5)≤ 2x1 +3x2 −7x3 ≤ acosh(5), where acosh denotes the inverse of cosh.

So we have a convex, quadratic objective function with affine constraints, i.e., a convex

quadratic programming problem. As the modified simplex algorithm is not in the list, the

best choice is the ellipsoid algorithm (M11).

8Also note that the objective function does not involve minimization of an error; so the Gauss-Newton least-

squares algorithm cannot be used here.
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(c) A suitable stopping criterion is9

| f̃ (xk)− f̃ (x∗)| ≤ ε f and g(xk)≤ εg ,

where xk is the current iteration point, x∗ is the (yet unknown) optimum of this optimiza-

tion problem, f̃ denotes the objective function (after rewriting the problem as a convex

minimization problem), and g̃ denotes the constraint function (with the constraint written

in the form g̃(x)≤ 0 with g̃ convex).

9In addition, ‖xk − x∗‖2 ≤ εx could also be added.
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QUESTION 2: Optimization methods II

Answer for Task 1

• The constant 8 does not change the position of the optimum and can thus be omitted. In

order to obtain a minimization problem we rewrite the maximization as min
x∈R4

−7x1−2x2+

2x3 +9x4.

• By introducing nonnegative slack variables the constraints (except for x1 ≥ 0, which will

be merged into x ≥ 0) can be transformed into equality constraints:

x1 −2x2 +3x3 +8x4 + s1 = 6

− x1 +3x2 −6x3 + x4 − s2 = 2

x1 − x3 + s3 = 5

x1 + s4 = 9

x2 + s5 = 1

with s ≥ 0.

• Note that x2, x3, and x4 are real-valued and can thus also become negative. To obtain

only nonnegative variables, we split x2, x3, and x4 into their positive and negative parts

x2 = x+2 − x−2 , x3 = x+3 − x−3 , x4 = x+4 − x−4 with x+2 ,x
−
2 ,x

+
3 ,x

−
3 ,x

+
4 ,x

−
4 ≥ 0, and rewrite the

above equations, resulting in

min
x̃∈R12

−7x1 −2x+2 +2x−2 +2x+3 −2x−3 +9x+4 −9x−4

s.t. x1 −2x+2 +2x−2 +3x+3 −3x−3 +8x+4 −8x−4 + s1 = 6

− x1 +3x+2 −3x−2 −6x+3 +6x−3 + x+4 − x−4 − s2 = 2

x1 − x+3 + x−3 + s3 = 5

x1 + s4 = 9

x+2 − x−2 + s5 = 1

x̃ ≥ 0

where x̃ =
[

x1 x+2 x−2 x+3 x−3 x+4 x−4 s1 s2 s3 s4 s5

]T
.

Answer for Task 2

The problem can be solved in a graphical way. The feasible set has four vertex points, namely

(0,0), (4,0), (0,6), (2,8) corresponding to the (feasible) intersections of the boundaries of the

constraints (see also the figure below). By considering the line 2x1 + 3x2 = c and determining

the largest value of c for which this line still intersects with the feasible region (see the dashed

lines in the figure below), one finds that the maximum is reached in the vertex point x∗ = (2,8);
the corresponding value of the objective function is 28.
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Answer for Task 3

Here we essentially expect a summary of Section 2.2 of the lecture notes. Be sure to mention the

following elements:

• transformation into standard form,

• basic solutions & vertices of the feasible region,

• the constraint matrix A is split into two parts B and N with B square and invertible,

• columns of B and N will be swapped,

• rules for selecting the columns and an intuitive interpretation of these rules,

• stop criterion,

• termination in a finite number of steps.
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QUESTION 3: Controller design

Answer for Task 1

We have10

y = P(d +K(r− y)) = Pd +PKr−PKy

u = K(r−P(d +u)) =−PKd +Kr−KPu

and thus [
y

u

]

=
1

1+PK

[
P PK

−PK K

]

︸ ︷︷ ︸

G

[
d

r

]

.

Answer for Task 2

From the answer for Task 1 it follows that Hry = G12 =
PK

1+PK
. Replacing K by

Q

1−PQ
yields

Hry =
PQ

1−PQ+PQ
= PQ .

So for P = 2 we get Hry = 2Q.

(a) The design specification 4 ≤ ‖Hry‖∞ ≤ 8 can be recast as 2 ≤ ‖Qry‖∞ ≤ 4. To show that

this design specification is not closed-loop convex in Q, we construct a counter-example,

i.e., we provide two values Q1 and Q2 for which the condition is satisfied and a value

λ ∈ [0,1] such that the condition is not satisfied for λQ1 +(1−λ )Q2.

To this aim, take Q1 = 3 and Q2 =−Q1 =−3. Clearly, both Q1 and Q2 satisfy the design

specification. However, for λ = 0.5 their convex combination
1

2
Q1 +

1

2
Q2 = 0 does not

satisfy the design specification. Hence, the given design specification is not closed-loop

convex.

(b) The design specification 4 ≤ Re{Hry} ≤ 8 can be recast as 2 ≤ Re{Q} ≤ 4. To show

that this design specification is closed-loop convex in Q, we consider Q1 and Q2 such that

2 ≤ Re{Q1} ≤ 4 and 2 ≤ Re{Q2} ≤ 4, and we show that 2 ≤ Re{λQ1 +(1−λ )Q2} ≤ 4

for all λ ∈ [0,1].
We have

Re{λQ1 +(1−λ )Q2}= Re{λQ1}+Re{(1−λ )Q2}

= λRe{Q1}+(1−λ )Re{Q2} .

So Re{λQ1+(1−λ )Q2}= λRe{Q1}+(1−λ )Re{Q2}≤ λ4+(1−λ )4 ≤ 4. In a similar

way we can show that Re{λQ1 +(1−λ )Q2} ≥ 2. Hence, λQ1 +(1−λ )Q2 satisfies the

design specification for all λ ∈ [0,1] and therefore the given design specification is closed-

loop convex.

10The arguments k and q are omitted next for the sake of compactness of notation.
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