Exam - November 2019

Optimization in Systems and Control (SC42055)

QUESTION 1: Optimization methods I (60 points)

Consider the following optimization problems:
P1. $\min _{x \in \mathbb{R}^{4}} \sqrt[5]{\left(x_{1}+6 x_{2}+8 x_{3}-9 x_{4}-10\right)^{2}}$

$$
\text { s.t. } x_{1}^{3}+x_{3}^{2}+3 x_{2}^{2}+2 x_{2}^{2} x_{3}^{2}+4 x_{3}^{2} x_{4}^{2}+8 x_{4}^{4}=5
$$

P2. $\max _{x \in \mathbb{Z}^{4}}\left(\frac{1}{5}\right)^{4 x_{1}+2 x_{2}-3 x_{3}-8 x_{4}-5}$
s.t. $\|x\|_{1} \leq 25$

$$
\left|7 x_{1}-8 x_{2}+3 x_{3}+6 x_{4}-15\right| \leq 165
$$

$$
2 x_{1}-3 x_{2}-x_{3}+7 x_{4}+10 \geq 1
$$

P3. $\min _{\theta \in \mathbb{R}^{10}} F(\theta)$
s.t. $0 \leqslant \theta_{i} \leqslant 1$ for all i
where
$F(\theta)=\int_{0}^{\theta_{1}} \int_{\theta_{2}}^{1} \int_{0}^{\theta_{3}} \frac{\cosh \left(\theta_{4} t_{1}\right)+\theta_{5}\left(1+t_{2}\right)^{\theta_{6}}+\exp \left(2 t_{3}\right)\left(1+\sin \left(\theta_{7} t_{1}^{2}\right)\right)}{\left|2+t_{2} \cos \left(\theta_{6} t_{2}\right)+\sin \left(\theta_{8} t_{1}+\theta_{9} t_{3}\right)^{2}+\exp \left(\theta_{10} t_{2}\right)\right|} d t_{1} d t_{2} d t_{3}$

P4. $\min _{x \in \mathbb{R}^{4}}\left(7\left|x_{1}\right|+3\left|x_{2}\right|+\left|x_{3}\right|+2\left|x_{4}\right|+1\right)^{2}$

P5. $\max _{x \in \mathbb{R}^{4}}-8 x_{1}^{2}-2 x_{1} x_{2}-x_{2}^{2}-4 x_{3}^{2}-4 x_{3} x_{4}-7 x_{4}^{2}+3 x_{1}-4 x_{2}+8 x_{3}-13$
s.t. $1 \leq 3^{3 x_{1}} 3^{4 x_{2}} 3^{x_{3}} 3^{-2 x_{4}} \leq 729$
$6 x_{1}^{4}+x_{2}^{2}+x_{3}^{4}+2 x_{4}^{2} \leq 8100$
$\max \left(x_{1}+x_{2}+2 x_{3}+x_{4}, 4 x_{1}-x_{2}+6 x_{3}-5 x_{4}\right) \geq 25$

P6. $\min _{x \in \mathbb{R}^{4}}\left|5 x_{1}-2 x_{2}+6 x_{3}+18\right|+3 \cosh \left(0.001\left(4 x_{1}-x_{2}+x_{3}-2 x_{4}\right)^{4}-3\right)$
s.t. $\|x\|_{2} \leq 5$

P7. $\max _{x \in \mathbb{R}^{3}}-5^{x_{1}^{2}-4 x_{1} x_{2}+x_{2}^{2}+8 x_{3}^{2}-x_{1}-3 x_{2}+x_{3}-7}$
s.t. $\|x\|_{\infty} \leq 1$

$$
\begin{aligned}
& \left(\cosh \left(x_{1}+x_{2}-x_{3}\right)\right)^{3} \leq 10^{9} \\
& \max \left(\left|1+x_{1}+20 x_{2}+30 x_{3}-7\right|,\left(x_{1}+8 x_{2}-x_{3}\right)^{2}\right) \leq 900
\end{aligned}
$$

P8. $\min _{x \in \mathbb{R}^{5}} \exp \left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{5}\right)+\max \left(\left|2 x_{1}-5 x_{2}+8 x_{4}-2\right|,\left(4 x_{1}-x_{2}-2 x_{3}-7 x_{5}\right)^{-2}\right)$
s.t. $4 x_{1}-x_{2}-2 x_{3}-7 x_{5} \geq 1$
$\log \left(1-8 x_{1}^{2}-6 x_{2}^{2}-x_{3}-x_{4}+2 x_{5}\right) \geq 9$
$8 x_{1}^{2}+6 x_{2}^{2}+x_{3}+x_{4}-2 x_{5} \leq 12$
$2\left(x_{1}^{2}+x_{2}^{2}\right)^{4}+4\left(x_{3}-x_{4}+x_{5}\right) \leq 10000$

Tasks: For each of the problems P1 up to P8:
(a) Give the most simple type of optimization problem that the given problem can be reduced to, irrespective of the optimization algorithm used later on (So if you have a nonconvex constrained problem that you will solve using, e.g., a barrier or penalty function method in item (b), you should still mark NCC here). Select one of the following types:

- LP: linear programming problem
- QP: convex quadratic programming problem
- CP: convex optimization problem
- NCU: nonconvex unconstrained optimization problem
- NCC: nonconvex constrained optimization problem
- MILP: mixed-integer linear programming problem

The first checkbox serves to indicate that a problem can be recast as multiple, more simple problems. If you obtain, e.g., 4 linear programming problems, check - next to the LP checkbox - also the first checkbox and fill out 4 on the dots.
Note that you may have to perform some extra steps first in order to simplify the optimization problem. If you do this, then you have to indicate it clearly in your reply to item (e).
(b) For the simplified problem you obtained in step (a), indicate whether the objective function and the constraints are linear, quadratic, convex, or nonconvex.
(c) Now determine the best suited optimization method for the given problem. Select one of the following methods:

M1: Simplex algorithm for linear programming
M2 : Modified simplex algorithm for quadratic programming
M3: Gradient projection method with variable step size line minimization
M4: Gauss-Newton least squares algorithm
M5 : Davidon-Fletcher-Powell quasi-Newton algorithm
M6: Levenberg-Marquardt algorithm
M7: Steepest descent method
M8 : Line search method with the steepest descent direction and quadratic line minimization

M9: Lagrange method + steepest descent method
M10: Penalty function approach + line search method with Powell directions and variable step size line minimization
M11: Barrier function approach + line search method with steepest descent direction
M12: Branch-and-bound method for mixed-integer linear programming

* If it is necessary to use the selected algorithm in a multi-start optimization procedure, you have to indicate this clearly in your reply to item (b) by putting a checkmark in the Multi-start box.
* Give only one solution! If more than one solution is given, the worst one will be taken.
(d) Give the most appropriate stopping criterion for the selected optimization method.

Do not reply by referring to your answer to a previous or subsequent problem. Such a statement will considered to be a wrong answer.
(e) Explain and motivate your reply to items (a), (b), and (c).

QUESTION 2: Optimization methods II (25 points)

Tasks:

1. Explain how the Levenberg-Marquardt method for unconstrained optimization works. Illustrate your explanation by drawing one or more pictures. Also give the general iteration formula and explain what the advantage is of the Levenberg-Marquardt method compared to the Newton and quasi-Newton methods for unconstrained optimization.
2. Now consider the following optimization problem:

$$
\begin{aligned}
& \max _{(x, y) \in \mathbb{R}^{2}} x^{2}+2 y^{2}-x y-4 y+12 \\
& \text { s.t. } x, y \geqslant 0 \\
& \quad x+y \leqslant 2 .
\end{aligned}
$$

a) Is this optimization problem convex or not? Why?
b) Now solve the given optimization problem using the gradient projection method and perform two iteration steps:
Take $\left(x_{0}, y_{0}\right)=(1,0)$ as starting point, compute the two subsequent search directions for the gradient projection method, and perform the corresponding line minimizations, where for the line minimization you should determine the exact line minimum.

QUESTION 3: Controller design (15 points)

Consider the following closed-loop system consisting of the stable systems P_{1} and P_{2}, and two controllers K_{1} and K_{2} :

The signal r is the reference signal, d is a noise signal, y is the output of the system, and u is the input signal for system P_{1}.
The signals r and d are considered to be the input signals of the overall closed-loop system; the signals y and u are considered to be the output signals of the overall closed-loop system.

Tasks:
a) Determine the transfer function matrix M in terms of P_{1}, P_{2}, K_{1}, and K_{2} such that

$$
\left[\begin{array}{c}
u(k) \\
y(k)
\end{array}\right]=M(q)\left[\begin{array}{l}
r(k) \\
d(k)
\end{array}\right]
$$

where q denotes the forward shift operator.
b) Show that any controller parameterized by

$$
\begin{aligned}
K_{1}(q) & =\frac{Q_{1}(q)}{1-P_{1}(q) Q_{1}(q)-P_{1}(q) P_{2}(q) Q_{2}(q)} \\
K_{2}(q) & =\frac{Q_{2}(q)}{1-P_{1}(q) Q_{1}(q)-P_{1}(q) P_{2}(q) Q_{2}(q)}
\end{aligned}
$$

where Q_{1} and Q_{2} are rational stable transfer functions, will stabilize the overall closed-loop system.

End of the exam

