Exam - October 2021

Optimization for Systems and Control (SC42056)

The exam consists of 2 main questions. For Question 1 the maximal score for each problem is 8 ; as there are 9 problems, this implies that the maximal total score for Question 1 is 72 . The maximal total score for Question 2 is 28 . The detailed subscores are marked in red next to each task.

QUESTION 1 ($9 \times 8=72$ points)

Consider the following optimization problems:
P1. $\min _{x \in \mathbb{R}^{10}} \max \left(A_{1}(3 x), 2 A_{2}(x), 3^{A_{3}(6 x)+8 A_{4}(2 x)}, 6\right)$
s.t. $\|x\|_{2}^{4} \leq 1000$

$$
\left(x_{1}^{6}+x_{2}^{2}-3 x_{3}+8 x_{4}^{2}-x_{5} x_{7}+4 x_{5}^{2}+8 x_{7}^{2}+x_{9}-x_{10}\right)^{5} \leq 32
$$

where the functions A_{1}, A_{2}, A_{3}, and A_{4} correspond to the outcomes of physical experiments that take about 60 seconds to carry out and for which it is known that A_{1}, A_{2}, A_{3}, and A_{4} are convex in their argument.

P2. $\min _{x \in \mathbb{R}^{5}} \cosh \left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{5}\right)+\max \left(\left|2 x_{1}-5 x_{2}+8 x_{4}-2\right|,\left(4 x_{1}-x_{2}-2 x_{3}-7 x_{5}\right)^{-2}\right)$
s.t. $4 x_{1}-x_{2}-2 x_{3}-7 x_{5} \geq 1$

$$
\log \left(20-8 x_{1}^{2}-6 x_{2}^{2}-x_{3}-x_{4}+2 x_{5}\right) \geq 9
$$

$$
8 x_{1}^{2}+6 x_{2}^{2}+x_{3}+x_{4}-2 x_{5} \leq 12
$$

$$
2\left(x_{1}^{2}+x_{2}^{2}\right)^{4}+4\left(x_{3}-x_{4}+x_{5}\right) \leq 10000
$$

P3. $\min _{x \in \mathbb{Z}^{5}}\left(3\left|x_{1}\right|+2\left|x_{2}\right|+8\left|x_{3}\right|+6\left|x_{4}\right|+3\left|x_{5}\right|+7\right)^{-5}$
s.t. $6 \leq 2+\|x\|_{\infty}$

$$
\begin{aligned}
& \left(3+2 x_{1}+x_{2}-5 x_{3}+9 x_{4}-2 x_{5}\right)^{3} \geq 1000 \\
& 5\left|x_{1}\right|+4\left|x_{2}\right|+3\left|x_{3}\right|+3\left|x_{4}\right|+\left|x_{5}\right| \leq 50
\end{aligned}
$$

P4. $\min _{x \in \mathbb{R}^{4}} \sqrt[7]{\left(x_{1}+6 x_{2}+8 x_{3}-9 x_{4}-10\right)^{2}}$
s.t. $\exp \left(2 x_{1}^{2}+2 x_{2}^{2}+2 x_{1}^{2} x_{2}^{2}+x_{3}^{4}\right)+2 x_{1}^{2}+x_{2}^{4}+x_{3}^{6}+8 x_{4}^{2}=100$

P5. $\max _{x \in \mathbb{R}^{4}} \sinh \left(1-\cosh \left(2 x_{1}^{2}+4 x_{2}^{2}+2 x_{3}^{2}-8 x_{3} x_{4}+16 x_{4}^{2}\right)\right)$
s.t. $1 \leq\left|x_{1}+2 x_{2}+3 x_{3}+4 x_{4}\right| \leq 25$

$$
\left(7 x_{1}+x_{2}-2 x_{3}+5 x_{4}\right)^{4} \geq 16
$$

P6. $\min _{\theta \in \mathbb{R}^{6}} \sum_{k=1}^{7500} \varepsilon^{2}(k, \theta) \quad$ s.t. $\theta_{i} \in[0, \pi / 2]$ for $i=1,2, \ldots, 6$
where the signal $\{\varepsilon(k, \theta)\}_{k=1}^{7500}$ is the 1 -step ahead prediction error for a discrete-time system (with a sample time step of 1 s) for a zero-mean noisy input signal $\{u(k)\}_{k=1}^{7500}$ with a uniform distribution in the interval $[-1,1]$ and where a discrete-time model of the form

$$
\begin{aligned}
& y(k)=\left(\cos \theta_{1}\right) \cdot e^{2 y(k-1)}+\left(\sin \theta_{2}\right) \cdot y(k-3) \cos (u(k))+\theta_{3}|u(k-3)|+ \\
& \quad\left(\sin \theta_{4}\right) u^{4}(k-2)+\theta_{5} y(k-4) \sin (y(k-1))+\left(\sin \theta_{6}\right) \cdot \frac{u^{2}(k-1)}{1+y^{2}(k-2) u(k-2)}
\end{aligned}
$$

with initial conditions $y(i)=\exp (i)$ and $u(j)=0$ for $i=0,-1,-2,-3$ and $j=0,-1,-2$ is considered.

P7. $\max _{x \in \mathbb{R}^{4}}\left(2-\arctan \left(\cosh \left(3 x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}+4 x_{3}^{2}-8 x_{3} x_{4}+5 x_{4}^{2}\right)\right)\right)$
s.t. $\exp (3) \exp \left(2 x_{1}\right) \exp \left(4 x_{2}\right) \exp \left(x_{3}\right) \exp \left(-2 x_{4}\right) \leq \exp (17)$

$$
\begin{aligned}
& \min \left(2 x_{1}+x_{2}+3 x_{3}+x_{4}, 7 x_{1}-x_{2}+6 x_{3}-6 x_{4}\right) \geq 12 \\
& x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \leq 6^{2}
\end{aligned}
$$

P8. $\min _{\gamma \in \mathbb{R}^{10}} I(\gamma)$
s.t. $0 \leq \gamma_{i} \leq 1 \quad$ for all i
where
$I(\gamma)=\int_{0}^{\gamma_{1}} \int_{\gamma_{2}}^{1} \int_{0}^{\gamma_{3}} \frac{\cos \left(\gamma_{4} t_{1}\right)+\gamma_{5}\left(1+t_{2}\right)^{\gamma_{6}}+\exp \left(2 t_{3}\right)\left(1+\sinh \left(\gamma_{1} t_{1}^{2}\right)\right)}{\left|2+t_{2} \cosh \left(\gamma_{6} t_{2}\right)+\sin \left(\gamma_{8} t_{1}+\gamma_{9} t_{3}\right)^{2}+\exp \left(\gamma_{10} t_{2}\right)\right|} d t_{1} d t_{2} d t_{3}$

P9. $\min _{x \in \mathbb{R}^{4}}\left(4\left|x_{1}\right|+3\left|x_{2}\right|+\left|x_{3}\right|+2\left|x_{4}\right|+1\right)^{4}$

$$
\begin{array}{ll}
\text { s.t. } & \exp \left(6+3 x_{1}+x_{2}-x_{3}-x_{4}\right)^{4} \leq 16000 \\
& \max \left(3+2 x_{1}+3 x_{2}-x_{4}, 4 x_{2}+3 x_{4}, 2 x_{1}-8\right) \leq 9 \\
& \|x\|_{\infty}+\|x\|_{1} \geq 2
\end{array}
$$

Important for all tasks:

* Give only one solution! If more than one solution is given, the worst one will be taken.
* In your answer do not refer to your answer to a previous or a subsequent problem. Such a statement will considered to be a wrong answer.
* A correct answer without the correct motivation will be considered to be a wrong answer.

Tasks: For each of the problems P1 up to P9:
(a) Reduce the given optimization problem to the most simple type of optimization problem that the given problem can be reduced to. Label the constraints using the labels (1), (2), (3), etc.
In your answer you can use f to denote the original objective function (in the current minimization or maximization format), g to refer to the inequality constraint function (in the format $g(x) \leq 0$), and h to the equality constraint function (in the format $h(x)=0$).
Explain in Task (f) how you reduced the problem.
(b) For the simplified problem you obtained in Task (a), indicate whether the objective function is linear, convex quadratic, convex, or nonconvex over the feasible set (excluding constraints that restrict the variables to a discrete set, as such constraints would in general make the objective function nonconvex). Select the most restrictive option.
Motivate your answer in (f).
Moreover, for each individual constraint of the simplified problem examine whether the constraint is linear/affine, convex, or nonconvex over the feasible set consisting of the other constraints (excluding constraints that restrict the variables to a discrete set, as such constraints would in general make the constraint nonconvex). Select the most restrictive option. List the labels (as defined in Task (a)) of the linear, convex, and nonconvex constraints, if any.
Motivate your answer in Task (f).
(c) Characterize the type of the simplified optimization problem you obtained in Task (a), irrespective of the optimization algorithm used later on (so if you have a nonconvex constrained problem that you will solve using a barrier or penalty function method in item (d), you should still mark NCC here). Select one of the following types:

- LP: linear programming problem
- QP: convex quadratic programming problem
- CP: convex optimization problem
- NCU: nonconvex unconstrained optimization problem
- NCC: nonconvex constrained optimization problem
- MILP: mixed-integer linear programming problem

Select the most restrictive option.
The first checkbox serves to indicate that a problem can be recast as multiple, more simple problems. If you obtain, e.g., 4 linear programming problems, check - next to the LP checkbox also the first checkbox and fill out 4 on the dots.
Motivate your answer in Task (f).
1.5 (d) Now determine the best suited optimization method for the given problem. Select one of the following methods:
M1: Simplex algorithm for linear programming
M2: Gradient projection method with variable step size line minimization
M3: Interior point algorithm
M4: Gauss-Newton least squares algorithm
M5: Davidon-Fletcher-Powell quasi-Newton algorithm
M6: Levenberg-Marquardt algorithm
M7: Line search method with the steepest descent direction and cubic line minimization
M8: Lagrange method + Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm
M9: Barrier function approach + steepest descent method
M10: Penalty function approach + line search method with Powell directions and variable step size line minimization
M11: Simulated annealing
M12: Branch-and-bound method for mixed-integer linear programming
Motivate your answer in (f).

* If it is necessary to use the selected algorithm in a multi-start or multi-run optimization procedure, you have to indicate this clearly in your answer. Then also motivate why multi-start or multi-run optimization is needed.
0.5 (e) Give the most appropriate stopping criterion for the selected optimization method.

In your answer you can use f_{s} to denote the simplified objective function (in the current minimization or maximization format) of the reply to Task (a), g_{s} to refer to the inequality constraint function of Task (a) (in the format $g_{\mathrm{s}}(x) \leq 0$), and h_{s} to the equality constraint function of Task (a) (in the format $h_{\mathrm{s}}(x)=0$).
(f) Motivate the answers to Tasks (a), (b), (c), and (d).

QUESTION $2(9+16+3=28$ points)

Question 2.1 (9 points)

Tasks:
a) Explain how the ellipsoid algorithm works in case the number of optimization variables is larger than 1. Illustrate your explanation by drawing one or more pictures.
Note: It is not needed to provide the exact expressions for the iteration formulas. However, the main ingredients of the iteration formulas should be listed.
b) What are the two main advantages of the ellipsoid algorithm compared to the cutting-plane algorithm?
Motivate your answer.

Question 2.2 (16 points)

Consider the following optimization problem:

$$
\begin{aligned}
& \max _{(x, y) \in \mathbb{R}^{2}} 10-4 x^{2}-y^{2}+2 x y+50 x-20 y \\
& \text { s.t. }|x|+|2 y| \leq 8 \\
& \quad 1 \leq 2^{(y-1)^{2}} \leq 2^{16}
\end{aligned}
$$

Tasks:
a) Is this optimization problem convex or not? Motivate your answer.
b) Solve the given optimization problem using the gradient projection method and perform two iteration steps:
Take $\left(x_{0}, y_{0}\right)=(5,0)$ as starting point, compute two consecutive search directions for the gradient projection method, and each time perform the corresponding line minimization, where for the line minimization you should determine the exact line minimum.
Explain your answer.

Question 2.3 (3 points)

For an optimization problem of the form $\min _{x \in \mathbb{R}^{n}} f(x)$ subject to $g(x) \leq 0$, what is the interpretation
c) Is the point $\left(x_{2}, y_{2}\right)$ found as a result of the second iteration of the gradient projection method above, a global optimum, a local optimum, or no optimum at all of the given optimization problem?
Motivate your answer. of $\mu_{i}>0$ in the (partial) Karush-Kuhn-Tucker conditions $\mu^{\mathrm{T}} g(x)=0, \mu \geq 0, g(x) \leq 0$.
Motivate your answer.

