
Exam — November 2022 – Grading template
Optimization for Systems and Control (SC42056)

Important: Please recall the following instructions from the exam procedure:

• Note that – just as in previous years – correct results without proper and correct motivation
will not receive any marks.

For an example on how proper and correct motivations look like, please consult the worked solutions
for Sample Exams 1 and 2 and for the exams of October 2013 and October 2014

Additional scoring guidelines

S0: correct result without proper and correct motivation: 0
likewise: if in Question 1 the answer for (c) and/or (d) is formally correct, but an error is made
in (a) or (b) that affects the result for (c) and/or (d): 0 for (c) and/or (d)

S1a: small computation error that does affect result: −0.5

S1b: small computation error that does not affect result: −0.25

S2: partially incomplete motivation for convexity or simplification: −50%

S3: missing, wrong, or not properly motivated N× in Question 1: −2

S4: multi-start listed when it is not needed: −0.5

S5: ∇ f as row vector: −0.5

S6: redundant function in stopping criterion: 0

S7: introduction of redundant variables or constraints that are not needed at all: −1

S8: introduction of additional wrong constraints and/or wrong classification of extra/unsimplified
constraint: −1

S9: if a gradient-based algorithm is selected in case the gradient is hard to compute and a gradient-
free algorithm is available: 0 in (d) and −1 in (c)

S10: as indicated in instructions: if 2 or more solutions are given, the worst one is assumed to have
been selected

CE: Even if the answers to (a)-(d) are wrong, you can still score marks for (e) if and only if (a)-(d)
are internally consistent and all result in the answer given in (e) and if (e) is 100 % correct and
complete.

On the next pages concise answers are given with scores marked in red. To earn the indicated score
the corresponding answer has to be given completely, including the information inside the brackets;
else the score is 0.
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QUESTION 1 (8×9 = 72 points)

• P1

(a)1.5 As the function 5
√
· is a nondecreasing function, we can minimize the argument instead.

The (·)2 function can stay, or it can be replaced by |.|; however, it cannot just be removed:
0.75
Option 1: The constraint can be kept (this is the most simple solution) : 0.75, or
Option 2: The constraint can used to express x1 as a function of the other variables by
solving a quadratic equation of the form x2

1 + 4x1x2 + (2x2
2 + x4

3 + x5
4± acosh(. . .)), but

since cosh has a U-shape and is always larger than or equal to 1, this leads to 4 possible
expressions for x1 and additional constraints that the discrimant of the quadratic equation
is nonnegative and that the argument of the inverse cosh is larger than or equal to 1, i.e.,
1600−2x4− x2

2− (x6
2 +8x2

3)
2 ≥ 1 : 0.75

(b)4 Option 1: (·)2 is convex quadratic (as the argument of (·)2 is linear), or |.| is convex: 1.5
In this case the constraint is nonconvex (as it is an equality constraint and as h(·) is not
affine): 2.5
Option 2: Elimination of x1 would result in a nonlinear and nonconvex objective function
(+ explain why): 1.5
In this case the constraints are nonconvex (as −x2

2 is a nonconvex term): 2.5

(c)1 for option 1: NCC: nonconvex constrained optimization problem
for option 2: 4 × NCC: nonconvex constrained optimization problem

(d)2 The gradient and the Hessian of the objective function can be computed analytically. So
the best choice is:
for option 1: multi-start : 0.5 + M5: Lagrange + BFGS quasi-Newton algorithm: 1.5
for option 2: multi-start : 0.5 + M10: SQP: 1.5 or
multi-start : 0.5 + M7: penalty + Levenberg-Marquardt: 1.5

(e)0.5 for option 1: ‖∇ fs(xk)+∇hs(xk)λ‖2 ≤ ε1 and ‖hs(xk)‖2 ≤ ε2 or
for option 2: for M10 (SQP): KKT conditions with ε (list them, with felim, and gs, no hs!)
or
for M7 (penalty+Levenberg-Marquardt) ‖∇ fpenalty+(xk)‖2 ≤ ε where fpenalty+ is the sum
of the simplified objective function after elimination and the penalty function.
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• P2

(a)1.5 As the function 7(·) is an increasing function, we can minimize the argument instead : 1.
Moreover, the term−5 can be dropped. So we can minimize fs(x)= 4x1+2x2−3x3−8x4:
0.5
For simplifications of the constraints, see (b).

(b)4 The objective function fs is linear: 1
Constraint (1) is convex as a norm function is convex in its argument: 2
Constraint (2) can be written as a set (i.e., intersection) of 2 affine constraints: −175 ≤
7x12x2 +3x3 +6x4−25≤ 175: 1
Constraint (3) is affine.

(c)1 NCC: nonconvex constrained optimization problem [as the feasible set Z4 is discrete]

(d)2 Since the feasible set Z4 is discrete and since (1) is not an affine constraint, the only choice
is multi-run: 0.5 M11 simulated annealing: 1.5

(e)0.5 Temperature becomes less than some threshold (T 6 Tfinal)
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• P3

(a)1.5 We first transform the maximization problem into a minimization problem with objective
function −1+ 2exp(. . .). The constant −1 and the factor 2 can be omitted. As exp(·)
is an increasing function we can minimize its argument. So we finally get minx fs(x) :=
minx∈R4 4x2

1 + x1x2 + x2
2 + x2

3−8x3x4 + x2
4 : 1.5

For simplifications of the constraints, see (b).

(b)4 Although x1x2 can be absorbed into e.g. (0.5x1+x2)
2, the term−8x3x4 cannot be absorbed

into a square of an affine expression. So the objective function is nonconvex quadratic:
1.75
As ex · ey = ex+y, constraint (1) can be rewritten as 7+ 2x1 + 4x2 + x3− 2x4 ≤ 21, which
is an affine constraint: 0.75
Constraint (2) can be written as a set (intersection!) of 2 affine constraints 2x1+x2+3x3+
x4 ≥ 5 and 7x1− x2 +6x3−6x4 ≥ 7 : 0.75
Constraint (3) can be written as maxi=1,2,3,4 |xi| ≤ 10 and thus |xi| ≤ 10 for i = 1,2,3,4,
which in its turn is equivalent to a set (intersection!) of 8 affine constraints: −10≤ xi≤ 10
for i = 1,2,3,4 : 0.75

(c)1 NCC: nonconvex constrained optimization problem

(d)2 multi-start : 0.5 + M10: SQP: 1.5 or
multi-start : 0.5 + M7: Penalty + Levenberg-Marquardt: 1.5
(as these use 2nd-order information and as gradient and Hessian are easy to compute)

(e)0.5 for M10 (SQP): KKT conditions with ε (list them!) or
for M7 (penalty+Levenberg-Marquardt): ‖∇ fpenalty+(xk)‖2 ≤ ε (where fpenalty+ is the sum
of the simplified objective function and the penalty function)
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• P4

(a)1.5 The objective function cannot be simplified : 1.5
For simplifications of the constraints, see (b).

(b)4 Although −8x4x5 can be absorbed into e.g. (2x4− 2x5)
2, the term 2x1x3 cannot be ab-

sorbed into a square of an affine expression. So the objective function is nonconvex: 1
(1) can be rewritten as a set (intersection!) of 2 affine constraints: −16≤ . . .≤ 16 : 0.75
Constraint (2) can be written as |− x1 + 3x2− x3 + 6x4 + x5| ≥ 2, which is equivalent to
the union of 2 affine constraints: −x1 + 3x2− x3 + 6x4 + x5 ≤ −2 or −x1 + 3x2− x3 +
6x4 + x5 ≥ 2 : 1.5
Constraint (3) can be written as a set (intersection) of 24 = 16 affine constraints: ±x1±
3x2± x3±8x4 ≤ 7: 0.75

(c)1 NCC: nonconvex constrained optimization problem

(d)2 multi-start : 0.5 + M10: SQP: 1.5 or
multi-start : 0.5 + M7: Penalty + Levenberg-Marquardt: 1.5
(as these use 2nd-order information and as gradient and Hessian are easy to compute)

(e)0.5 for M10 (SQP): KKT conditions with ε (list them!) or
for M7 (penalty+Levenberg-Marquardt): ‖∇ fpenalty+(xk)‖2 ≤ ε (where fpenalty+ is the sum
of the simplified objective function and the penalty function)
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• P5

(a)1.5 The constant term 1 can be dropped and the problem can be written as a minimization
problem:

min
x
‖x‖3− log5(108− cosh(max(x2

1 + x2
2,x

2
3 + x4))) : 1.5

Also note that the first constraint guarantees that the argument of the log5 function is
always larger than or equal to 1
For simplifications of the constraints, see (b).

(b)4 The first term of the simplified objective function is a norm, which is convex in its argu-
ment
The second term of the simplified objective function is a composite function, where
− log5(·) is convex and decreasing, and the negative of the argument (i.e., cosh(max(x2

1 +
x2

2,x
2
3 + x4))−108) is convex (see below), so the composite function is also convex

Square and linear functions are convex functions, the sum of convex functions is convex,
and the max of two convex functions is also convex; moreover, max(x2

1 + x2
2,x

2
3 + x4) will

always be nonnegative as the first argument of the max function is always nonnegative; so
we get a cosh(·) function with a nonnegative argument, so cosh(·) is convex and increas-
ing, and its argument is convex
so the objective function is convex: 2
Constraint(1) is convex, following the same reasoning as above
Constraint (2) can be rewritten as max(. . . , . . .) ≥ −2, which results in the union of two
affine constraints: x1 +2x2 +3x3 ≥−2 or 2x1 +8x2 +4x4 ≥−22: 1
As sinh(·) and (·)3 are increasing functions, constraint(3) results in a constraint of the
form 3x1+5x2−2x3+5x2

4+9≤ 3
√

asinh(2), which is a convex constraint as a square and
a linear function are both convex and a sum of convex functions is convex): 1

(c)1 2 × CP: convex optimization problem

(d)2 There is no dedicated convex optimization algorithm available, but the subgradient is easy
to compute while formally speaking the Hessian is not defined everywhere as the objective
function is non-smooth due to the max operator; hence, we can use M8: barrier + steepest
descent: 1.5
[ exceptionally, we also accept M10: SQP: 1.5 or M7: Penalty + Levenberg-Marquardt:
1.5 ]
Multi-start is not required as the problem is convex: 0.5

(e)0.5 for M8 (barrier + steepest descent): ‖∇ fbarrier+(xk)‖2 ≤ ε (where fbarrier+ is the sum of the
objective function and the barrier function) or
for M10 (SQP): KKT conditions with ε (list them!) or
or M7 (penalty+Levenberg-Marquardt): ‖∇ fpenalty+(xk)‖2 ≤ ε (where fpenalty+ is the sum
of the objective function and the penalty function)
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• P6

(a)1.5 The term 3 can be dropped and the maximization problem can then be rewritten as a

minimization problem with objective function fs(x) = exp(. . .)+
2

(. . .)4 . The constraints

should not/cannot be simplified.

(b)4 The objective function is convex as the function exp(·) is convex and it has an affine argu-
ment, as the function 1/(·)4 is convex for strictly positive arguments (which is guaranteed
by constraint (1)) and it has an affine argument, and as the sum of two convex functions is
convex: 2.5
Constraint (1) is affine.
The first part of constraint (2): 1 ≤ ‖x‖2 + ‖x‖∞ + 2 always holds as norm functions are
nonnegative. The second part of (2) ‖x‖2+‖x‖∞+2≤ 25 is convex as norm functions are
convex in their argument and as a sum of convex functions is also convex: 1.5 if both are
classified and motivated correctly

(c)1 CP: convex optimization problem

(d)2 There is no dedicated convex optimization algorithm available, but the subgradient and
Hessian are easy to compute; so we can use M10: SQP: 1.5 or M7: Penalty + Levenberg-
Marquardt: 1.5
Multi-start is not required as the problem is convex: 0.5

(e)0.5 for M10 (SQP): KKT conditions with ε (list them!) or
for M7 (penalty+Levenberg-Marquardt): ‖∇ fpenalty+(xk)‖2 ≤ ε (where fpenalty+ is the sum
of the objective function and the penalty function)

7



• P7

(a)1.5 The term −3 can be omitted as it does not influence the location of the optimum. Since
arctan(·) is a nondecreasing function, we can also minimize the argument instead: 0.5
Since (·)2 is an increasing function for positive arguments (which is the case here), we can
just minimize the argument. The constant 1 can be dropped: 0.5
So the objective function to be minimized is 7|x1|+ 3|x2|+ |x3|+ 2|x4, which is a non-
negative sum of absolute values. By introducing dummy variables αi ≥ |xi| (which can
be rewritten as affine constraints αi ≥ xi, αi ≥−xi), we can instead consider minα,x 7α1+
3α2 +α3 +2α4 : 0.5
For simplifications of the constraints, see (b).

(b)4 The simplified objective function is linear: 1
Since an even power is U-shaped, constraint (1) can be rewritten is − 4

√
16000 ≤ 3x1 +

x2− x3− x4 +6≤ 4
√

16000, which is an affine constraint: 1
Constraint (2) can be rewritten as a set (intersection!) of 3 affine constraints: 2x1 +3x2−
x4 +3≥ 9, 4x2 +3x4 ≥ 9, 2x1−8≥ 9 : 1
The third constraint can be rewritten as |x1|+ |x2|+ |x3|+ |x4| ≤ 30, which can be rewritten
as a set (intersection!) of 24 = 16 affine constraints: ±x1± x2± x3± x4 ≤ 30 or equiva-
lently 1 affine constraint α1 +α2 +α3 +α4 ≤ 30 : 1

(c)1 MILP: mixed-integer linear programming problem

(d)2 M12: Branch-and-bound method for mixed-integer linear programming

(e)0.5 Optimum is obtained once the entire search tree has been explored
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• P8

(a)1.5 The objective function has the form 3sin
(

1
1+ fs(x)

)
where fs can be rewritten as a

sum of squares: e.g., fs(x) = (−2x1 + 2x2 + x3)
2 + 20x2

2 + x2
3 or fs(x) = 2(−x1 + x2 +

x3)
2 +(x1−2x2)

2 + x2
1 +18x2

2 (alternatively, one can verify that H =

 8 −8 −4
−8 48 4
−4 4 4

 is

a positive definite matrix.
Since fs is nonnegative, the argument of the sin function is in the interval [0,1], and 3sin

is increasing on this interval. Hence, we can maximize
1

1+ fs(x)
instead: 0.5

The function
1
(·)

is decreasing for positive arguments (which is the case here). So we can

minimize fs instead (note that the term 1 can also be dropped): 1
For simplifications of the constraints, see (b).

(b)4 The simplified objective function is convex quadratic as it is a sum of squares of affine
function or since H is positive definite: 1
Constraint (1) can be rewritten as a union of affine constraints: x1 + x2− 4x3 ≤ −1 or
x1 + x2−4x3 ≥ 1: 1
Constraint (2) can be rewritten as a set (intersection!) of 23 = 8 affine constraints: |x1|+
|x2|+ |x3|+2x1−4x2 +8x3 ≤ 25 or ±x1± x2± x3 +2x1−4x2 +8x3 ≤ 25: 1
Since cosh is increasing for nonnegative arguments (which is the case here), and since 2·

is also increasing, constraint(3) can be rewritten as x1− x2 + x3 ≥ log2(acosh(10000)),
which is an affine constraint: 1

(c)1 2 × QP: convex quadratic programming problem

(d)2 M1: Modified simplex algorithm for quadratic programming

(e)0.5 The optimum is obtained in a finite number of steps.
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QUESTION 2 (11+14+3 = 28 points)

• Question 2.1

(a)8 Mention/provide at least the following:

– search tree (as word or as figure): 1
– in each node a regular LP problem (relaxation) is solved, giving a lower bound for

the MILP solution: 1
– branching by selecting a xi that should become integer, and that currently has a non-

integer value (say θi) and by adding two constraints xi ≤ floor(θi) and xi ≥ ceil(θi):
2

– pruning of infeasible branches: 1
– pruning of branches that would not lead to a lower objective function: 1
– stop exploring current branch if feasible mixed-integer solution is found: 1
– stop criterion (no more unexplored nodes): 1

In case of wrong statements, a penalty of -1 applies for each wrong statement.

(b)1 If one or more of the components of the optimal solution of the given MILP problem tend
to −∞ or +∞, then for those components it does not matter whether the corresponding
variables are integer or not, which means that these cases will be detected as solution of
one of the LP relaxations within the tree. So we can focus the rest of our analysis on the
case where all components of the optimal solution are finite (the latter will also directly
be the case if the feasible set is bounded).
As in each branching step we are moving to the nearest integers smaller than and larger
than the current non-integer value and as the number of integer variables is finite, we will
always have a finite search tree if the optimal solution of the MILP problem is finite.
As the search tree is finite, the number of nodes that is explored will also be finite and then
the branch-and-bound algorithm will yield the local optimum in a finite amount of time.

(c)1 A mixed-integer linear programming problem is convex if there are no integer variables:
0.5 or if there are integer variables but their value is directly or indirectly fixed by the
constraints: 0.5

(d)1 Since a vertex does not necessarily have integer values for all components that should be
integer, we can easily construct a counter example where the optimal solution is not a
vertex of the feasible set. Consider, e.g., minx∈Z x subject to −0.5 ≤ x ≤ 0.5, which has
x∗ = 0 as optimal integer solution, while the vertices are x =−0.5 and x = 0.5

• Question 2.2

(a)2 If the problem is characterized as convex, the score for the entire subquestion (a) will be 0
First of all we transform the maximization problem into a minimization problem: 0.75

min
(x,y)∈R2

−9− x2−2y2 + xy+4y

s.t. x,y≥ 0
x+ y≤ 2

Due to the term −x2 the objective function is not convex: 1
Hence, the given problem is nonconvex: 0.25
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(b)11 After writing the optimization problem in the standard form (with minimization instead
of maximization), the gradient of the objective function is given by
∇ f (x,y) =

[
−2x+ y −4y+ x+4

]T: 1
The point (1,0) is on the boundary of the feasible set. We have ∇ f (1,0) =

[
−2 5

]T. The
negative gradient−∇ f (1,0) =

[
2 −5

]T: 1 points towards the infeasible region: 1; so we
have to project −∇ f (1,0)c =

[
2 −5

]T on the x-axis, which yields
[
2 0

]T as the search
direction: 1
So we set x = 1+2s = 1+ t and y = 0 and we optimize

F(s) = f (x(t),y(t)) =−9− (1+ t)2 = 9−1− t2−2t = 9− t2−2t

over the feasible region t ∈ [−1,1]: 1 Just optimizing the step size yields the line maximum
in (0,0) for t = −1. The line minimum (2,0) is found on the right-most boundary of the
feasible set: 2
In (2,0) the negative gradient is equal to

[
4 −6

]T and it points towards the infeasible
region: 2, as the constraints y= 0 and x+y= 2 are both active, the projection of−∇ f (2,0)
on these constraints is (0,0); so (2,0) is a local optimum: 2

(c)1 Since the problem is nonconvex, a local minimum is not necessarily a global optimum: 1
Alternatively, we can determine the global optima of the given optimization problem by
using the KKT conditions or by computing both the unconstrained optimum (and check
whether it is feasible) and the constrained optima on each of the edges of the feasible set,
and next select the overall minimum and compare its function value with (2,0). Then we
find that (2,0) is indeed a global minimum: 1

• Question 2.3
3 First we rewrite the optimization problem in standard form. This yields

min
x∈S

(
− f (x)

)
subject to g(x) = 0 .

This problem is convex if the following conditions are satisfied (we assume that none of the
constraints is used to eliminate variables):

∗ − f is convex : 0.5 over the feasible set S̃ defined by the constraints, i.e., S̃ = {x∈ S|g(x) =
0}: 0.5,
or equivalently f is concave over the feasible set S̃

∗ g is affine over the set S: 0.5
The motivation for this is that g(x) = 0 can be written as g(x)≤ 0 and −g(x)≤ 0, so both
g and −g should be convex over the set S, which implies that g should be affine over S:
0.75

∗ the restriction of S to the set of points for which g(x) = 0, i.e., the set S̃ defined above, is
a convex set: 0.75
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