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MPC for max-plus-linear systems:

Closed-loop behavior and tuning

Ton van den Boom∗ and Bart De Schutter∗

Abstract

Model predictive control (MPC) is a very popular controller design method in the process
industry. One of the main advantages of MPC is that it can handle constraints on the
inputs and outputs. Usually MPC uses linear discrete-time models. Recently we have
extended this framework to max-plus-linear discrete event systems. In this paper we
further explore this topic. More specifically, we focus on the closed-loop behavior and on
the tuning aspects of MPC for max-plus-linear discrete event systems.

Keywords: model predictive control, discrete event systems, max-plus algebra

1 Introduction

Model predictive control (MPC) was pioneered simultaneously by Richalet et al. [14], and
Cutler and Ramaker [6]. Since then, MPC has become probably the most applied advanced
control technique in the process industry and many papers report successful applications.
MPC provides many attractive features:

• It can handle constraints in a systematic way and it can keep the system behavior as
close as possible to the constraints without violating them.

• It is applicable to multi-variable systems.

• It is capable of tracking pre-scheduled reference signals, using the concept of making
predictions based on a process model.

• It is an easy-to-tune method. Basically three parameters have to be chosen and adequate
tuning rules are available.

Traditionally MPC uses linear discrete-time models for the process to be controlled. Re-
cently, we have extended the MPC framework to max-plus-linear systems [9, 8], which is a
special class of discrete event systems that can be described by a model that is “linear” in
the max-plus algebra.

Typical examples of discrete event systems are flexible manufacturing systems, telecom-
munication networks, parallel processing systems, traffic control systems and logistic systems.
The class of discrete event systems essentially consists of man-made systems that contain a
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finite number of resources (such as machines, communications channels, or processors) that
are shared by several users (such as product types, information packets, or jobs) all of which
contribute to the achievement of some common goal (the assembly of products, the end-to-
end transmission of a set of information packets, or a parallel computation) [1]. In general,
models that describe the behavior of a discrete event system are nonlinear in conventional
algebra. However, there is a class of discrete event systems – the max-plus-linear discrete
event systems – that can be described by a model that is “linear” in the max-plus algebra
[1, 5]. The max-plus-linear discrete event systems can be characterized as the class of discrete
event systems in which only synchronization and no concurrency or choice occurs. So typical
examples are serial production lines, production systems with a fixed routing schedule, and
railway networks.

In [9, 8] we have only introduced the MPC framework for max-plus-linear systems and
focused on efficient solution techniques for a single MPC step. In this paper we investigate the
closed-loop behavior of the system and its MPC controller, i.e., we now look at the influence
of applying MPC during the entire evolution of the system. In MPC for conventional linear
discrete-time systems there exist rules of thumb for determining appropriate values for the
MPC tuning parameters. In this paper we will also show by several examples that these rules
also more or less apply to MPC for max-plus-linear systems, with some minor but important
changes.

The paper is organized as follows. In Section 2 we present the max-plus algebra and max-
plus-linear discrete event systems. In Section 3 we give a brief introduction to conventional
MPC for linear discrete-time systems. In Section 4 we present MPC for max-plus-linear
systems. In Section 5 we discuss the closed-loop properties of max-plus-algebraic MPC. Next
we discuss the tuning of the parameters in MPC for max-plus-linear systems. We conclude
with some illustrative examples.

2 Max-plus-linear discrete event systems

The basic operations of the max-plus algebra [1, 5] are maximization and addition, which will
be represented by ⊕ and ⊗ respectively:

x⊕ y = max(x, y) and x⊗ y = x+ y

for x, y ∈ Rε
def
= R ∪ {−∞}. Define ε = −∞. The operations ⊕ and ⊗ are called the

max-plus-algebraic addition and max-plus-algebraic multiplication respectively since many
properties and concepts from linear algebra can be translated to the max-plus algebra by
replacing + by ⊕ and × by ⊗ (see [1, 5]). The rules for the order of evaluation of the max-
plus-algebraic operators are similar to those of conventional algebra. So max-plus-algebraic
power has the highest priority, and max-plus-algebraic multiplication has a higher priority
than max-plus-algebraic addition.

The basic max-plus-algebraic operations are extended to matrices as follows. If A,B ∈
R

m×n
ε and C ∈ R

n×p
ε then

(A⊕B)ij = aij ⊕ bij = max(aij , bij) and (A⊗ C)ij =
n

⊕

k=1

aik ⊗ ckj = max
k

(aik + ckj)

for all i, j. Note the analogy with the definitions of matrix sum and matrix product in
conventional linear algebra. The matrix εm×n is the m× n max-plus-algebraic zero matrix:
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(εm×n)ij = ε for all i, j. The matrix En is the n × n max-plus-algebraic identity matrix:
(En)ii = 0 for all i and (En)ij = ε for all i, j with i 6= j. The max-plus-algebraic matrix

power of A ∈ R
n×n
ε is defined as follows: A⊗

0
= En and A⊗

k
= A⊗A⊗

k−1
for k = 1, 2, . . .

In [1, 4, 5] it has been shown that discrete event systems with only synchronization and
no concurrency can be modeled by a max-plus-algebraic model of the following form:

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (1)

y(k) = C ⊗ x(k) (2)

with A ∈ R
n×n
ε , B ∈ R

n×m
ε and C ∈ R

l×n
ε where m is the number of inputs and l the number

of outputs. The vector x represents the state, u is the input vector and y is the output
vector of the system. Note the analogy of the description (1) – (2) with the state space model
for linear discrete-time systems (see also (3) – (4)). This analogy is another reason why the
symbols ⊕ and ⊗ are used to denoted max and +. However, an important difference with
the linear discrete-time description, where the index k is a sample counter that increases
each clock cycle, is that in the model (1) – (2) the components of the input, the output and
the state are event times, and that the counter k is an event counter (and event occurrence
instants are in general not equidistant).

For a manufacturing system, u(k) would typically represent the time instants at which
raw material is fed to the system for the (k + 1)th time, x(k) the time instants at which the
machines start processing the kth batch of intermediate products, and y(k) the time instants
at which the kth batch of finished products leaves the system. A discrete event system that
can be modeled by (1) – (2) will be called a max-plus-linear time-invariant discrete event
system or max-plus-linear (MPL) system for short.

Remark 2.1 In the Section 4 we will use the deterministic model (1) – (2) as an approxi-
mation of a discrete event system with uncertainty and/or modeling errors. Therefore, and
since we do not want to make our exposition on the extension of the MPC framework to MPL
systems overly complicated, we have not included any noise terms in the model (1) – (2). ✸

3 Model predictive control

In this section we give a short introduction to MPC for linear discrete-time systems. Since
we will only consider the deterministic, i.e. noiseless, case for MPL systems, we will also
omit the noise terms in this introduction to MPC. More extensive information on MPC for
discrete-time systems can be found in [2, 3, 10] and the references therein.

Consider a plant that can be modeled by a state space description of the form

x(k + 1) = Ax(k) +B u(k) (3)

y(k) = C x(k) . (4)

The vector x represents the state, u the input vector, and y the output vector. If the system
has m inputs and l outputs and if the dimension of the state is n, then we have A ∈ R

n×n,
B ∈ R

n×m, C ∈ R
l×n. In order to distinguish systems that can be described by a model of

the form (3) – (4) from max-plus-linear systems, a system that can be modeled by (3) – (4)
will be called a plus-times-linear (PTL) system.
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In MPC a performance index or cost criterion J is formulated that reflects the reference
tracking error (Jout) and the control effort (Jin):

J = Jout + λJin =

Np
∑

j=1

(

ŷ(k + j|k)− r(k + j)

)T(

ŷ(k + j|k)− r(k + j)

)

+

λ

Np
∑

j=1

uT (k + j − 1)u(k + j − 1) (5)

where ŷ(k + j|k) is the estimate of the output at time step k + j based on the information
available at time step k, r is a reference signal, λ is a nonnegative scalar, and Np is the
prediction horizon. Note that Jout and Jin depend on the output and the input of the system
respectively.

In MPC the input is taken to be constant from a certain point on: u(k+j) = u(k+Nc−1)
for j = Nc, . . . , Np − 1 where Nc is the control horizon. The use of a control horizon leads
to a reduction of the number of optimization variables. This results in a decrease of the
computational burden, a smoother controller signal (because of the emphasis on the average
behavior rather than on aggressive noise reduction), and a stabilizing effect (since the output
signal is forced to its steady-state value).

MPC uses a receding horizon principle: after computation of the optimal control sequence
u(k), . . . , u(k+Nc−1), only the first control sample u(k) will be implemented, subsequently the
horizon is shifted one sample, the model is updated with new information of the measurements,
and a new optimization at time step k + 1 is performed.

By successive substitution of (3) in (4), estimates of the future values of the state and the
output can be computed [2]:

x̂(k + j|k) = Ajx(k) +

j−1
∑

i=0

Aj−iBu(k + i)

ŷ(k + j|k) = CAjx(k) +

j−1
∑

i=0

CAj−iBu(k + i)

for j = 1, 2, . . . In matrix notation we obtain:

ỹ(k) = C̃x(k) + D̃ũ(k)

for

ỹ(k) =











ŷ(k + 1|k)
ŷ(k + 2|k)

...
ŷ(k +Np|k)











, r̃(k) =











r(k + 1)
r(k + 2)

...
r(k +Np)











, ũ(k) =











u(k)
u(k + 1)

...
u(k +Np − 1)











(6)

and

D̃ =











CB 0 . . . 0
CAB CB . . . 0

...
...

. . .
...

CANp−1 CANp−2B . . . CB











, C̃ =











CA
CA2

...
CANp











,
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where D̃ is called the predictor matrix and C̃x(k) the free-run output signal. The cost criterion
is now equal to

J =
(

ỹ(k)− r̃(k)
)T (

ỹ(k)− r̃(k)
)

+ λũT (k)ũ(k)

= ũT (k)(D̃T D̃ + λ I)ũ(k) + 2(C̃x(k)− r̃(k))T D̃ũ(k) + (C̃x(k)− r̃(k))T (C̃x(k)− r̃(k)) .

The MPC problem at time step k for PTL systems is defined as follows:

Find the input sequence u(k), . . . , u(k +Nc − 1) that minimizes the performance
index J subject to the linear constraint

E(k)ũ(k) + F (k)ỹ 6 h(k) (7)

with E(k) ∈ R
p×mNp , F (k) ∈ R

p×lNp , h(k) ∈ R
p for some integer p, and where

the inequality holds componentwise, and subject to the control horizon constraint

u(k + j) = u(k +Nc − 1) for j = Nc, Nc + 1, . . . (8)

Note that minimizing J subject to the linear constraints (7) and (8), boils down to a convex
quadratic programming problem, which can be solved very efficiently.

4 MPC for max-plus-linear discrete event systems

In this section we briefly repeat the results of [9, 8] where we have extended and adapted the
MPC framework from PTL systems to MPL systems.

We use the max-plus-linear model (1) – (2) as an approximation of a discrete event system
with uncertainty and/or modeling errors. This also motivates the use of a receding horizon
strategy when we define MPC for MPL systems, since then we can regularly update our model
of the system as new information and measurements become available. Other reasons for using
a finite horizon in MPC for MPL systems are that it allows the inclusion of general linear
constraints on the inputs and outputs, and that it reduces the computational complexity.

4.1 Evolution of the system

We assume that x(k), the state at event step k, can be measured or estimated using previous
measurements1. If we know the state of the system x(k) at event step k then we can estimate
the evolution of the output of the system for a given input sequence u(k), . . . , u(k +Np − 1)
using the model (1) – (2). as follows:

x̂(k + j|k) = A⊗ x̂(k + j − 1|k)⊕B ⊗ u(k + j − 1) (9)

ŷ(k + j|k) = C ⊗ x̂(k + j|k) (10)

for j = 1, 2, . . . , Np. Note that x̂(k − 1|k) = x(k − 1).
Just as in MPC for linear systems, we can eliminate the state estimates from (9) – (10) in

1Since the components of x(k) correspond to event times, they are in general easy to measure. Also note
that measuring occurrence times of events is in general not as susceptible to noise as measuring continuous-time
signals involving variables such as temperature, speed, pressure, etc.
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order to reduce the number of variables in the resulting optimization problem, leading to
faster computation of the optimal MPC policy. We have

ŷ(k + j|k) = C ⊗A⊗
j
⊗ x(k) ⊕

j−1
⊕

i=0

C ⊗A⊗
j−i

⊗B ⊗ u(k + i) . (11)

So if we define

D̃=











C ⊗B ε . . . ε
C ⊗A⊗B C ⊗B . . . ε

...
...

. . .
...

C ⊗A⊗
Np−1

⊗B C ⊗A⊗
Np−2

⊗B . . . C ⊗B











, C̃=













C ⊗A

C ⊗A⊗
2

...

C ⊗A⊗
Np













,

then we obtain
ỹ(k) = C̃ ⊗ x(k) ⊕ D̃ ⊗ ũ(k)

where ỹ(k) and ũ(k) are defined by (6). Note the analogy between these expressions and the
corresponding expressions for PTL systems.

4.2 Cost criterion

In MPC for MPL systems the cost criterion is also defined as J = Jout + λJin, where Jout is
related to the tracking error and Jin is related to the control effort. In [9] we have discuss
several possible choices for Jout and Jin for MPL systems. In this paper we will limit ourselves
to one particular choice for the input and output cost criterion.

For the output cost criterion we select

Jout,1 =

lNp
∑

i=1

max(ỹi(k)− r̃i(k), 0) , (12)

where the reference vector r̃(k) contains the due dates for the finished products. The cost
criterion Jout,1 is also called the “tardiness”. Note that it penalizes all delays with respect to
the dues dates.

For the input cost criterion we take

Jin,1 = −

mNp
∑

j=1

ũi(k + j − 1) . (13)

Note that — in contrast to MPC for PTL systems where the input energy is minimized —
the criterion Jin,1 maximizes the input time instants. This criterion is used to prevent input
buffer overflows. For a manufacturing system, this would correspond to a scheme in which
raw material is fed to the system as late as possible. As a consequence, the internal buffer
levels are kept as low as possible.
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4.3 Constraints

Just as in MPC for PTL systems we consider the linear constraint

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) . (14)

Note that this constraint encompasses constraints on the input and output event separation
times such as

a1(k + j) 6 ∆u(k + j − 1) 6 b1(k + j) for j = 1, . . . , Nc (15)

a2(k + j) 6 ∆ŷ(k + j|k) 6 b2(k + j) for j = 1, . . . , Np , (16)

or maximum due dates for the output events:

ỹ(k) 6 r̃(k) . (17)

Since for MPL systems the input and output sequences correspond to occurrence times
of consecutive events, they should be nondecreasing. Therefore, we should always add the
condition

∆u(k + j) > 0 for j = 0, . . . , Np − 1 (18)

to guarantee that the input sequences are nondecreasing.
Finally, we use the condition that feeding rate should stay constant beyond event step

k +Nc:

∆u(k + j) = ∆u(k +Nc − 1) for j = Nc, . . . , Np − 1 , (19)

as control horizon constraint. Note that just as in MPC for PTL systems, this constraint is
used to reduce the number of variables in the MPC optimization problem.

4.4 The standard MPC problem for MPL systems

If we combine the material of previous subsections, we finally obtain the following problem:

min
ũ(k)

J = min
ũ(k)

Jout,1 + λJin,1 (20)

subject to

ỹ(k) = C̃ ⊗ x(k) ⊕ D̃ ⊗ ũ(k) (21)

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) (22)

∆u(k + j) > 0 for j = 0, . . . , Np − 1 (23)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (24)

This problem will be called the MPL-MPC problem for event step k.
Recall that MPC uses a receding horizon principle. So after computation of the optimal

control sequence u(k), . . . , u(k+Nc−1), only the first control sample u(k) will be implemented,
subsequently the horizon is shifted and the model and the initial state estimate can be updated
if new measurements are available, then the new MPC problem is solved, etc.
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4.5 Algorithms to solve the MPL-MPC problem

In general the problem (20) – (24) is a nonlinear non-convex optimization problem. However,
in some cases the problem can be recast as a convex optimization problem, which can be
solved very efficiently.

First we introduce the relaxed MPC problem which is also defined by (20) – (24) but with
the =-sign in (21) replaced by a >-sign:

min
ũ(k)

J = min
ũ(k)

Jout,1 + λJin,1 (25)

subject to

ỹ(k) > C̃ ⊗ x(k) ⊕ D̃ ⊗ ũ(k) (26)

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) (27)

∆u(k + j) > 0 for j = 0, . . . , Np − 1 (28)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1. (29)

This problem will be called the relaxed MPL-MPC problem corresponding to the original
MPL-MPC problem (20) – (24).

It is easy to verify that set of feasible solutions of the relaxed MPC problem is convex. As
a consequence, the relaxed problem is much easier to solve numerically. Note that whereas in
the original problem ũ(k) is the only independent variable since ỹ(k) can be eliminated using
(21), the relaxed problem has both ũ(k) and ỹ(k) as independent variables.

If the linear constraints are monotonically nondecreasing as a function of ỹ(k) ( e.g.
Fij > 0 for all i, j), then the optimal solution of the relaxed problem can be transformed into
an optimal solution of the original MPC problem:

Theorem 4.1 Let the mapping ỹ → F (k)ỹ be a monotonically nondecreasing function of

ỹ. Let (ũ∗, ỹ∗) be an optimal solution of the relaxed MPL-MPC problem. If we define ỹ♯ =
C̃ ⊗ x(k)⊕ D̃ ⊗ ũ∗ then (ũ∗, ỹ♯) is an optimal solution of the original MPL-MPC problem.

Proof : See [9]. ✷

So if the linear constraints are monotonically nondecreasing as a function of ỹ(k), the MPL-
MPC problem can be recast as a convex problem. Moreover, by introducing some additional
dummy variables the problem can even be reduced to a linear programming problem (see [9]).

5 Closed-loop behavior

In this section we will take a closer look at the closed-loop behavior of an MPL system and an
MPC controller with a control law as derived in the previous section. We will only consider
SISO systems, but most of the properties can be directly interpreted in the multi-variable
case. The three topics we will elaborate on are:

• Closed-loop expression in the absence of inequality constraints.

• Concept of stability.

• Problem of infeasibility.
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5.1 Closed-loop expression

In conventional MPC theory, in the absence of inequality constraints, the closed loop con-
sisting of the PTL process with the MPC controller, is again a PTL system. Unfortunately,
it seems that there is no analogous property for MPL systems. One of the indications for
this is that there are two special cases for which we can derive a closed analytic expression
for the optimal MPL-MPC input sequence [7]2. These expressions involve the operations
minimization and addition. In fact, they are linear in the min-plus algebra, which is the dual
of the max-plus algebra and which has minimization and addition as basic operations. So in
these cases the closed loop system would be a min-max-plus system. This suggests that in
the general case the closed loop system (consisting of the PTL process with the MPL-MPC
controller) will probably not be an MPL system.

5.2 Stability

Stability in conventional system theory is concerned with boundedness of the states. In MPL
systems however, the variable k is an event counter and xi(k) refers to the occurrence time of
an event. So the sequence xi(k), xi(k+1), . . . should always be nondecreasing, and for k → ∞
the event time xi(k) will usually grow unbounded. We therefore adopt the following notion
of stability for discrete event systems [13].

Definition 5.1 A discrete event system is called stable if all its buffer levels remain bounded.

Note that in our case we have due dates and that we assume that finished parts are removed
from the output buffer at the due dates (provided that they are present). This means that
there are delays if the parts are not produced before the due date. These delays should also
remains bounded. Therefore, we add as an additional conditions for stability that all delays
between due date and actual output date remain bounded as well. If there are no internal
buffers that are not (indirectly) coupled to the output of the system, then it is easy to verify
that the buffer levels are bounded if the dwelling times of the parts or batches in the system
remain bounded. This implies that closed-loop stability is achieved for a SISO system if there
exist finite constants Myr, Mry and Myu such that

y(k)− r(k) 6 Myr (30)

r(k)− y(k) 6 Mry (31)

y(k)− u(k) 6 Myu (32)

Condition (30) means that the delay between the actual output date y(k) and the due date
r(k) remains bounded. Condition (31) means that the number of parts in the output buffer
will remain bounded. Finally, condition (32) means that the time between the starting date
u(k) and the output date y(k) (i.e., the throughput time) is bounded.

An important observation is that stability is not an intrinsic feature of the system, but
it also depends on the input and the reference signal (i.e., the due dates) of the system. Or
more precisely, it depends on the asymptotic slope of the input and reference signals. Above
a certain rate (defined by the inverse of the asymptotic slope of the impulse response), the

2These expressions are only valid for another objective function than the one considered in this paper. In
addition the parameter λ has to be set to 0, which is a bad choice, as will be demonstrated in Section 6.2.
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system, driven by an input which is too fast, “blows up”, and the delays become infinite [1].
The same effect will occur if the slope of the reference signal is not steep enough. Even if
u(k + j) = u(k − 1) for j = 0, 1, . . . (all tasks are started as soon as possible), the system
cannot complete the tasks in time (i.e. y(k) ≫ r(k) for large k). We will elaborate on this in
the next section.

5.3 Feasibility

The existence of a solution of MPL-MPC at event step k problem can be verified by solving
the system of (in)equalities (21)–(24), which describes the feasible set of the problem. Now,
feasibility in the MPL-MPC problem is comparable to feasibility in conventional MPC. Infea-
sibility occurs when solving ũ(k) from (21)–(24) results in a solution set that is either empty or
non-unique. Non-uniqueness can usually be solved by choosing λ 6= 0, as will be discussed in
the next section. An empty solution set can be caused by conflicting constraints in (22)–(24).
Note that in the absence of (22) a feasible solution can always be reached. Specific constraints
have to be removed or relaxed if no feasible solution is found. A selection algorithm has to
be designed which organizes the constraints in a hierarchical way and removes or adapts the
least critical ones first.

Constraint relaxation can be done as follows. The constraints (21) and (23) should always
be satisfied because of their physical meaning. Furthermore, the constraint (24) is used to
reduce the number of variables. Therefore, we will not relax it. So the only “soft” constraint
in the problem is the constraint

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) .

This constraint is relaxed as follows. First we choose a diagonal matrix R ∈ R
nE×nE with

positive diagonal entries that determine the relative weights of the constraints (i.e. if satisfying
constraint i is more important than satisfying constraint j then we select rii and rjj such that
rii is much smaller than rjj) where nE is the number of rows of E(k). Now we introduce a
vector ν ∈ R

nE of dummy variables and we solve the problem

min
ũ(k),ν

Jout,1 + λJin,1 +

nE
∑

i=1

νi (33)

subject to

ỹ(k) = C̃(k)⊗ x(k) ⊕ D̃(k)⊗ ũ(k) (34)

E(k)ũ(k) + F (k)ỹ(k) 6 h(k) +Rν (35)

∆u(k + j) > 0 for j = 0, . . . , Np − 1 (36)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1 (37)

ν > 0 . (38)

This problem is feasible since the constraints can always met by making the components of
the vector ν sufficiently large. Also note that inclusion of the term ν1 + · · · + νnE

in the
objective function makes the constraint violations w.r.t. the original infeasible problem as
small as possible. Furthermore, if the original (infeasible) MPL-MPC problem satisfies the
conditions of Theorem 4.1 (i.e. the mapping ỹ → F (k)ỹ is a monotonically nondecreasing
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function of ỹ) then the problem (33) – (38) also satisfies these conditions so that Theorem 4.1
still applies. Moreover, the new objective function is also convex since the relaxation term is
linear.

In general the solution of the MPL-MPC problem is not necessarily unique since the
general MPC problem for MPL systems is nonlinear and nonconvex. But if the constraints
are monotonically nondecreasing as a function of ỹ(k), then Theorem 4.1 applies and then we
have a strictly convex problem that has a unique solution. Note however that in practice the
uniqueness issue is not really important since as soon as we have an optimal solution that
satisfies all constraints, we are satisfied and we can use that solution.

6 Tuning

In this section we will give some guidelines to find suitable choices of the three tuning param-
eters (Np, Nc, λ) and to select an appropriate reference signal r(k). Again we assume that we
are dealing with a SISO system (so l = m = 1). Furthermore, we will assume irreducibility of
the system3. In many applications, for example in manufacturing systems, this assumption
is not restrictive [4].

The selection of appropriate parameters has to lead to a stabilizing and effective control
law. The MPC algorithm computes the vector of controls using optimization of the cost
criterion

J(ỹ, ũ) = Jout,1 + Jin,1 =

Np
∑

i=1

max(ỹi(k)− r̃i(k), 0)− λ

Np
∑

i=1

ũi(k)

with additional conditions

∆u(k + j) > 0 for j = 0, . . . , Np − 1,

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1.

For now we will not consider constraints of the form (22).
The parameters Np, Nc and λ are the three basic tuning parameters of the MPC algo-

rithm. However, as we have already pointed out in the previous section, a closer look at the
reference signal is necessary for stability reasons. As will be become clear in this section, the
conventional MPC rules of thumb for tuning of Np, Nc and λ can be applied to MPC for
MPL systems as well, with only minor changes. In conventional MPC the following rules of
thumb for selecting Np, Nc and λ are used:

• The parameter λ is usually chosen as small as possible, 0 in most cases. In many cases
(e.g. for non-minimum phase PTL systems), the choice λ = 0 will lead to stability
problems and so λ should be chosen as the smallest positive value that still results in a
stabilizing controller.

• The prediction horizon Np is related to the length of the step response of the system:
the time interval (1, Np) should contain the crucial dynamics of the process.

• The control horizon Nc 6 Np is usually taken equal to the system order.

3An MPL system with system matrix A ∈ R
n×n
ε is said to be irreducible if (A ⊕ A⊗

2
⊕ . . . ⊕ A⊗

n−1
)ij 6= ε

for all i, j with i 6= j.
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Before we discuss the MPL-MPC tuning rules, we first need to consider some properties of
the impulse response of a MPL systems. The sequence {e(k)}∞k=0 with e(0) = 0 and e(k) = ε
for k 6= 0 is the max-plus-algebraic unit impulse. The output sequence that results from a
applying max-plus-algebraic unit impulse to an MPL system is called the impulse response of
the system4. It is easy to verify that the impulse response of an MPL with system matrices

A, B, C is given by {G(k)}∞k=0 with G(k) = C ⊗A⊗
k
⊗B.

Proposition 6.1 ([1, 4]) Let {G(k)}∞k=0 be the impulse response of a SISO MPL system

with an irreducible system matrix A. Then there exist constants c, k0 ∈ N\{0} and ρ ∈ R

such that

G(k) = c ρ+G(k − c) for all k > k0. (39)

An impulse response that exhibits the behavior (39) is called ultimately periodic with cycle

period c. The variable ρ gives the average duration of a cycle and is equal to the max-plus
algebraic eigenvalue of system matrix A. The length of the impulse response is now defined
as the minimal value k0 for which (39) holds.

The state space representation of the input-output behavior of a given MPL system by a
triple of system matrices A, B, C is not unique. Just as in conventional system theory we
define the minimal system order of an MPL system as the minimal dimension of the system
matrix A over all possible state space realization of the given system. A characterization of
the system order of an MPL system can be found in [11].

Define the Hankel matrix H(α, β) as

H(α, β) =











G(0) G(1) . . . G(β)
G(1) G(2) . . . G(β + 1)
...

...
. . .

...
G(α) G(α+ 1) . . . G(α+ β − 1)











.

In conventional system theory for linear discrete-time systems the minimal system order is
given by the rank of the Hankel matrix H(∞,∞). However, in contrast to linear algebra
the different notions of rank (like column rank, row rank, minor rank, . . .) are in general
not equivalent in the max-plus algebra and can only be used to obtain upper and lower
bounds for the minimal system order of an MPL system. The so-called max-plus-algebraic
minor rank and Schein rank of H provide lower bounds [11, 12]. At present, there are no
efficient (i.e., polynomial time) algorithms to compute the max-plus-algebraic minor rank or
the Schein rank of a matrix. The max-plus-algebraic weak column rank of H provides an
upper bound [11, 12]. Efficient methods to compute this rank are described in [5, 11]. The
minimal system order will become of importance in the selection of the control horizon Nc.

6.1 Selection of the reference signal r(k)

The maximum production rate of the system is given by 1/ρ. The slope of reference signal
must therefore be such that the average production rate is lower than 1/ρ. For a feasible

4If we consider a production system then we can give the following physical interpretation to the impulse
response. At event counter k = 0 all the internal buffers of the system are empty. Then we start feeding raw
material to the input buffer and we keep on feeding raw material at such a rate that the input buffer never
becomes empty. The time instants at which finished products leave the system correspond to the terms of the
impulse response.
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solution we need a reference signal r(k) for which there exist a ρr > ρ and an r0 ∈ R, such
that r(k) > r0 + k ρr for all k.

6.2 Tuning of the parameter λ

The parameter λ makes a trade-off between minimization of the tracking error and the control
effort needed. For λ = 0, the input sequence is not measured and we do not have a unique
solution. Any input value u(k) that guarantees ỹ(k) 6 r̃(k) will do, and so we may set
u(k) = u(k − 1) for all k. This will result in an input buffer overflow for k large. The
same happens when λ < 0, because then λJin,1 will become infinitely small. Therefore, the
parameter λ should be chosen larger than zero.

For λ > 1 the input cost criterion Jin,1 will be dominant in the optimization, which results
in a maximization of the control input. The input will become infinite in the absence of an
upper bound ∆umax on the input increment. In the bounded case we the increment of the
input signal is maximal: ∆u(k) = ∆umax. In the receding horizon implementation this leads
to a unbounded output delay y(k)− r(k) and the system will become unstable.

Resuming, the parameter λ should be in the interval

0 < λ < 1

and is usually chosen as small as possible (see Example 3 in Section 7).

6.3 Tuning of the parameter Np

The time interval (1, Np) should contain the crucial dynamics of the process, and important
information of the reference signal. To be sure that all crucial dynamics is in the prediction
interval, a good lower bound for the prediction horizon Np is the length of the impulse
response of the system (k0) (see Example 1). A closer look to the reference signal can become
important, if the due dates are gathered in batches (see Example 5).

6.4 Tuning of the parameter Nc

The real power of the MPC approach lies in the assumption made about future control actions.
Instead of allowing them to be “free”, the increments of u(k) are assumed to be zero:

∆2u(k + j − 1) = 0 for j > Nc.

The parameter Nc, called control horizon, can be chosen between 1 and Np. We usually take
it equal to the upper bound of the minimal system order, which is easy to compute [5, 11].
Choosing Nc larger than the system order could be interesting when the constraints are
stringent. On the other hand, one may expect that a small Nc will lead to a more robust
control law in the case of modeling error. The choice Nc = 1 often leads to an unstable or a
degraded closed loop behavior, because of a lack on degrees of freedom (see Examples 1 and
2). In many cases, the optimal input signal will be asymptotically equal to u(k) = u0+k∆u0,
where u0 and ∆u0 are appropriate constants. We need at least two degrees of freedom to be
able to reach this asymptotic behavior.
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7 Examples

The MPC algorithm for MPL systems was simulated in some examples using MATLAB. The
objective is to study the effect of changes in the tuning parameters λ, Np and Nc and the
choice of reference signal r(k). For the analysis we use two systems.

The first system is described by equations (1)–(2) with system matrices:

A =









3 5 0 ε
ε ε 0 4
6 1 3 2
3 0 4 ε









, B =









6
6
1
4









, C =
[

6 2 1 2
]

. (40)

This system has a system order n = 4, cycle period c = 4, cycle duration ρ = 4.75 and impulse
response length k0 = 5.

The second system is described by equations (1)–(2) with system matrices:

A =









2 5 5 5
ε 2 1 ε
4 2 1 ε
3 0 ε 2









, B =









1
3
6
1









, C =
[

6 3 1 1
]

. (41)

This system has a system order n = 3, cycle period c = 1, cycle duration ρ = 5 and impulse
response length k0 = 10.

We choose reference signals defined by

r1(k) = 10 + 4.5 k + 10 e−0.07 k

r2(k) = 10 + 4.9 k + 10 e−0.07 k

r3(k) = 10 + 5.1 k + 10 e−0.07 k

and fourth reference signal r4(k), which is a staircase signal with batches, which increase in
length and satisfy: r4(k) > r3(k) for all k (see Figure 1).
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300
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r=r4

Reference signals r1(k) , r2(k) , r3(k) and r4(k)

event counter k −−>

ref
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nc
e s
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al 

r(k
) −

−>

Figure 1: Reference signals.

Figure (2)-(7) display the tracking error y(k)−r(k) over 70 simulation samples for various
settings of the control parameters.
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Figure 2: Influence of Np for Nc = 1.
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Figure 3: Influence of Np for Nc = 2.

Example 1 (Influence of Np):

In Figure 2 the influence of Np on the closed-loop of system (40) with an MPC controller
is displayed. It is clear that Np = 1 gives an unstable closed loop behavior, because of the
unbounded growth of the output delay. Increasing Np from 2 to 25 leads to a decrease in
delays. We have selected r(k) = r2(k) and fixed λ = 0.001.

In Figure 3 the same is done for Nc = 2 and Np = 2, 3, 4, 10, 25.

Example 2 (Influence of Nc):

Figure 4 reveals the influence of Nc on the closed-loop behavior of system (41) with an MPC
controller. Nc = 1 leads to an unstable behavior, Nc = 2 gives a sluggish output response,
and for Nc > 3 (= the system order), the tracking error is minimal.

Example 3 (Influence of λ):

Figure 5 shows that λ > 1 leads to an unstable MPC-control law. For 0 < λ < 1 the control
law is stabilizing, with a better tracking behavior for λ closer to zero. (λ = 0 and λ = 1 lead
to uniqueness problems and are not computed).
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Figure 4: Influence of Nc.
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Figure 5: Influence of λ.

Example 4 (Influence of r(k)):

Figure 6 shows the tracking error of system (40) for the input signals r1(k), r2(k) and r4(k).
Note that r2(k) has a asymptotic slope ρr = 4.5 < ρ = 4.75. The reference-schedule is too
tight and the delays grow unbounded. The asymptotic slope of r1(k) is 4.9 which is larger
than 4.75. We see that the tracking error |y(k)− r(k)| becomes zero for large k. If we choose
the staircase reference signal r4(k) in which the due dates are gathered in batches, we see
an increase of the output buffer level through every period. If the length of the batches will
continue to increase, the output buffer level will continue to grow as well.

For the staircase reference signal r(k) = r4(k) we study the influence of Np. The batch-
length ℓb increases by 1 for every next batch. If the prediction horizon is fixed to Np, we
can only look Np “orders” ahead. If a batch length is larger than the prediction horizon, the
(Np + 1)-th order is not considered in the optimization, and the production of this order is
started too late. The result is a delay for ℓb > Np. Consider the dash-dotted line in Figure
7, corresponding to Np = 8. For the batch corresponding to k = 28, . . . , 35, we have ℓb = 8.
This batch can still be produced in time, without delay. However, the next batch, which
corresponds to k = 36, . . . , 44 (so ℓb = 9), results in a delay for k = 44.
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Figure 6: Influence of the reference signal r(k).
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Figure 7: Influence of Np for a staircase reference signal.

8 Discussion

Model predictive control for max-plus linear systems is a practical approach to design optimal
input sequences for a specific class of discrete event systems in which only synchronization and
no concurrency or choice plays a role. As shown in this paper, a disadvantage of MPC methods
(for both MPL and PTL systems) is that no a priori guarantee on stability or performance can
be given. However, making appropriate choices for the controller parameters and selecting
an adequate reference signal, results in a stabilizing and effective MPC-control law. Initial
settings for the parameters (Np,Nc,λ) were given and the influence of the reference signal
r(k)) was studied. In practical industrial situations, these initial parameter settings have to
be fine-tuned to obtain the desired closed-loop behavior.
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