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Abstract: First we show that continuous piecewise-affine systems are equivalent to

max-min-plus-scaling systems (i.e., systems that can be modeled using maximization,

minimization, addition and scalar multiplication). Next, we consider model predictive

control for these systems. In general, this leads to nonlinear non-convex optimization

problems. However, we present a method based on canonical forms for max-min-plus-

scaling functions to solve these optimization problems in a more efficient way than by

just applying nonlinear optimization as was done in previous research.

Keywords: generalized predictive control, control algorithms, model-based control,

piecewise linear analysis, discrete event dynamic systems, hybrid systems

1. INTRODUCTION

In our previous work (De Schutter and van den Boom,

2001b) we have extended the model predictive control

(MPC) framework to max-min-plus-scaling (MMPS)

systems. MMPS systems are systems that can be mod-

eled using maximization, minimization, addition and

scalar multiplication. Typical examples of MMPS sys-

tems in a discrete event systems context are digital

circuits, computer networks, telecommunication net-

works, and manufacturing plants. In (De Schutter and

van den Boom, 2000) we have shown that this class

encompasses several other classes of discrete event

systems such as max-plus-linear systems, max-plus-

bilinear systems, max-plus-polynomial systems, and

max-min systems. So MMPS systems can be consid-

ered as a generalized framework for several classes of

discrete event systems. Moreover, recently a link be-

tween constrained MMPS systems and hybrid systems

— among which piecewise-affine (PWA) systems —

has been established (Heemels et al., 2001a; Heemels

et al., 2001b).

In this paper we will present a direct connection be-

tween continuous PWA systems and MMPS systems

(without the need to introduce additional auxiliary

variables or extra constraints as was done in (Heemels

et al., 2001a; Heemels et al., 2001b)). Next, we use

the link between PWA systems and MMPS systems to

present a new approach to MPC for continuous PWA

systems. In order to compute an MPC controller for a

PWA system or for an MMPS system we have to solve

a nonlinear non-convex optimization problem at each

sample step. We propose an optimization algorithm

that is based on canonical forms for MMPS functions

and that is similar to the cutting-plane algorithm for

convex optimization problems. The proposed algo-

rithm consists in solving several linear programming

problems and is more efficient than the algorithms

used in (De Schutter and van den Boom, 2001b),

which are based on multi-start nonlinear local opti-

mization (sequential quadratic programming) or on

the extended linear complementarity problem.

This paper is organized as follows. In Section 2 we

present MMPS functions and systems, and PWA func-

tion and systems. We also discuss the connection be-



tween continuous PWA systems and (unconstrained)

MMPS systems. Next, we consider canonical forms

for MMPS functions in Section 3. Section 4 briefly

recapitulates our previous results in connection with

MPC for MMPS systems. Due to the link between

PWA and MMPS systems, this approach can also be

used for continuous PWA systems. Finally, we present

an efficient algorithm to solve the MMPS-MPC and

PWA-MPC optimization problems.

2. CONTINUOUS PWA SYSTEMS AND MMPS

SYSTEMS

2.1 MMPS functions and systems

An MMPS function f of the variables x1, . . . ,xn is

defined by the recursive grammar 1

f := xi|α|max( fk, fl)|min( fk, fl)| fk + fl |β fk , (1)

with i ∈ {1, . . . ,n}, α,β ∈ R, and where fk and fl are

again MMPS functions.

Now we consider systems that can be described by

state space equations of the following form:

x(k) = Mx(x(k−1),u(k)) (2)

y(k) = My(x(k),u(k)) , (3)

where Mx and My are vector-valued MMPS func-

tions. Systems the behavior of which can be described

by a model of the form (2)–(3) will be called MMPS

systems.

2.2 PWA functions and systems

A function f : Rn →R is said to be a continuous PWA

function if and only if the following conditions hold

(Chua and Deng, 1988):

(1) The domain space R
n is divided into a finite

number of polyhedral regions R(1), . . . ,R(N).

(2) For each i ∈ {1, . . . ,N}, f can be expressed as

f (x) =αααT
(i)x+β(i) (4)

for any x ∈ R(i) with ααα(i) ∈ R
n and β(i) ∈ R.

(3) f is continuous on any boundary between two

regions.

For more information on PWA functions we refer to

(Chua and Deng, 1988; Leenaerts and van Bokhoven,

1998) and the references therein.

A PWA system is a system of the form

x(k) = Px(x(k−1),u(k)) (5)

y(k) = Py(x(k),u(k)) , (6)

where Px and Py are vector-valued PWA functions.

A model of the form (5)–(6) is called a PWA model.

1 The symbol | stands for “or”.

If Px and Py are continuous, then we say that the

model is a continuous PWA model.

Note that continuous PWA models can also be used as

approximations of more general state space models of

the form

x(k) = f(x(k−1),u(k))

y(k) = g(x(k),u(k)) ,

with f and g continuous functions.

2.3 Equivalence of PWA and MMPS systems

Theorem 1. If f is a continuous PWA function of

the form (4), then there exist index sets I1, . . . , Iℓ ⊆
{1, . . . ,N} such that

f = max
j=1,...,ℓ

min
i∈I j

(αααT
(i)x+β(i)) .

PROOF. See (Gorokhovik and Zorko, 1994; Ovchin-

nikov, 2002). ✷

From the definition of MMPS functions it follows that

(see also (Gorokhovik and Zorko, 1994; Ovchinnikov,

2002)):

Lemma 2. Any MMPS function is also a continuous

PWA function.

From Theorem 1 and Lemma 2 it follows that continu-

ous PWA systems and MMPS systems are equivalent,

i.e., for a given continuous PWA model there exists

an MMPS model (and vice versa) such that the input-

output behavior of both models coincides.

Corollary 3. Continuous PWA models and MMPS

models are equivalent.

Note that this is an extension of the results of

(Heemels et al., 2001a; Heemels et al., 2001b), which

already prove an equivalence between (not necessar-

ily continuous) PWA models and MMPS models, but

there some extra auxiliary variables and some addi-

tional algebraic MMPS constraints between the states,

the inputs and the auxiliary variables were required to

transform the PWA model into an MMPS model.

3. CANONICAL FORMS OF MMPS FUNCTIONS

Let α,β ,γ ,δ ∈ R. Now we consider some easily

verifiable properties of the max and min operators that

will be used in the proof of the main theorem of this

section.



• Minimization is distributive 2 w.r.t. maximiza-

tion, i.e., min
(

α,max(β ,γ)
)

= max
(

min(α,β ),
min(α,γ)

)

, which results in:

min
(

max(α,β ),max(γ ,δ )
)

=

max
(

min(α,γ),min(α,δ ),

min(β ,γ),min(β ,δ )
)

. (7)

• The max operation is distributive w.r.t. min.

Hence,

max
(

min(α,β ),min(γ ,δ )
)

=

min
(

max(α,γ),max(α,δ ),

max(β ,γ),max(β ,δ )
)

. (8)

• We have

min(α,β )+min(γ ,δ ) =

min(α + γ ,α +δ ,β + γ ,β +δ ) (9)

and

max(α,β )+max(γ ,δ ) =

max(α + γ ,α +δ ,β + γ ,β +δ ) . (10)

• The min and max operators are related as fol-

lows:

max(α,β ) =−min(−α,−β ) . (11)

• If ρ ∈ R is positive, then

ρ max(α,β ) = max(ρα,ρβ ) (12)

ρ min(α,β ) = min(ρα,ρβ ) . (13)

Theorem 4. Any MMPS function f : Rn → R can be

rewritten in the min-max canonical form

f = min
i=1,...,K

max
j=1,...,ni

(αααT
(i, j)x+β(i, j)) (14)

or in the max-min canonical form

f = max
i=1,...,L

min
j=1,...,mi

(γγγT
(i, j)x+δ(i, j)) (15)

for some integers K, L, n1, . . . ,nK , m1, . . . ,mL, vectors

ααα(i, j),γγγ(i, j), and real numbers β(i, j),δ(i, j).

PROOF. We will only prove the theorem for the min-

max canonical form since the proof for the max-min

canonical form is similar.

It is easy to verify that if fk and fl are affine functions,

then the functions that results from applying the basic

constructors of an MMPS function (max, min, +, and

scaling — cf. (1)) are in min-max canonical form 3 .

Now we use a recursive argument that consists in

showing that if we apply the basic constructors of an

MMPS function to two (or more) MMPS functions in

min-max canonical form, then the result can again be

transformed into min-max canonical form. Consider

2 If we use the operator symbols ∨ and ∧ to denote max and min

respectively, this distributivity property can be written as α ∧ (β ∨

γ) = (α ∧β )∨ (α ∧ γ).
3 We allow “void” min or max statements of the form min(s) or

max(s), which by definition are equal to s for any expression s.

Alternatively, we can write min(s,s) or max(s,s).

two MMPS functions f and g in min-max canonical

form 4 : f = min(max( f1, f2),max( f3, f4)) and g =
min(max(g1,g2),max(g3,g4)). In Table 1 it is shown

that max( f ,g), min( f ,g), f + g and β f can again be

written in min-max canonical form. ✷

Remark 5. The min-max canonical form (14) is some-

times also called conjunctive normal form, and the

max-min canonical form (15) is also called disjunctive

normal form.

4. MPC FOR MMPS SYSTEMS

In this section we give a short overview of the main

results of (De Schutter and van den Boom, 2001b)

in which we have extended the MPC framework

to MMPS systems. Related results can be found in

(Bemporad and Morari, 1999). More extensive infor-

mation on conventional MPC for (linear and nonlin-

ear) discrete-time systems can be found in (Camacho

and Bordons, 1995; García et al., 1989; Maciejowski,

2002) and the references therein.

We can use the deterministic model (2)–(3) either as a

model of an MMPS system, as the equivalent model of

a continuous PWA system, or as an approximation of a

general smooth nonlinear system. Note that we do not

include modeling errors or uncertainty in the model.

However, since MPC uses a receding finite horizon

approach, we can regularly update the model and the

state estimate as new information and measurements

become available.

In MPC we compute at each sample step k an optimal

control input that minimizes a cost criterion over the

period [k,k+Np − 1] where Np is the prediction hori-

zon. Assume that at sample step k the current state can

be measured, estimated or predicted using previous

measurements. Then we can make an estimate ŷ(k+
j|k) of the output of the system (2)–(3) at sample step

k+ j based on the state x(k−1) and the future inputs

u(k+ i), i= 0, . . . , j. Using successive substitution, we

obtain an expression of the following form:

ŷ(k+ j|k) = Fj(x(k−1),u(k), . . . ,u(k+ j))

for j = 0, . . . ,Np − 1. Clearly, ŷ(k+ j|k) is an MMPS

function of x(k−1),u(k), . . . ,u(k+ j).

The cost criterion J used in MPC reflects the reference

tracking error (Jout) and the control effort (Jin):

J(k) = Jout(k)+λJin(k)

where λ is a nonnegative real number. Let r contain

the reference signal and define the vectors

4 For the sake of simplicity we only consider two min-terms in f

and g, each of which consists of the maximum of two affine func-

tions. However, the proof also holds if more terms are considered.



Table 1. The max, min, + and scaling of two MMPS functions in min-max canonical form

can again be written in min-max canonical form.

• max( f ,g) = max
[

min
(

max( f1, f2),max( f3, f4)
)

, min
(

max(g1,g2),max(g3,g4)
)]

= max
[

max
(

min( f1, f3),min( f1, f4),min( f2, f3),min( f2, f4)
)

,

max
(

min(g1,g3),min(g1,g4),min(g2,g3),min(g2,g4)
)]

(by (7))

= max
(

min( f1, f3),min( f1, f4),min( f2, f3),min( f2, f4),

min(g1,g3),min(g1,g4),min(g2,g3),min(g2,g4)
)

= min
(

max( f1, f1, f2, f2,g1,g1,g2,g2),max( f1, f1, f2, f2,g1,g1,g2,g4), . . .

max( f3, f4, f3, f4,g3,g4,g3,g4)
)

(since max is distributive w.r.t. min)

• min( f ,g) = min
[

min
(

max( f1, f2),max( f3, f4)
)

, min
(

max(g1,g2),max(g3,g4)
)]

= min
(

max( f1, f2),max( f3, f4),max(g1,g2),max(g3,g4)
)

• f +g = min
(

max( f1, f2),max( f3, f4)
)

+ min
(

max(g1,g2),max(g3,g4)
)

= min
(

max( f1, f2)+max(g1,g2),max( f1, f2)+max(g3,g4),

max( f3, f4)+max(g1,g2),max( f3, f4)+max(g3,g4)
)

(by (9))

= min
(

max( f1 +g1, f1 +g2, f2 +g1, f2 +g2),

max( f1 +g3, f1 +g4, f2 +g3, f2 +g4),

max( f3 +g1, f3 +g2, f4 +g1, f4 +g2),

max( f3 +g3, f3 +g4, f4 +g3, f4 +g4)
)

(by (10))

• β f = β min
(

max( f1, f2),max( f3, f4)
)

=
























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








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

















min
(

max(β f1,β f2),max(β f3,β f4)
)

(by (12) and (13)) if β > 0

−|β |min
(

max( f1, f2),max( f3, f4)
)

if β < 0

=−min
(

max(|β | f1, |β | f2),max(|β | f3, |β | f4)
)

(by (12) and (13))

= max
(

−max(|β | f1, |β | f2),−max(|β | f3, |β | f4)
)

(by (11))

= max
(

min(−|β | f1,−|β | f2),min(−|β | f3,−|β | f4)
)

(by (11))

= max
(

min(β f1,β f2),min(β f3,β f4)
)

= min
(

max(β f1,β f3),max(β f1,β f4),max(β f2,β f3),max(β f2,β f4)
)

(by (8))

ũ(k) =
[

uT (k) . . . uT (k+Np −1)
]T

ỹ(k) =
[

ŷT (k|k) . . . ŷT (k+Np −1|k)
]T

r̃(k) =
[

rT (k) . . . rT (k+Np −1)
]T

.

In this paper we consider the following output and

input cost functions 5 :

Jout,1(k) = ‖ỹ(k)− r̃(k)‖1 (16)

Jout,∞(k) = ‖ỹ(k)− r̃(k)‖∞ (17)

Jin,1(k) = ‖ũ(k)‖1 (18)

Jin,∞(k) = ‖ũ(k)‖∞ . (19)

Since we have |x| = max(x,−x) for all x ∈ R, it is

easy to verify that these cost functions are also MMPS

functions.

5 In conventional MPC usually quadratic cost functions of the form

Jout(k) = ‖ỹ(k)− r̃(k)‖2
2 and Jin(k) = ‖ũ(k)‖2

2 are used. In a discrete

event context, however, other choices are more appropriate (see

(De Schutter and van den Boom, 2001a; De Schutter and van den

Boom, 2001b)).

In practical situations, there will be constraints on the

input and output signals (caused by limited capacity of

buffers, limited transportation rates, saturation, etc.) In

general this is reflected in a nonlinear constraint of the

form

Cc(k,x(k−1), ũ(k), ỹ(k))> 0 . (20)

The MPC problem at sample step k consists in min-

imizing J(k) over all possible future input sequences

subject to the constraints. To reduce the complexity

of the optimization problem a control horizon Nc is

introduced in MPC, which means that the input is

taken to be constant beyond sample step k+Nc:

u(k+ j) = u(k+Nc −1) for j = Nc, . . . ,Np −1.

(21)

Alternatively, we can set the input rate constant as was

done in (De Schutter and van den Boom, 2001b):



∆u(k+ j) = ∆u(k+Nc −1) for j = Nc, . . . ,Np −1 ,

(22)

where ∆u(k) = u(k)− u(k − 1). In addition to a de-

crease in the number of optimization parameters and

thus also the computational burden, a smaller control

horizon Nc also gives a smoother control signal, which

is often desired in practical situations.

MPC uses a receding horizon principle. This means

that after computation of the optimal control sequence

u(k),u(k+1), . . . ,u(k+Nc −1), only the first control

sample u(k) will be implemented, subsequently the

horizon is shifted one sample, next the model and

the state are updated using new information from

the measurements, and a new MPC optimization is

performed for sample step k+1.

5. ALGORITHMS FOR THE MMPS-MPC

OPTIMIZATION PROBLEM

5.1 Nonlinear optimization

In general the MMPS-MPC optimization problem is a

nonlinear, non-convex optimization problem. In (De

Schutter and van den Boom, 2001b) we have dis-

cussed some algorithms to solve the MMPS-MPC

optimization problem: we can use multi-start nonlin-

ear optimization based on sequential quadratic pro-

gramming (SQP), or we can use a method based on

the extended linear complementarity problem (ELCP).

However, both methods have their disadvantages. If

we use the SQP approach, then we usually have to

consider a large number of initial starting points and

perform several optimization runs to obtain (a good

approximation of) the global minimum. In addition,

the objective functions that appear in the MMPS-MPC

optimization problem are non-differentiable and PWA

(if we use the cost criteria given in (16)–(19) or in (De

Schutter and van den Boom, 2001a)), which makes the

SQP algorithm less suitable for them. The main disad-

vantage of the ELCP approach is that the execution

time of this algorithm increases exponentially as the

size of the problem increases. This implies that this

approach is not feasible if Nc or the number of inputs

and outputs of the system are large.

An alternative option consists in transforming the

MMPS system into a mixed logical-dynamical (MLD)

system (Bemporad and Morari, 1999) since MMPS

systems are equivalent to MLD systems (Heemels et

al., 2001a). The main difference between MLD-MPC

and MMPS-MPC is that MLD-MPC requires the so-

lution of mixed integer-real optimization problems. In

general, these are also computationally hard optimiza-

tion problems.

In the next section we will present another method

to solve the MMPS-MPC optimization problem that

is similar to the cutting-plane method used in convex

optimization.

5.2 A new algorithm

We assume that the cost criteria given in (16)–(19) are

used 6 . Recall that these objective functions (and any

linear combination of them) are MMPS functions. The

same holds for the estimate of future output ỹ(k). So

if we substitute ỹ(k) in the expression for J(k), we

finally obtain an MMPS function of ũ(k) as objective

function. From Theorem 4 it follows that this objective

function can be written in min-max canonical form

as follows (where — for the sake of simplicity of

notation — we drop the index k):

J = min
i=1,...,ℓ

max
j=1,...,ni

(αααT
(i, j)ũ+β(i, j))

for appropriately defined integers ℓ, n1, . . . ,nℓ, vectors

ααα(i, j) and integers β(i, j). Note that in general the ex-

pression obtained by straightforwardly applying the

manipulations of the proof of Theorem 4 will contain

a large number of affine arguments αααT
(i, j)ũ + β(i, j).

However, many of these terms are redundant 7 and

can thus be removed. This reduces the number of

affine arguments. Also note that the transformation

into canonical form only has to be performed once —

provided that we explicitly consider all arguments that

depend on k as additional variables when performing

the transformation, — and that it can be done off-line.

The derivation below is similar to the cutting-plane al-

gorithm for convex optimization (see, e.g., (Boyd and

Barratt, 1991)). Hence, it requires constraints that are

linear (or convex) in ũ. Note that the control horizon

constraints (21) and (22) satisfy this condition. How-

ever, even if the original MPC constraint (20) is linear

in ũ(k) and ỹ(k), then in general this constraint is not

linear any more after substitution of ỹ(k). Therefore,

from now on we assume that (after substitution of

ỹ(k)) there are only linear 8 constraints on the input

ũ(k):

Pũ+q > 0 . (23)

Note that in general P and q may depend on x(k− 1)
and k, but for the sake of simplicity of notation we

do not explicitly indicate this dependence. In practice

constraints of the form (23) occur if we have to guar-

antee that the control signal ũ(k) or the control signal

rate ∆ũ(k) stay within certain bounds.

To obtain the optimal MPC input signal at sample step

k, we have to solve an optimization problem of the

following form:

6 The result below also holds for any other cost criterion that is an

MMPS function of ỹ(k) and ũ(k). So it follows from Theorem 1 that

any continuous PWA norm function can also be used.
7 E.g., since they appear twice, or since there are other arguments

in the max (min) expression that are always larger (smaller) than the

given argument.
8 The optimization algorithm used below, which is based on the

cutting plane algorithm for convex optimization, can also deal with

convex constraints. So we can also allow convex constraints instead

of (23).



min
ũ

min
i=1,...,ℓ

max
j=1,...,ni

(αααT
(i, j)ũ+β(i, j))

subject to Pũ+q > 0 .

or equivalently

min
i=1,...,ℓ

min
ũ

max
j=1,...,ni

(αααT
(i, j)ũ+β(i, j))

subject to Pũ+q > 0 . (24)

Now let i ∈ {1, . . . , ℓ} and consider

min
ũ

max
j=1,...,ni

(αααT
(i, j)ũ+β(i, j))

subject to Pũ+q > 0 .

It is easy to verify that this problem is equivalent to

the following linear programming (LP) problem:

min t

subject to t >αααT
(i, j)ũ+β(i, j) for j = 1, . . . ,ni

Pũ+q > 0 . (25)

This LP problem can be solved efficiently using (vari-

ants of) the simplex method or an interior-point al-

gorithm (see, e.g., (Nesterov and Nemirovskii, 1994;

Wright, 1997)).

To obtain the solution of (24), we solve (25) for i =
1, . . . , ℓ and afterward we select the solution ũ

opt

(i)
for

which max
j=1,...,ni

(αααT
(i, j)ũ

opt

(i)
+β(i, j)) is the smallest 9 . This

results in an algorithm to solve the MMPS-MPC prob-

lem that is more efficient than the SQP or the ELCP

approach.

6. CONCLUSIONS

We have shown that continuous piecewise-affine

(PWA) systems are equivalent to max-min-plus-scal-

ing (MMPS) systems. This result is a refinement of

previous results since it does not require the intro-

duction of auxiliary variables or additional MMPS

constraints. Next, we have considered model predic-

tive control for PWA and MMPS systems. In general,

this leads to nonlinear non-convex optimization prob-

lems. We have presented a method based on canon-

ical forms for MMPS functions and similar to the

cutting-plane convex optimization algorithm to solve

these optimization problems. More specifically, the

approach consists in solving several linear program-

ming problems and afterward selecting the solution

that yields the smallest objective function. This results

in a method that is more efficient than just applying

nonlinear optimization as was done in previous re-

search.

Topics for future research include: a thorough inves-

tigation and comparison of the performance and the

9 If we use a primal-dual simplex method or an interior-point

method to solve the LP problems, we can improve the efficiency of

the approach even further by stopping the optimization if we obtain

a lower bound for the objective function of the current LP problem

that is larger than the smallest final objective function of the LP

problems that have already been solved.

efficiency of the different optimization algorithms that

have been considered above, investigation and char-

acterization of the computational complexity of the

transformation into the canonical form, investigation

and characterization of the (average) number of linear

programming problems and the number of inequalities

they contain, and extension of our results to include

modeling errors and noise in a stochastic or an ℓ∞

framework.
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