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Abstract

A large class of hybrid systems can be described by a max-min-plus-scaling (MMPS) model

(i.e., using the operations maximization, minimization, addition and scalar multiplication). First,

we show that continuous piecewise-affine systems are equivalent to MMPS systems. Next, we

consider model predictive control (MPC) for these systems. In general, this leads to nonlinear,

nonconvex optimization problems. We present a new MPC method for MMPS systems that is

based on canonical forms for MMPS functions. In case the MPC constraints are linear constraints

in the inputs only, this results in a sequence of linear optimization problems such that the MPC

control can often be computed in a much more efficient way than by just applying nonlinear

optimization as was done in previous work.

Keywords: model predictive control, hybrid systems, piecewise-affine systems, max-min-plus-sca-

ling systems.

1 Introduction

Hybrid systems contain both analog (continuous) and logical (discrete, switching) dynamics. Typical

examples are manufacturing systems, telecommunication and computer networks, traffic control sys-

tems, digital circuits, and logistic systems. Piecewise-affine (PWA) models are often used to describe

the behavior of hybrid systems since they form the “simplest” extension of linear systems that can

still model nonlinear and nonsmooth processes with arbitrary accuracy and since they can deal with

hybrid phenomena. PWA systems have been studied by many authors [2, 4, 8, 9, 19, 20, 21, 25, 27].

In particular, Sontag has considered PWA systems from a classical control perspective [25]. He has

also studied specific properties like representation, realization, observability, and decidability ques-

tions. Furthermore, recently, Morari, Bemporad, et al. [1, 2, 4, 14] have developed a model predictive

control approach for PWA systems.

Another modeling framework for hybrid systems consists in max-min-plus-scaling (MMPS) mod-

els, which use maximization, minimization, addition and scalar multiplication. Recently, a link be-

tween constrained MMPS systems and PWA systems (and other classes of hybrid systems) has been

established [17, 18]. In this paper we will present a direct connection between continuous PWA

systems and MMPS systems (without the need to introduce additional auxiliary variables or extra

constraints as was done in [17, 18]).

In [12] we have extended the model predictive control (MPC) framework to MMPS systems. In

this paper we will use the link between continuous PWA systems and MMPS systems to present a

new approach to MPC for continuous PWA systems. In order to compute an MPC controller for a
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continuous PWA system or an MMPS system, we have to solve a nonlinear, nonconvex optimization

problem at each sample step. For the case that the MPC constraints are linear constraints in the in-

puts, we propose a new optimization approach that is based on canonical forms for MMPS functions

and that is similar to the cutting-plane algorithm for convex optimization problems. The proposed

approach consists in solving several linear programming problems and is more efficient than the algo-

rithms used in [12], which are based on multi-start nonlinear local optimization (sequential quadratic

programming) or on the extended linear complementarity problem.

This paper is organized as follows. In Section 2 we present MMPS and PWA functions and

systems, and we establish the equivalence between continuous PWA systems and MMPS systems.

Next, we consider canonical forms for MMPS functions. In Section 4 we briefly recapitulate our

previous results on MPC for MMPS systems. Because of the link between continuous PWA and

MMPS systems, this approach can also be used for continuous PWA systems. Next, we present an

efficient algorithm to solve the MMPS-MPC and PWA-MPC optimization problems. We conclude

with two worked examples.

2 Continuous PWA systems and MMPS systems

2.1 MMPS and PWA functions and systems

Definition 2.1 An MMPS function f : Rn → R
m is defined by the recursive grammar

f (x) := xi

∣

∣α
∣

∣ max( fk(x), fl(x))
∣

∣ min( fk(x), fl(x))
∣

∣ fk(x)+ fl(x)
∣

∣β fk(x) , (1)

with i ∈ {1, . . . ,n}, α ,β ∈ R, and where fk : Rn → R
m, fl : Rn → R

m are again MMPS functions; the

symbol | stands for “or”, and max and min are performed entrywise.

Systems that can be described by a state space model of the form

x(k) = Mx(x(k−1),u(k)) , y(k) = My(x(k),u(k)) , (2)

with input u, output y, and state x, and where Mx,My are (vector-valued) MMPS functions, are called

MMPS systems.

Definition 2.2 [8] A scalar-valued function f : Rn →R is said to be a continuous PWA function if and

only if the following conditions hold:

1. The domain space R
n is divided into a finite number of polyhedral regions R(1), . . . ,R(N).

2. For each i ∈ {1, . . . ,N}, f can be expressed as f (x) = αT
(i)x+β(i) for any x ∈ R(i) with α(i) ∈R

n

and β(i) ∈ R.

3. f is continuous on any boundary between two regions.

A vector-valued function is continuous PWA if each of its components is continuous PWA.

A PWA system is a system of the form

x(k) = Px(x(k−1),u(k)) , y(k) = Py(x(k),u(k)) , (3)

with Px,Py vector-valued PWA functions. If Px,Py are continuous, we say that the system is con-

tinuous PWA. Note that PWA models can also be used as approximations of more general state space

models of the form x(k)= f (x(k−1),u(k)) , y(k)=g(x(k),u(k)), with f ,g continuous and nonlinear.

For more information on PWA functions and PWA systems we refer to [2, 8, 9, 19, 20, 21, 25]

and the references therein.
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2.2 Equivalence of continuous PWA and MMPS systems

Theorem 2.3 [16, 24] If f is a continuous PWA function of the form given in Definition 2.2, then

there exist index sets I1, . . . , Iℓ ⊆ {1, . . . ,N} such that

f = max
j=1,...,ℓ

min
i∈I j

(αT
(i)x+β(i)) .

From the definition of MMPS functions it follows that (see also [16, 24]):

Lemma 2.4 Any MMPS function is also a continuous PWA function.

From Theorem 2.3 and Lemma 2.4 it follows that continuous PWA systems and MMPS systems are

equivalent, i.e., for a given continuous PWA model there exists an MMPS model (and vice versa) such

that the input-output behavior of both models coincides:

Proposition 2.5 Continuous PWA systems and MMPS systems are equivalent.

This is an extension of the results of [17, 18], which already prove an equivalence between (not

necessarily continuous) PWA models and MMPS models, but there some extra auxiliary variables

and some additional algebraic MMPS constraints between the states, the inputs and the auxiliary

variables were required to transform the PWA model into an MMPS model.

3 Canonical forms of MMPS functions

Now we consider some easily verifiable properties of the max and min operators that will be used in

the proof of the main theorem of this paper. Let α ,β ,γ ,δ ∈ R.

• Since minimization is distributive w.r.t. maximization, i.e., min
(

α ,max(β ,γ)
)

= max
(

min(α ,

β ),min(α ,γ)
)

, and maximization is distributive w.r.t. minimization, we have

min
(

max(α ,β ),max(γ ,δ )
)

= max
(

min(α ,γ),min(α ,δ ),min(β ,γ),min(β ,δ )
)

(4)

max
(

min(α ,β ),min(γ ,δ )
)

= min
(

max(α ,γ),max(α ,δ ),max(β ,γ),max(β ,δ )
)

. (5)

• Since addition is distributive w.r.t. minimization and maximization, we have

min(α ,β )+min(γ ,δ ) = min(α + γ ,α +δ ,β + γ ,β +δ ) (6)

max(α ,β )+max(γ ,δ ) = max(α + γ ,α +δ ,β + γ ,β +δ ) . (7)

• The min and max operators are related as follows:

max(α ,β ) =−min(−α ,−β ) , min(α ,β ) =−max(−α ,−β ) . (8)

• If ρ ∈ R is positive, then

ρ max(α ,β ) = max(ρα ,ρβ ) , ρ min(α ,β ) = min(ρα ,ρβ ) . (9)
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Theorem 3.1 A scalar-valued MMPS function f can be rewritten into the min-max canonical form

f = min
i=1,...,K

max
j=1,...,ni

(αT
(i, j)x+β(i, j)) (10)

or into the max-min canonical form f = max
i=1,...,L

min
j=1,...,mi

(γT
(i, j)x+δ(i, j)) for some integers K, L, n1, . . . ,

nK , m1, . . . ,mL, vectors α(i, j),γ(i, j), and real numbers β(i, j),δ(i, j).

For vector-valued MMPS functions the above statements hold componentwise1.

Proof : We will only prove the theorem for the min-max canonical form since the proof for the

max-min canonical form is similar. It is easy to verify that if fk and fl are affine functions, then the

functions that results from applying the basic constructors of an MMPS function (max, min, +, and

scaling — cf. Definition 2.1) are in min-max canonical form2. Now we use a recursive argument

that consists in showing that if we apply the basic constructors of an MMPS function to two (or

more) MMPS functions in min-max canonical form, then the result can again be transformed into

min-max canonical form. Consider two MMPS functions f and g in min-max canonical form3: f =
min(max( f1, f2),max( f3, f4)) and g = min(max(g1,g2),max(g3,g4)). Now we show that max( f ,g),
min( f ,g), f +g and β f with β ∈ R can again be written in min-max canonical form:
• max( f ,g) = max

[

min
(

max( f1, f2),max( f3, f4)
)

, min
(

max(g1,g2),max(g3,g4)
)]

= max
[

max
(

min( f1, f3),min( f1, f4),min( f2, f3),min( f2, f4)
)

,

max
(

min(g1,g3),min(g1,g4),min(g2,g3),min(g2,g4)
)]

(by (4))

= max
(

min( f1, f3),min( f1, f4),min( f2, f3),min( f2, f4),

min(g1,g3),min(g1,g4),min(g2,g3),min(g2,g4)
)

= min
(

max( f1, f1, f2, f2,g1,g1,g2,g2),max( f1, f1, f2, f2,g1,g1,g2,g4), . . .

max( f3, f4, f3, f4,g3,g4,g3,g4)
)

(since max is distributive w.r.t. min)

• min( f ,g) = min
[

min
(

max( f1, f2),max( f3, f4)
)

, min
(

max(g1,g2),max(g3,g4)
)]

= min
(

max( f1, f2),max( f3, f4),max(g1,g2),max(g3,g4)
)

• f +g = min
(

max( f1, f2),max( f3, f4)
)

+ min
(

max(g1,g2),max(g3,g4)
)

= min
(

max( f1, f2)+max(g1,g2),max( f1, f2)+max(g3,g4),

max( f3, f4)+max(g1,g2),max( f3, f4)+max(g3,g4)
)

(by (6))

= min
(

max( f1 +g1, f1 +g2, f2 +g1, f2 +g2),

max( f1 +g3, f1 +g4, f2 +g3, f2 +g4),max( f3 +g1, f3 +g2, f4 +g1, f4 +g2),

max( f3 +g3, f3 +g4, f4 +g3, f4 +g4)
)

(by (7))

• β f = β min
(

max( f1, f2),max( f3, f4)
)

β>0
= min

(

max(β f1,β f2),max(β f3,β f4)
)

if β > 0 (by (9))

β<0
= −|β |min

(

max( f1, f2),max( f3, f4)
)

if β < 0

=−min
(

max(|β | f1, |β | f2),max(|β | f3, |β | f4)
)

(by (9))

1Or alternatively, α(i, j),γ(i, j) are matrices, and β(i, j),δ(i, j) are vectors.
2We allow “void” min or max statements of the form min(s) or max(s), which by definition are equal to s for any

expression s. Alternatively, we can write min(s,s) or max(s,s).
3For the sake of simplicity we only consider two min-terms in f and g, each of which consists of the maximum of two

affine functions. However, the proof also holds if more terms are present.
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= max
(

−max(|β | f1, |β | f2),−max(|β | f3, |β | f4)
)

(by (8))

= max
(

min(−|β | f1,−|β | f2),min(−|β | f3,−|β | f4)
)

(by (8))

= max
(

min(β f1,β f2),min(β f3,β f4)
)

= min
(

max(β f1,β f3),max(β f1,β f4),max(β f2,β f3),max(β f2,β f4)
)

(by (5)). ✷

4 MPC for MMPS systems

In this section we give a short overview of the main results of [12] in which we have extended the MPC

framework to MMPS systems. Related results can be found in [1, 4]. We assume that the reader is

familiar with the basics of MPC, i.e., MPC is a model-based control approach that allows constraints

on the inputs and outputs; in MPC at each sample step the optimal control inputs that minimize a

given objective function over a given prediction horizon are computed, and applied using a receding

horizon approach4. More information can be found in [7, 15, 22] and the references therein.

We can use the deterministic model (2) either as a model of an MMPS system, as the equivalent

model of a continuous PWA system, or as an approximation of a general smooth nonlinear system.

Note that we do not include modeling errors or uncertainty in the model. However, since MPC uses

a receding finite horizon approach, we can regularly update the model and the current state as new

information and new measurements become available. We also assume that the state is measurable5.

In MMPS-MPC we compute at each sample step k an optimal control input that minimizes a cost

criterion over the period [k,k +Np − 1] where Np is the prediction horizon. As we assume that at

sample step k the current state can be measured, estimated or predicted using previous measurements,

we can make an estimate ŷ(k+ j|k) of the output of the model (2) at sample step k+ j based on the

state x(k − 1) and the future inputs u(k + i), i = 0, . . . , j. Using successive substitution, we obtain

an expression of the form ŷ(k+ j|k) = Fj(x(k− 1),u(k), . . . ,u(k+ j)) for j = 0, . . . ,Np − 1. Clearly,

ŷ(k+ j|k) is an MMPS function of x(k−1),u(k), . . . ,u(k+ j).
The cost criterion J(k) = Jout(k) + λJin(k) used in MMPS-MPC reflects the reference tracking

error (Jout) and the control effort (Jin), where λ is a nonnegative weight parameter. Let r denote the

reference signal, and define the vectors

ũ(k) =
[

uT (k) . . . uT (k+Np −1)
]T
, ỹ(k) =

[

ŷT (k|k) . . . ŷT (k+Np −1|k)
]T
,

r̃(k) =
[

rT (k) . . . rT (k+Np −1)
]T

.

In practical situations, there will be constraints on the input and output signals (caused by limited

capacity of buffers, limited transportation rates, saturation, etc.). In general, this is reflected in an

MMPS constraint of the form Cc(k,x(k−1), ũ(k), ỹ(k))> 0 .

In this paper we consider the following output and input cost functions6:

Jout,1(k)=‖ỹ(k)− r̃(k)‖1, Jout,∞(k)=‖ỹ(k)− r̃(k)‖∞, Jin,1(k)=‖ũ(k)‖1, Jin,∞(k)=‖ũ(k)‖∞.

4This means that after computation of the optimal control sequence u(k),u(k+1), . . . ,u(k+Nc−1), only the first control

sample u(k) will be implemented, subsequently the horizon is shifted one sample; next, the model and the state are updated

using new information from the measurements, and a new MPC optimization is performed for sample step k+1.
5Alternatively, one might assume that the state can be estimated. However, this is not a trivial operation as the system is

operating in closed-loop and as — to the authors’ best knowledge — observability and state estimation for (general) PWA

systems is still an open issue.
6In conventional MPC usually quadratic cost functions of the form Jout(k) = ‖ỹ(k)− r̃(k)‖2

2 and Jin(k) = ‖ũ(k)‖2
2 are

used. In a discrete event context, however, other choices are more appropriate (see [11, 12]).
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Note that these cost functions are also MMPS functions (recall that |x|= max(x,−x) for x ∈ R).

The MMPS-MPC problem at sample step k consists in minimizing J(k) over all possible future

input sequences subject to the constraints. Just as in conventional MPC, a control horizon Nc is

introduced in MPC, which means that the input is taken to be constant beyond sample step k+Nc:

u(k+ j) = u(k+Nc −1) for j = Nc, . . . ,Np −1. (11)

Alternatively, we can set the input rate constant as was done in [12]. In addition to a decrease in the

number of optimization parameters and thus also the computational burden, a smaller control horizon

Nc also gives a smoother control signal, which is often desired in practical situations. On the other

hand, Nc should also not be too small since otherwise the controller may not have enough degrees of

freedom to reach constraints and the control objectives.

5 Algorithms for the MMPS-MPC optimization problem

5.1 Nonlinear optimization

In general the MMPS-MPC optimization problem is a nonlinear, nonconvex optimization problem.

In [12] we have discussed some algorithms to solve the MMPS-MPC optimization problem such as

multi-start nonlinear optimization based on sequential quadratic programming (SQP), or a method

based on the extended linear complementarity problem (ELCP). However, both methods have their

disadvantages. If we use the SQP approach, then we usually have to consider a large number of initial

starting points and perform several optimization runs to obtain (a good approximation to) the global

minimum. In addition, the objective functions that appear in the MMPS-MPC optimization problem

are non-differentiable and PWA (if we use the cost criteria Jout,1, Jout,∞, Jin,1, Jin,∞, or those given

in [11]), which makes the SQP approach less suitable for them. The main disadvantage of the ELCP

approach is that the execution time of this algorithm increases exponentially as the size of the problem

increases. This implies that this approach is not feasible if Nc or the number of inputs and outputs of

the system are large.

An alternative option consists in transforming the MMPS system into a mixed-logic (MLD) sys-

tem [4] since MMPS systems are equivalent to MLD systems [17]. The main difference between

MLD-MPC and MMPS-MPC is that MLD-MPC requires the solution of mixed integer-real optimiza-

tion problems. In general, these are also computationally hard optimization problems. The on-line

computational cost can be reduced by off-line computation [1], but this approach leads to high storage

space requirements.

In the next section we will present another method to solve the MMPS-MPC optimization problem

that is similar to the cutting-plane method used in convex optimization.

5.2 A new algorithm

We assume that the cost criteria Jout,1, Jout,∞, Jin,1, and/or Jin,∞ are used7. Recall that these objective

functions (and any linear combination of them) are MMPS functions. The same holds for the estimate

of future output ỹ(k). So if we substitute ỹ(k) in the expression for J(k), we finally obtain an MMPS

function of ũ(k) as objective function. From Theorem 3.1 it follows that this objective function can

7The result below also holds for any other cost criterion that is an MMPS function of ỹ(k) and ũ(k). It follows from

Theorem 2.3 that any continuous PWA norm function can also be used.
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be written in min-max canonical form as follows8:

J(k) = min
i=1,...,ℓ

max
j=1,...,ni

(αT
(i, j)(k)ũ(k)+β(i, j)(k))

for appropriately defined integers ℓ, n1, . . . ,nℓ, vectors α(i, j)(k) and scalars β(i, j)(k). In general, the

expression obtained by straightforwardly applying the manipulations of the proof of Theorem 3.1 may

contain a large number of affine arguments αT
(i, j)(k)ũ(k)+β(i, j)(k). However, many of these terms are

redundant9 and can thus be removed. This reduces the number of affine arguments. Also note that

the transformation into canonical form has to be performed only once — provided that we explicitly

consider all arguments that depend on k as additional variables when performing the transformation,

— and that it can be done off-line.

The derivation below is similar to the cutting-plane algorithm for convex optimization (see, e.g.,

[5]). Hence, it requires constraints that are linear (or convex) in ũ(k). Note that the control horizon

constraint (11) satisfies this condition. However, even if the original MPC constraint Cc(k,x(k −
1), ũ(k), ỹ(k))> 0 is linear in ũ(k) and ỹ(k), then in general this constraint is not linear any more after

substitution of ỹ. Therefore, from now on we assume that there are only linear constraints on the

input:

P(k)ũ(k)+q(k)> 0 . (12)

In practice such constraints occur if we have to guarantee that the control signal ũ(k) or the control

signal rate ∆ũ(k) stay within certain bounds. The optimization algorithm used below, which is based

on the cutting plane algorithm for convex optimization, can also deal with convex constraints. So we

can also allow convex constraints in ũ(k) instead of (12). Furthermore, state or output constraints are

allowed provided that after substitution they lead to a linear or convex constraint in ũ(k).
To obtain the optimal MPC input signal at sample step k, we now have to solve an optimization

problem of the following form:

min
ũ(k)

min
i=1,...,ℓ

max
j=1,...,ni

(αT
(i, j)(k)ũ(k)+β(i, j)(k)) subject to P(k)ũ(k)+q(k)> 0 .

or equivalently

min
i=1,...,ℓ

min
ũ(k)

max
j=1,...,ni

(αT
(i, j)(k)ũ(k)+β(i, j)(k)) subject to P(k)ũ(k)+q(k)> 0 . (13)

Now let i ∈ {1, . . . , ℓ} and consider the subproblem

min
ũ(k)

max
j=1,...,ni

(αT
(i, j)(k)ũ(k)+β(i, j)(k)) subject to P(k)ũ(k)+q(k)> 0 ,

which is equivalent to the following linear programming (LP) problem:

min
t(k),ũ(k)

t(k) subject to

{

t(k)> αT
(i, j)(k)ũ(k)+β(i, j)(k) for j = 1, . . . ,ni

P(k)ũ(k)+q(k)> 0 .
(14)

This LP problem can be solved efficiently using a simplex method or an interior-point algorithm [23,

28]. To obtain the solution of (13), we solve (14) for i = 1, . . . , ℓ and afterward we select the solution

ũ
opt

(i) (k) for which max
j=1,...,ni

(αT
(i, j)(k)ũ

opt

(i) (k)+β(i, j)(k)) is the smallest. This results in an algorithm to

solve the MMPS-MPC problem that is more efficient than the SQP or ELCP approach.

8Note that α(i, j) and β(i, j) also depend on k via, e.g., the current state x(k−1).
9E.g., since they appear twice, or since there are other arguments in the max (min) expression that are always larger

(smaller) than the given argument.
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Remark 5.1 The worst case complexity of the approach presented above is largely determined by

the number of LPs to be solved, i.e., the number of linear terms in the equivalent min-max canonical

form. In the worst case scenario this number increases very rapidly as the prediction horizon, the

number of states of the MMPS systems, or the number of max-min nestings in the state equations

or the objective function increases. However, although the number of terms in the full min-max

canonical expression may be very large, it can sometimes be reduced significantly as will be illustrated

in Example 6.2 (where the full canonical form contains 216 max-terms, of which only 4 are necessary).

Although to the authors’ best knowledge there are currently not yet any efficient algorithms for the

simplification and reduction to a minimal canonical form (i.e., the canonical form with the minimal

number of terms), some ad-hoc methods can be used to reduce the number of max-terms significantly

(cf. Example 6.2). Furthermore, the complexity of the reduction process can also be reduced by

already eliminating redundant terms during the intermediate steps of the transformations. Also note

that this reduction may be done off-line. Furthermore, if we use a primal-dual simplex method or

an interior-point method to solve the LP problems, we can improve the efficiency of the approach

even further by stopping the optimization if we obtain a lower bound for the objective function of the

current LP problem that is larger than the smallest final objective function of the LP problems that

have already been solved.

6 Worked examples

In this section we discuss two examples. The first one is kept as simple as possible in order to show the

basic ideas and all the intermediate steps taken. The second one is more complex. For both examples

we provide a comparison with other methods.

Example 6.1 Consider the following PWA state space model:

y(k) = x(k) =

{

0.5 x(k−1)+4 u(k)−1 if 0.5 x(k−1)+3.8 u(k)6 2

0.2 u(k)+1 if 0.5 x(k−1)+3.8 u(k)> 2 .
(15)

It is easy to verify that the PWA function on the right-hand side of (15) is continuous10. Hence, (15)

represents a continuous PWA system.

By applying the various properties of the max and min operators given in Section 3 of the main

paper, or by applying the transformations given in the constructive proofs of [16, 24] (cf. Theorem

2.3), it is easy to verify that (15) is equivalent to the following MMPS system:

x(k) = min(0.5 x(k−1)+4 u(k)−1, 0.2 u(k)+1) (16)

y(k) = x(k) . (17)

Let us now apply MPC to the system (16)–(17) using the optimization approach presented in Section

5.2. Suppose that we have the following constraints:

−0.2 6 ∆u(k)6 0.2 and u(k)> 0 for all k. (18)

10If we rewrite (15) as y(k) = x(k) = f (x(k − 1),u(k)), then we have — referring to Definition 2.2: R(1) =
{

(x(k −

1),u(k)) ∈R
2
∣

∣0.5 x(k−1)+3.8 u(k)6 2
}

, R(2) =
{

(x(k−1),u(k)) ∈R
2
∣

∣0.5 x(k−1)+3.8 u(k)> 2
}

, α(1) =
[

0.5 4
]T

,

β(1) =−1, α(2) =
[

0 0.2
]T

, and β(2) = 1. It is easy to verify that f is continuous on the boundary of R(1) and R(2).
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Let11 Nc = Np = 2, and assume that the MPC objective function J(k) is given by

J(k) = Jout,∞(k)+λJin,1(k) = ‖ỹ(k)− r̃(k)‖∞ +λ‖ũ(k)‖1 ,

where λ > 0 is a weighting parameter and r(k) the reference signal. Now we have

J(k) = max
(

|y(k)− r(k)|, |y(k+1)− r(k+1)|
)

+λ
(

|u(k)|+ |u(k+1)|
)

= max
(

y(k)− r(k), r(k)− y(k), y(k+1)− r(k+1), r(k+1)− y(k+1)
)

+ (19)

λ
(

u(k)+u(k+1)
)

(by (18))

= max
(

y(k)− r(k)+λu(k)+λu(k+1),r(k)− y(k)+λu(k)+λu(k+1),

y(k+1)− r(k+1)+λu(k)+λu(k+1),r(k+1)− y(k+1)+λu(k)+λu(k+1)
)

.

By using successive substitution and by applying the properties given in Section 3 of the main paper,

y(k) and y(k+1) can be expressed as functions of the current state x(k−1) and the future inputs u(k)
and u(k+1):

y(k) = x(k) = min
(

0.5 x(k−1)+4u(k)−1, 0.2 u(k)+1
)

y(k+1) = x(k+1) = min
(

0.5 x(k)+4 u(k+1)−1, 0.2 u(k+1)+1
)

= min
(

0.25 x(k−1)+2 u(k)+4 u(k+1)−1.5,

0.1 u(k)+4 u(k+1)−0.5, 0.2 u(k+1)+1
)

.

Using these expressions to eliminate y(k) and y(k+1) from the expression for J(k) yields

J(k) =max
(

min
(

(λ +4)u(k)+λu(k+1)− r(k)+0.5 x(k−1)−1,

(λ +0.2)u(k)+λu(k+1)− r(k)+1
)

,

(λ −4)u(k)+λu(k+1)+ r(k)−0.5 x(k−1)+1,

(λ −0.2)u(k)+λu(k+1)+ r(k)−1
)

,

min
(

(λ +2)u(k)+(λ +4)u(k+1)− r(k+1)+0.25 x(k−1)−1.5,

(λ +0.1)u(k)+(λ +4)u(k+1)− r(k+1)−0.5,

λu(k)+(λ +0.2)u(k+1)− r(k+1)+1
)

,

(λ −2)u(k)+(λ −4)u(k+1)+ r(k+1)−0.25 x(k−1)+1.5,

(λ −0.1)u(k)+(λ −4)u(k+1)+ r(k+1)+0.5,

λu(k)+(λ −0.2)u(k+1)+ r(k+1)−1
))

. (20)

Note that this is an MMPS expression in max-min canonical form. In order to be able to apply the

method of Section 5.2 we have to rewrite J(k) into min-max canonical form. Equation (20) can be

written compactly as12

J(k) = max
(

min(t1, t2),m1,m2,min(t3, t4, t5),m3,m4,m5

)

11We take such low values for Nc and Np so that the size of the analytic expression for the MPC objective function J(k)
is still small so that it can be listed explicitly. In practice, larger values would be more appropriate, especially for more

complex, higher-order systems.
12For the sake of simplicity of notation we will omit the arguments of the functions t1, . . . , t5 and m1, . . . ,m5.
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Method CPU time (s)

LP 0.35

SQP 2.98

MILP 1.25

ELCP 12.13

Table 1: CPU time required for computing and simulating the closed-loop MPC input sequence over

the period [1,K] for Example 6.1 (average over 10 runs, with 2 significant decimal digits).

where t1, . . . , t5 and m1, . . . ,m5 are appropriately defined affine functions of x1(k−1), u(k), u(k+1),
and r(k). The min-max canonical form of J(k) is then given by

J(k) = min
(

max(t1, t3,m1,m2,m3,m4,m5),max(t1, t4,m1,m2,m3,m4,m5),

max(t1, t5,m1,m2,m3,m4,m5),max(t2, t3,m1,m2,m3,m4,m5),

max(t2, t4,m1,m2,m3,m4,m5),max(t2, t5,m1,m2,m3,m4,m5)
)

. (21)

Hence, the optimal MPC strategy for step k can be computed by solving six LP problems13, and by

selecting the overall optimum.

Let us now compute the closed-loop MPC input signal over a simulation period [1,K] with K = 15,

λ = 0.05, x(0) = 0.5, u(0) = 0.1, and for the reference signal r defined by

{r(k)}15
k=1 = 0.5, 0.8, 1, 1.5, 1.2, 1, 0.4, −0.5, −1.8, −1, −0.2, 0.8, 1, 1.1, 1 .

This results in the following closed-loop MPC input sequence14:

{umpc(k)}
15
k=1 = 0.3, 0.394, 0.594, 0.794, 0.6, 0.4, 0.215, 0.015, 0, 0.171,

0.325, 0.475, 0.4, 0.5, 0.363 .

In Figure 1 we have plotted the closed-loop MPC input signal u, the output signal y, the reference

signal r, and the difference signal y− r.

We have solved the MPC optimization problem defined above for each sample step k using four

different approaches:

1. the new LP based approach of Section 5.2,

2. a nonlinear nonconvex SQP approach,

3. the mixed integer linear programming (MILP) approach of [4],

4. the ELCP approach (cf. [12]).

The programs and functions to compute the optimal closed-loop MPC input sequence for each of the

approaches above have been implemented in Matlab. For solving the LP, SQP, and MILP optimiza-

tion problems we have respectively used the linprog function of the Matlab Optimization Toolbox

[26], the fmincon function of the Matlab Optimization Toolbox, and the mixed integer linear and

13Each LP problem has 13 inequalities (7 coming from the objective function and 6 from the constraints (18) for k and

k+1, and 2 variables (u(k) and u(k+1)).
14The numerical values are given with 3 significant decimal digits.
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Figure 1: The closed-loop MPC output signal y, the reference signal r, the difference signal y− r,

the input signal u, and the region R(i) (cf. Footnote 10) in which the system is at sample step k for

Example 6.1.

quadratic programming function miqp [3] (in combination with linprog). Table 1 lists the CPU

time required to compute the optimal closed-loop MPC input sequence (simulation time included) for

the system (15) over the period [1,K] on a 2.2 GHz Pentium 4 PC with 512 MB RAM. Clearly, for

this example, the new LP approach outperforms the other approaches.

Example 6.2 Let us (re)consider the example presented in the paper [18], in which the equivalence

between general (i.e., continuous or discontinuous) PWA systems and constrained MMPS systems

was proved. In Example 1 of [18] the following hybrid system was considered15:

x(k) =

{

x(k−1)+u(k) if x(k−1)+u(k)6 1

1 if x(k−1)+u(k)> 1 ,
(22)

which represents an integrator with upper saturation. It is easy to verify that (22) represents a contin-

uous PWA system.

15In order to get the same notation for the state equations as in the main paper, we have shifted the state by one sample,

i.e., we have replaced x(k+1) and x(k) of [18] by x(k) and x(k−1) respectively. Note that this does not change the behavior

of the system if the input is shifted accordingly.
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In [18] this system was recast as the following max-plus-scaling16 system:

x(k) = x(k−1)+u(k)−max(0,x(k−1)+u(k)−1) . (23)

By inspection from (22), by applying the various properties of the max and min operators given

in Section 3 of the main paper to expression (23), or by applying the transformations given in the

constructive proofs of [16, 24] (cf. Theorem 2.3), it is easy to verify that (22) is equivalent to the

following MMPS system:

x(k) = min(x(k−1)+u(k),1) . (24)

In order to obtain a model of the form (2) we add the following output equation:

y(k) = x(k) . (25)

Let us now apply MPC to the system (24)–(25) using the optimization approach presented in this

paper. Suppose that we have the following constraints17:

−0.3 6 ∆u(k)6 0.3 for all k (26)

u(k)+u(k+1)6 0 for all k (27)

y(k)> r(k) for all k. (28)

Let Nc = Np = 2, and assume that the MPC objective function J(k) is given by

J(k) = Jout,∞(k)+λJin,1(k) ,

where λ > 0 is a weighting parameter and r(k) the reference signal.

Using an approach that is similar to the approach taken in Example 6.1, we obtain an expression

of the following form for the max-min canonical form of J(k) (see [13]):

J(k) = max
(

min(t1, t2),min(t3, t4),min(t5, t6),

min(t7, t8, t9),min(t10, t11, t12),min(t13, t14, t15)
)

(29)

where t1, . . . , t15 are affine functions of x1(k− 1), u(k), u(k+ 1), and r(k). The min-max canonical

form of J(k) is then given by

J(k) =min
(

max(t1, t3, t5, t7, t10, t13),max(t1, t3, t5, t7, t10, t14),max(t1, t3, t5, t7, t10, t15),

max(t1, t3, t5, t7, t11, t13),max(t1, t3, t15, t7, t11, t14),max(t1, t3, t5, t7, t11, t15),

. . .

max(t2, t4, t6, t9, t12, t13),max(t2, t4, t6, t9, t12, t14),max(t2, t4, t6, t9, t12, t15)
)

. (30)

Note that (30) contains a huge number of max-terms, viz. 2× 2× 2× 3× 3× 3 = 216 max-terms.

Using an iterative computation in which in each step one of the max-terms is removed and it is verified

16Max-plus-scaling functions and systems are defined analogously to MMPS functions and systems but without the min

operator.
17It can be shown that after substitution of y(k) the constraint y(k) > r(k) can be recast as a system of linear constraints

in u(k) (see also [13]). This shows that our approach can also deal with constraints on the output or the state provided that

after substitution they result in constraints that are linear (or convex) in the input ũ(k).
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Method CPU time (s)

LP 0.31

SQP 2.10

MILP 1.04

ELCP 2.21

Table 2: CPU time required for computing and simulating the closed-loop MPC input sequence for

Example 6.2 (average over 10 runs).

whether the resulting reduced min-max function is equivalent18 to the original min-max function, it

can be shown that most of these max-terms in are redundant and can thus be removed, which yields

J(k) =min
(

max(t1, t3, t5, t7, t10, t13),max(t1, t3, t5, t9, t12, t15),max(t2, t4, t6, t8, t11, t14),

max(t2, t4, t6, t9, t12, t15)
)

. (31)

This finally results in four LP problems that have to be solved in each MPC step.

Let us now compute the closed-loop MPC input signal over a simulation period [1,15] with λ =
0.1, x(0) = 1, u(0) =−0.1, and for the reference signal

{r(k)}15
k=1 = 1, 1, 0.7, 0.5, −0.45, −0.9, −1.2, −1.5, −1.4, −2.4,

−2.5, −2.6, −2.6, −2.75, −2.75 .

This results in the following closed-loop MPC input sequence:

{umpc(k)}
15
k=1 = 0, 0, −0.3, −0.2, −0.5, −0.75, −0.45, −0.25, 0.05, −0.25,

−0.55, −0.35, −0.05, −0.15, 0 .

We have also solved the MPC optimization problems using the new approach, the SQP approach, the

ELCP approach, and the MILP approach. Table 2 lists the CPU time required to compute the optimal

closed-loop MPC input sequence (simulation time included) for the system (22) over the period [1,15]
using the Matlab Optimization Toolbox and miqp on a 2.2 GHz Pentium 4 PC with 512 MB RAM.

So, for this example, the new LP approach also outperforms the other approaches.

7 Conclusion

First, we have shown that continuous PWA systems are equivalent to MMPS systems. This result

is a refinement of previous results since it does not require the introduction of auxiliary variables

or additional MMPS constraints. Next, we have considered MPC for continuous PWA and MMPS

systems. In general, this leads to nonlinear, nonconvex optimization problems. We have presented

a method that is based on canonical forms for MMPS functions and that is similar to the cutting-

plane convex optimization algorithm to solve these optimization problems. More specifically, the

approach consists in solving several LP problems and afterward selecting the solution that yields the

18As MMPS functions are PWA functions, it is easy to verify that the equivalence of two MMPS functions (of n variables)

can be determined by selecting for each polyhedral regions R(i) (cf. Definition 2.2) corresponding to one of the functions

n+1 linearly independent points, and by comparing the values of both functions in all these points. For the sake of efficiency,

it is useful to consider points that are common to two or more regions such as, e.g., the vertices of the regions.
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smallest objective function. This results in a method that is more efficient than just applying nonlinear

optimization as was done in previous research.

Topics for future research include: a thorough investigation and comparison of the performance

and the efficiency of the different optimization algorithms that have been considered in this paper and

in [1, 4], investigation and characterization of the computational complexity of the transformation into

the canonical form19, investigation and characterization of the (average) number of LP problems and

the number of inequalities they contain, and extension of our results to include modeling errors and

noise in a stochastic or an ℓ∞ framework.
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Abstract

This addendum contains some extra information in connection with the worked examples of Sec-

tion 6 of the paper “MPC for continuous piecewise-affine systems” (by B. De Schutter and T.J.J.

van den Boom, Systems & Control Letters, vol. 52, no. 3–4, pp. 179–192, July 2004). In particular,

we give the explicit form of the optimization problems for each of the four solution approaches

used in Section 6.

All references in this addendum that are not preceded by a capital letter A refer to sections, equations, etc. of

the paper [A2].

Example 6.1 (continued) For each of the solution approaches considered in Section 6 we get the following

explicit form for the optimization problems:

1. the new LP based approach of Section 5.2:

In this case we have to solve the six LPs that correspond to (21) subject to1

−0.2 6 u(k)−u(k−1)6 0.2 (A.1)

−0.2 6 u(k+1)−u(k)6 0.2 (A.2)

u(k)> 0 (A.3)

u(k+1)> 0 ; (A.4)

2. a nonlinear nonconvex SQP approach:

Here we have to solve

min
u(k),u(k+1)

max
(

|y(k)− r(k)|, |y(k+1)− r(k+1)|
)

+λ
(

u(k)+u(k+1)
)

subject to

y(k) = min
(

0.5 x(k−1)+4 u(k)−1, 0.2 u(k)+1
)

y(k+1) = min
(

0.25 x(k−1)+2 u(k)+4 u(k+1)−1.5,

0.1 u(k)+4 u(k+1)−0.5, 0.2 u(k+1)+1
)

and (A.1)–(A.4);

3. the mixed integer linear programming (MILP) approach of [4]:

This results in2

min
u(k),u(k+1),δ (k),δk+1,

z1(k+1),z2(k),z2(k+1),t(k)

t(k)+λu(k)+λu(k+1)

*Note that this addendum is not a part of the published journal paper [A2]. However, it is available as a separate technical

report [13].
1I.e., (18) for k and k+1.
2See [4] for the way to transform a PWA model into a mixed logical dynamical model (MLD) (i.e., a system with both

boolean and real state variables, with linear state and output equations, and with additional linear inequality constraints on

the state variables). The piecewise linear objective function J(k) =max
(

|y(k)−r(k)|, |y(k+1)−r(k+1)|
)

+λ
(

u(k)+u(k+
1)
)

has been transformed into a linear objective function by introducing an extra variable t(k) = max
(

|y(k)− r(k)|, |y(k)−
r(k+1)|

)

. The 5 other extra variables (δ (k), δ (k+1), z1(k+1) = x(k)δ (k+1), z2(k) = u(k)δ (k), z2(k+1) = u(k+1)δ (k+
1)) originate from the transformation from PWA into MLD equations. Note that since the value of x(k− 1) is known at

sample step k the term 0.5x(k− 1)δ (k) is in fact a linear term. As a consequence, the equation for x(k) is linear in x(k),
δ (k), z2(k) and u(k).
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subject to

t(k)> x(k)− r(k)

t(k)> r(k)− x(k)

t(k)> x(k+1)− r(k+1)

t(k)> r(k+1)− x(k+1)

x(k) = 0.5 x(k−1)δ (k)+3.8 z2(k)−2 δ (k)+0.2 u(k)+1

x(k+1) = 0.5 z1(k+1)+3.8 z2(k+1)−2 δ (k+1)+0.2 u(k+1)+1

ε − (M f + ε)δ (k)6 0.5 x(k−1)+3.8 u(k)−2 6 M f (1−δ (k))

−Muδ (k)6 z2(k)6 Muδ (k)

u(k)−Mu(1−δ (k))6 z2(k)6 u(k)+Mu(1−δ (k))

ε − (M f + ε)δ (k+1)6 0.5 x(k)+3.8 u(k+1)−2 6 M f (1−δ (k+1))

−Mxδ (k+1)6 z1(k+1)6 Mxδ (k+1)

x(k)−Mx(1−δ (k+1))6 z1(k+1)6 x(k)+Mx(1−δ (k+1))

−Muδ (k+1)6 z2(k+1)6 Muδ (k+1)

u(k+1)−Mu(1−δ (k+1))6 z2(k+1)6 u(k+1)+Mu(1−δ (k+1))

δ (k),δ (k+1) ∈ {0,1}

and (A.1)–(A.4),

with ε a small positive number, and with Mx an upper bound3 for |x(k)| for all k, and Mu an upper bound

for |u(k)| for all k, and M f = 0.5 Mx +3.8 Mu +2;

4. the ELCP approach (cf. [12]):

Here we have to solve the following optimization problem4:

min
ν

max
(

|y(k,ν)− r(k)|, |y(k+1,ν)− r(k+1)|
)

+λ
(

u(k,ν)+u(k+1,ν)
)

where ν contains the parameters of the parameterized solution set of the ELCP given below (this solution

set can be computed with the ELCP algorithm of [A1]), and where y(k,ν), y(k+1,ν), u(k,ν), u(k+1,ν)
are respectively the y(k), y(k+1), u(k), u(k+1) that correspond to the parameter vector ν . The ELCP

is given by5

0.5 x(k−1)+4 u(k)−1− y(k)> 0

0.2 u(k)+1− y(k)> 0
(

0.5 x(k−1)+4 u(k)−1− y(k)
)

·
(

0.2 u(k)+1− y(k)
)

= 0

0.25 x(k−1)+2 u(k)+4 u(k+1)−1.5− y(k+1)> 0

0.1 u(k)+4 u(k+1)−0.5− y(k+1)> 0

0.2 u(k+1)+1− y(k+1)> 0
(

0.25 x(k−1)+2 u(k)+4 u(k+1)−1.5− y(k+1)
)

·
(

0.1 u(k)+4 u(k+1)−0.5− y(k+1)
)

·
(

0.2 u(k+1)+1− y(k+1)
)

= 0

and (A.1)–(A.4).

3The upper bounds Mx and Mu could be determined based on physical insight or on operational constraints.
4This problem can be solved using an SQP approach.
5See [12] for more information on how this ELCP should be constructed.
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Remark A.1 For the system (16)–(17) we can also allow output constraints of the form6

y(k)> r(k) for all k . (A.5)

Indeed, for k and k+1 this constraint leads to

y(k) = min
(

0.5 x(k−1)+4 u(k)−1, 0.2 u(k)+1
)

> r(k)

y(k+1) = min
(

0.25 x(k−1)+2 u(k)+4 u(k+1)−1.5,

0.1 u(k)+4 u(k+1)−0.5, 0.2 u(k+1)+1
)

> r(k+1)

or equivalently

0.5 x(k−1)+4 u(k)−1 > r(k) (A.6)

0.2 u(k)+1 > r(k) (A.7)

0.25 x(k−1)+2 u(k)+4 u(k+1)−1.5 > r(k+1) (A.8)

0.1 u(k)+4 u(k+1)−0.5 > r(k+1) (A.9)

0.2 u(k+1)+1 > r(k+1) . (A.10)

Since these constraints are affine in ũ(k) =
[

u(k) u(k+ 1)
]T

, the new optimization approach of Section 5.2

can still be applied7. This also holds for constraints of the form

x(k)> xlow(k) and y(k)> ylow(k) for all k

for lower bound signals xlow and ylow, or for any nonnegative linear combination of these constraints8. This

shows that our approach can also deal with constraints on the output or the state provided that after substitution

they result in constraints that are convex in the input ũ(k).

Example 6.2 (continued) Recall that we have selected the following MPC objective function J(k):

J(k) = Jout,∞(k)+λJin,1(k) .

Using the system equations (24)–(25) and the constraints (26)–(28) we obtain

J(k) = max
(

|y(k)− r(k)|, |y(k+1)− r(k+1)|
)

+λ
(

|u(k)|+ |u(k+1)|
)

= max
(

y(k)− r(k), y(k+1)− r(k+1)
)

+ (by (28))

λ
(

max(u(k),−u(k))+max(u(k+1),−u(k+1))
)

= max
(

y(k)− r(k), y(k+1)− r(k+1)
)

+

+λ max
(

u(k)+u(k+1), u(k)−u(k+1),−u(k)+u(k+1),−u(k)−u(k+1)
)

= max
(

y(k)− r(k), y(k+1)− r(k+1)
)

+

+λ max
(

u(k)−u(k+1),−u(k)+u(k+1),−u(k)−u(k+1)
)

(by (27))

= max
(

y(k)− r(k)+λu(k)−λu(k+1), y(k)− r(k)−λu(k)+λu(k+1),

6Since the output saturates at 0.2u(k)+ 1, we will have to adapt the reference signal r if the constraint (A.5) is added,

since otherwise the MPC problem will be infeasible for some values of k (cf. conditions (A.7) and (A.10)).
7If the constraint (A.5) is added, the terms r(k)−y(k) and r(k+1)−y(k+1) in expression (19) for the objective function

become redundant. As a consequence, the terms m1, . . . , m5 will disappear from (21), but the constraints (A.6)–(A.10) will

be added. Hence, we still have 6 LPs with 13 inequalities and 2 variables.
8However, constraints of the form x(k) 6 xupp(k) or y(k) 6 yupp(k) for upper bound signals xupp and yupp lead to con-

straints that are not convex in ũ(k). Hence, if such constraints are present, the new optimization approach of Section 5.2

cannot be applied.
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y(k)− r(k)−λu(k)−λu(k+1), y(k+1)− r(k+1)+λu(k)−λu(k+1),

y(k+1)− r(k+1)−λu(k)+λu(k+1),

y(k+1)− r(k+1)−λu(k)−λu(k+1)
)

.

By using successive substitution and by applying the properties given in Section 3 of the main paper, y(k) and

y(k+1) can be expressed as functions of the current state x(k−1) and the future inputs u(k) and u(k+1):

y(k) = x(k) = min
(

x(k−1)+u(k), 1
)

y(k+1) = x(k+1) = min
(

x(k)+u(k+1), 1
)

= min
(

min
(

x(k−1)+u(k), 1
)

+u(k+1), 1
)

= min
(

min
(

x(k−1)+u(k)+u(k+1), 1+u(k+1)
)

, 1
)

= min
(

x(k−1)+u(k)+u(k+1), u(k+1)+1, 1
)

.

Hence,

J(k) = max
(

min
(

x(k−1)+u(k), 1
)

− r(k)+λu(k)−λu(k+1),

min
(

x(k−1)+u(k), 1
)

− r(k)−λu(k)+λu(k+1),

min
(

x(k−1)+u(k), 1
)

− r(k)−λu(k)−λu(k+1),

min
(

x(k−1)+u(k)+u(k+1), u(k+1)+1, 1
)

− r(k+1)+λu(k)−λu(k+1),

min
(

x(k−1)+u(k)+u(k+1), u(k+1)+1, 1
)

− r(k+1)−λu(k)+λu(k+1),

min
(

x(k−1)+u(k)+u(k+1), u(k+1)+1, 1
)

− r(k+1)−λu(k)−λu(k+1)
)

= max
(

min
(

x(k−1)+u(k)− r(k)+λu(k)−λu(k+1),

1− r(k)+λu(k)−λu(k+1)
)

,

min
(

x(k−1)+u(k)− r(k)−λu(k)+λu(k+1),

1− r(k)−λu(k)+λu(k+1)
)

,

min
(

x(k−1)+u(k)− r(k)−λu(k)−λu(k+1),

1− r(k)−λu(k)−λu(k+1)
)

,

min
(

x(k−1)+u(k)+u(k+1)− r(k+1)+λu(k)−λu(k+1),

u(k+1)+1− r(k+1)+λu(k)−λu(k+1),

1− r(k+1)+λu(k)−λu(k+1)
)

,

min
(

x(k−1)+u(k)+u(k+1)− r(k+1)−λu(k)+λu(k+1),

u(k+1)+1− r(k+1)−λu(k)+λu(k+1),

1− r(k+1)−λu(k)+λu(k+1)
)

,

min
(

x(k−1)+u(k)+u(k+1)− r(k+1)−λu(k)−λu(k+1),

u(k+1)+1− r(k+1)−λu(k)−λu(k+1),

1− r(k+1)−λu(k)−λu(k+1)
))

= max
(

min
(

x(k−1)+(λ +1)u(k)−λu(k+1)− r(k),

λu(k)−λu(k+1)− r(k)+1
)

,

min
(

x(k−1)+(−λ +1)u(k)+λu(k+1)− r(k),

−λu(k)+λu(k+1)− r(k)+1
)

,

min
(

x(k−1)+(−λ +1)u(k)−λu(k+1)− r(k),
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−λu(k)−λu(k+1)− r(k)+1
)

,

min
(

x(k−1)+(λ +1)u(k)+(−λ +1)u(k+1)− r(k+1),

λu(k)+(−λ +1)u(k+1)− r(k+1)+1,

λu(k)−λu(k+1)− r(k+1)+1
)

,

min
(

x(k−1)+(−λ +1)u(k)+(λ +1)u(k+1)− r(k+1),

−λu(k)+(λ +1)u(k+1)− r(k+1)+1,

−λu(k)+λu(k+1)− r(k+1)+1
)

,

min
(

x(k−1)+(−λ +1)u(k)+(−λ +1)u(k+1)− r(k+1),

−λu(k)+(−λ +1)u(k+1)− r(k+1)+1,

−λu(k)−λu(k+1)− r(k+1)+1
))

. (A.11)

Note that this is an MMPS expression in max-min canonical form, which can be written compactly as (29).

Recall that we have considered the computation of the closed-loop MPC input signal over a simulation

period [1,15] with λ = 0.1, x(0) = 1, u(0) =−0.1, and for the reference signal

{r(k)}15
k=1 = 1, 1, 0.7, 0.5, −0.45, −0.9, −1.2, −1.5, −1.4, −2.4,

−2.5, −2.6, −2.6, −2.75, −2.75 .

This results in the following closed-loop MPC input sequence:

{umpc(k)}
15
k=1 = 0, 0, −0.3, −0.2, −0.5, −0.75, −0.45, −0.25, 0.05, −0.25,

−0.55, −0.35, −0.05, −0.15, 0 .

In Figure A.1 we have plotted the closed-loop MPC input signal u, the output signal y, the reference signal r,

and the difference signal y− r.

Remark A.2 Note that the constraint (28) leads to

y(k) = min
(

x(k−1)+u(k), 1
)

> r(k)

y(k+1) = min
(

x(k−1)+u(k)+u(k+1), u(k+1)+1, 1
)

> r(k+1)

or equivalently

x(k−1)+u(k)> r(k) (A.12)

1 > r(k) (A.13)

x(k−1)+u(k)+u(k+1)> r(k+1) (A.14)

u(k+1)+1 > r(k+1) (A.15)

1 > r(k+1) . (A.16)

We have solved the MPC optimization problems using 4 different approaches:

1. the new LP based approach of Section 5.2:

In this case we have to solve the four LPs that correspond to (31) subject to9

−0.3 6 u(k)−u(k−1)6 0.3 (A.17)

−0.3 6 u(k+1)−u(k)6 0.3 (A.18)

9See (26), (27), and (A.12), (A.14)–(A.15).
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Figure A.1: The closed-loop MPC output signal y, the reference signal r, the difference signal y− r,

the input signal u, and the region R(i) in which the system is at sample step k for Example 6.2.

u(k)+u(k−1)6 0 (A.19)

u(k+1)+u(k)6 0 (A.20)

x(k−1)+u(k)> r(k) (A.21)

x(k−1)+u(k)+u(k+1)> r(k+1) (A.22)

u(k+1)+1 > r(k+1) ; (A.23)

2. a nonlinear nonconvex SQP approach:

Here we have to solve

min
u(k),u(k+1)

max
(

y(k)− r(k),y(k+1)− r(k+1)
)

+λ
(

|u(k)|+ |u(k+1)|
)

subject to

y(k) = min
(

x(k−1)+u(k), 1
)

y(k+1) = min
(

x(k−1)+u(k)+u(k+1), u(k+1)+1, 1
)

y(k)> r(k)

y(k+1)> r(k+1)

and (A.17)–(A.20);
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3. the mixed integer linear programming approach of [4]:

This results in10

min
u(k),u(k+1),δ (k),δk+1,

z1(k+1),z2(k),z2(k+1),t1(k),t2(k),t3(k)

t1(k)+λ t2(k)+λ t3(k)

subject to

t1(k)> x(k)− r(k)

t1(k)> x(k+1)− r(k+1)

t2(k)> u(k)

t2(k)>−u(k)

t3(k)> u(k+1)

t3(k)>−u(k+1)

x(k) = x(k−1)δ (k)+ z2(k)−δ (k)+1

x(k+1) = z1(k+1)+ z2(k+1)−δ (k+1)+1

ε − (Mx +Mu +1+ ε)δ (k)6 x(k−1)+u(k)−1 6 (Mx +Mu +1)(1−δ (k))

−Muδ (k)6 z2(k)6 Muδ (k)

u(k)−Mu(1−δ (k))6 z2(k)6 u(k)+Mu(1−δ (k))

ε − (Mx +Mu +1+ ε)δ (k+1)6 x(k)+u(k+1)−1

6 (Mx +Mu +1)(1−δ (k+1))

−Mxδ (k+1)6 z1(k+1)6 Mxδ (k+1)

x(k)−Mx(1−δ (k+1))6 z1(k+1)6 x(k)+Mx(1−δ (k+1))

−Muδ (k+1)6 z2(k+1)6 Muδ (k+1)

u(k+1)−Mu(1−δ (k+1))6 z2(k+1)6 u(k+1)+Mu(1−δ (k+1))

x(k)> r(k)

x(k+1)> r(k+1)

δ (k),δ (k+1) ∈ {0,1}

and (A.17)–(A.20),

with ε a small positive number, and with Mx an upper bound for |x(k)| for all k, and Mu an upper bound

for |u(k)| for all k;

4. the ELCP approach (cf. [12]):

Here we have the following optimization problem:

min
ν

max
(

y(k,ν)− r(k),y(k+1,ν)− r(k+1)
)

+λ
(

|u(k,ν)|+ |u(k+1,ν)|
)

where ν contains the parameters of the parameterized solution set of the ELCP given below as it can be

computed with the ELCP algorithm of [A1] and y(k,ν), y(k+1,ν), u(k,ν), u(k+1,ν) respectively the

y(k), y(k+1), u(k), u(k+1) that correspond to the parameter vector ν . The ELCP is given by

x(k−1)+u(k)− y(k)> 0

10See [4] for the way to transform a PWA model into an MLD model. The piecewise linear objective function J(k) =
max

(

y(k)− r(k),y(k + 1)− r(k + 1)
)

+ λ
(

|u(k)|+ |u(k + 1)|
)

has been transformed into a linear objective function by

introducing 3 extra variables t1(k) = max
(

y(k)− r(k),y(k)− r(k + 1)
)

, t2(k) = |u(k)| = max
(

u(k),−u(k)
)

, and t3(k) =
|u(k + 1)| = max

(

u(k + 1),−u(k + 1)
)

; the six other extra variables (δ (k), δ (k + 1), z1(k), z1(k + 1), z2(k), z2(k + 1))
originate from the transformation from PWA into MLD equations.
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1− y(k)> 0
(

x(k−1)+u(k)− y(k)
)

·
(

1− y(k)
)

= 0

x(k−1)+u(k)+u(k+1)− y(k+1)> 0

u(k+1)+1− y(k+1)> 0

1− y(k+1)> 0
(

x(k−1)+u(k)+u(k+1)− y(k+1)
)

·
(

u(k+1)+1− y(k+1)
)

·
(

1− y(k+1)
)

= 0

y(k)> r(k)

y(k+1)> r(k+1)

and (A.17)–(A.20).
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