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Abstract

We present a method to identify the parameters of a state

space model for a max-plus-linear discrete event system

from input-output sequences. The approach is based on re-

casting the identification problem as an optimization prob-

lem over the solution set of an extended linear complemen-

tarity problem. Recently, we have shown that such a prob-

lem can be solved much more efficiently than previously by

using a mixed integer programming approach. The result-

ing algorithm allows us to identify a state space model of

a max-plus-linear discrete event system from input-output

data. This method works for both structured and fully pa-

rameterized state space identification. In addition, we also

obtain an estimate of the state sequence.

1 Introduction
1.1 Overview

A discrete event system (DES) is a dynamic, asynchronous

system, where the state transitions are initiated by events

that occur at discrete time instants. Typical examples of

DES are flexible manufacturing systems, telecommunica-

tion networks, parallel processing systems, traffic control

systems, and logistic systems. There exist many different

modeling and analysis frameworks for DES such as Petri

nets, finite state machines, automata, languages, process

algebra, computer models, etc. In this paper we consider

the class of DES with synchronization but no concurrency.

Such DES can be described by models that are “linear” in

the max-plus algebra [1], and therefore, they are called max-

plus-linear (MPL) DES.

One of the main advantages of an analytic max-plus-

algebraic model of a DES is that it allows us to derive some

properties of the system (such as the steady state behav-

ior) fairly easily, whereas in some cases brute force sim-

ulation might require a large amount of computation time

[1]. In addition, the analytic model can be used in a model-

based control setting to compute optimal input sequences

for a given DES. In [8] we have developed a model pre-

dictive control (MPC) approach for MPL DES that uses a

state space model of the DES to predict the future behav-

ior of the system. MPC uses a moving horizon approach in

which the model of the system is regularly updated as new

measurements become available. Hence, an efficient on-line

identification procedure is required.

If we want to use a model for control and other purposes, we

have to be able to determine the parameters of the model.

Most identification methods for MPL DES use a transfer

function approach [3, 10]. One could argue that an identi-

fied transfer function description can be transformed into a

state space model, but then the connection with the physical

structure is usually lost1. Furthermore, compared to transfer

functions state space models have certain advantages: they

explicitly take the initial state of the system into account,

they can reveal “hidden” behavior such as unobservable un-

stable modes, the extension from SISO to MIMO is more

intuitive and elegant for state space models, and the analy-

sis is often easier. In addition, the MPC framework of [8]

requires a state space model. Therefore, we focus on state

space identification for MPL DES.

In [13, 14] a state space identification method has been de-

rived in which the internal structure of the system is as-

sumed to be completely known and the state is assumed to

be measurable. In this paper, we assume that only input-

output sequences are available (i.e., we do not require mea-

surements of the (full) state of the system2). In addition,

our method can also be used for fully parameterized state

space identification (i.e., when the internal structure of the

system is not known). Furthermore, the proposed identifi-

cation method also yields an estimate of the state sequence.

1.2 Max-plus-linear discrete event systems

Addition and maximization are the basic operations of the

max-plus algebra. Due to the analogies between conven-

tional algebra and max-plus algebra [1], these operations

are also called max-plus-algebraic addition and multiplica-

tion, and denoted by ⊕ and ⊗ respectively:

x⊕ y = max(x,y) and x⊗ y = x+ y

for x,y ∈ Rε
def
= R∪{−∞}. Define ε = −∞. Note that ε is

the zero element for ⊕ (i.e., x⊕ ε = x for all x ∈ Rε ) and

that it is absorbing for ⊗ (i.e., x⊗ ε = ε for all x ∈ Rε ).

For matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε we can extend the

1For MPL DES the physical layout of the system is often clearly rec-

ognizable in the structure of the state space matrices (see also Section 3).
2Incomplete or no measurements of the state could occur in systems

where not all internal starting and finishing times are monitored, or com-

municated to the control center. Note, however, that our approach can also

take partial or full state measurements into account (see Remark 2.3).



definition of ⊕ and ⊗ as follows:

(A⊕B)i j = ai j ⊕bi j = max(ai j,bi j)

(A⊗C)i j =
n

⊕

k=1

aik ⊗ ck j = max
k=1,...,n

(aik + ck j) .

DES with synchronization but no concurrency can be mod-

eled using the operations maximization (corresponding to

synchronization: a new operation starts as soon as all pre-

ceding operations have been finished) and addition (corre-

sponding to durations: the finishing time of an operation

equals the starting time plus the duration). This leads to a

description that is “linear” in the max-plus algebra [1]:

x(k) = A⊗ x(k−1) ⊕ B⊗u(k) (1)

y(k) =C⊗ x(k) (2)

with A ∈ R
n×n
ε , B ∈ R

n×m
ε , C ∈ R

l×n
ε , and with n the system

order, and m and l the number of inputs and outputs. Sys-

tems that can be described by the model (1)–(2) are called

time-invariant max-plus-linear (MPL) DES. The index k is

called the event counter. The state x(k) typically contains

the time instants at which the internal events occur for the

kth time, u(k) contains the time instants at which the input

events occur for the kth time, and y(k) contains the time

instants at which the output events occur for the kth time.

1.3 The Extended Linear Complementarity

The Extended Linear Complementarity Problem (ELCP)

arose from our research on DES and hybrid systems, and

is defined as follows [5]:

Given A ∈R
p×n, B ∈R

q×n, c ∈R
p, d ∈R

q and

φ1, . . . ,φm ⊆ {1, . . . , p}, find x ∈ R
n such that

Ax > c (3)

Bx = d (4)

m

∑
j=1

∏
i∈φ j

(Ax− c)i = 0 . (5)

The set {x ∈ R
n | Ax > c,Bx = d} is called the feasible set

of the ELCP (3)–(5). The surplus variable s+(i,x) of the ith

inequality of Ax > c is defined as s+(i,x) = (Ax− c)i. Con-

dition (5) represents the complementarity condition of the

ELCP and can be interpreted as follows. Since Ax > c, all

the terms in (5) are nonnegative. Hence, (5) is equivalent

to ∏i∈φ j
(Ax− c)i = 0 for j = 1, . . . ,m. So each set φ j cor-

responds to a group of inequalities in Ax > c, and in each

group at least one inequality should hold with equality (i.e.,

the corresponding surplus variable is equal to 0).

In general, the solution set of the ELCP consists of the union

of a subset of the faces of the polyhedron defined by (3)–(4).

In [5] we have developed an algorithm to find a parametric

representation of the entire solution set of an ELCP. How-

ever, the computation time and the memory storage require-

ments of this algorithm increase exponentially as the size of

the ELCP increases, which makes this approach intractable

for medium or large-scale ELCPs. However, recently we

have shown the following proposition, which transforms an

ELCP into a mixed integer linear programming problem,

and which allows us to solve much larger instances of the

ELCP than was possible previously (see also [7]):

Theorem 1.1 If the residues of the ELCP (3)–(5) are

bounded from above (i.e., there exist a diagonal matrix

Dupp ∈ R
p×p such that s+(i,x) 6 (Dupp)ii for i = 1, . . . , p),

then any solution of the following mixed integer linear fea-

sibility problem:

δ ∈ {0,1}p
, x ∈ R

n (6)

0 6 Ax− c 6 Duppδ (7)

Bx = d (8)

∑
i∈φ j

δi 6 #φ j −1 for j = 1, . . . ,m, (9)

where #φ j denotes the number of elements of the set φ j,

yields a solution of the ELCP and vice versa.

Remark 1.2 A sufficient condition for the surplus variables

of the inequalities of the ELCP to be bounded is that the

feasible set of the ELCP is bounded.

In general, upper bounds for the surplus variables over the

feasible set can be computed efficiently using a linear pro-

gramming (LP) problem:

(Dupp)ii = max
Ax−c>0

(Ax− c)i for i = 1, . . . , p .

If any of these LP problems yields an unbounded objective

function, then the ELCP does not have a bounded feasible

set and then the condition of Theorem 1.1 does not hold.

If we know upper bounds xupp and lower bounds xlow for

the components of x, e.g., as a consequence of physical or

other constraints or because of additional information that is

available, then we can even more efficiently compute upper

bounds for the surplus variables over the feasible set as

(Dupp)ii = (A+xupp −A−xlow − c)i for i = 1, . . . , p, (10)

with A+ and A− defined by (A+)i j = max(ai j,0) and

(A−)i j = max(−ai j,0) respectively (so A = A+−A−). ✸

2 State space identification of MPL DES from

input-output behavior

2.1 Problem statement

Suppose that for a given MPL DES of the form (1)–(2)

we have an input-output sequence {(uk,y(k)}
N
k=1, and that

we want to identify the system matrices A, B, and C from

this sequence. We make the standard assumption of system

identification that all modes of the system are observable

and that the input-output sequence is sufficiently rich to cap-

ture all the relevant information about the system (see also

[14]). For the sake of simplicity of notation we assume that

the given system is SISO. Note, however, that the extension

to the MIMO case is straightforward.



2.2 Solution

First, we suppose that the internal structure of the system

that we want to identify is known. In that case we know

which entries of the system matrices contain process and/or

transportation times and which entries are equal to ε (see,

e.g., [1] or Section 3 for an illustration). This implies that

both the size and the ε-structure3 of A, B and C are known.

Now we consider the following estimation model:

x̂(k) = Â⊗ x̂(k−1) ⊕ B̂⊗u(k) (11)

ŷ(k) = Ĉ⊗ x̂(k) (12)

where Â, B̂, Ĉ, x̂(k) and ŷ(k) are the estimates of respec-

tively A, B, C, x(k) and y(k). Furthermore, if — based on

physical constraints or insight, or additional information —

we know hard upper and lower bounds for (some of) the

entries of Â, B̂, Ĉ, or x̂(0), we may add the constraints

Amin 6 Â 6 Amax Bmin 6 B̂ 6 Bmax (13)

Cmin 6 Ĉ 6Cmax xmin(0)6 x̂(0)6 xmax(0) (14)

where unknown bounds correspond to −∞ and ∞ entries in

Amin, Bmin, Cmin, xmin(0) and Amax, Bmax, Cmax, xmax(0).

The ε-structure of the system matrices4 can be specified by

setting the corresponding entries of Amax, Bmax, Cmax (and

of Amin, Bmin, Cmin) equal to ε =−∞. Define

x̂tot =







x̂(0)
...

x̂(N)






, ŷtot =







ŷ(1)
...

ŷ(N)






, ytot =







y(1)
...

y(N)






.

Since we want to minimize the difference between the mea-

sured and the estimated output, we define the following

MPL state space identification problem to determine the op-

timal estimates of the system matrices:

min
Â,B̂,Ĉ,x̂tot,ŷtot

‖ŷtot − ytot‖
2
2

subject to (11)–(12) for k = 1, . . . ,N and (13)–(14).

Remark 2.1 A given input-output behavior of an MPL sys-

tem can be represented by several choices of the system ma-

trices A, B, C. This implies that the solution of the MPL

state space identification problem defined above will not be

unique since in this problem only the input-output behavior

is taken into account. A very important difference between

conventional linear systems and MPL systems is that for lin-

ear systems the set of all equivalent state space realizations

can be characterized via similarity transformations, whereas

this does not hold for MPL systems (see, e.g., [6]). Further-

more, to the authors’ best knowledge there are currently no

3The ε-structure of a matrix details which entries are equal to ε and

which entries are finite, without giving specific values for the latter ones.
4When solving the optimization problem that corresponds to the MPL

state space identification problem, the ε entries specified by the ε-structure

of the system matrices can be removed immediately since these entries do

not contribute to the left-hand side of (11)–(12).

analytic characterizations of the set of all equivalent state

space realizations of an MPL system.

In conventional system identification this uniqueness issue

is usually addressed by selecting a canonical form for the

state space model [11], or by using a projection in the pa-

rameter space [12]. In the MPL setting there are no canon-

ical forms due to the lack of a characterization of the set of

all equivalent state space realizations, and only few results

are available in connection with projections in the max-plus

algebra (see, e.g., [4]). Nevertheless, by imposing the ε-

structure of the system matrices we can decrease the degree

of non-uniqueness. Moreover, we often know bounds on

the entries of the system matrices based on physical insight

or additional information (cf. (13)–(14)). Furthermore, in

on-line adaptive applications we could add a term to the ob-

jective function that minimizes the deviation between the

current and the new estimates. ✸

Proposition 2.2 The constraints of the MPL state space

identification problem (i.e., (11)–(12) for k = 1, . . . ,N and

(13)–(14)) can be recast as an ELCP.

Proof: The proof is similar to the reasoning made in Sec-

tion 5.2 of [8]. Basically, the proof boils down to the fact

that for α,β ,γ ∈ R the constraint max(α,β ) = γ is equiva-

lent to the ELCP α 6 γ , β 6 γ , (γ −α)(γ −β ) = 0.

One approach for solving the MPL state space identifica-

tion problem consists in computing the parametrized solu-

tion set of the ELCP (cf. [5]) corresponding to (11)—(14)

and then optimizing the objective function over the param-

eters of this solution set. However, except for small-sized

problems the computational requirements of this approach

are too high. Therefore, we will use Theorem 1.1 to refor-

mulate the ELCP as a mixed integer feasibility problem and

combine that with the objective function to obtain a mixed

integer quadratic programming problem, for which recently

efficient solvers have been developed [2, 9].

In order to be able to apply Theorem 1.1 we have to show

that the surplus variables of the ELCP are bounded from

above over the feasible set. We will do this by showing that

the variables of the ELCP are bounded (cf. (10)). Note that

we only have to consider the non-ε entries of Â, B̂ and Ĉ

since the ε entries do not contribute to the expressions for

the entries of the state and output vector (cf. Footnote 4).

Since we assume that all relevant dynamics of the system

are captured by the given input-output sequence (i.e., there

are no unobservable modes), and since all finite entries of

the estimated system matrices should be nonnegative (due

to their physical interpretations as sums or maximums of

process times), it follows from (11)–(12) that

x̂(k)> x̂(k−1), x̂(k)> u(k), ŷ(k)> u(k) (15)

for k = 1, . . . ,N. In general, (13)–(14) do not define finite

upper and lower bounds for all finite entries of the system

matrices (recall that some entries of Amin, Bmin, Cmin, Amax,



Bmax, and Cmax may be infinite). However, since the finite

entries of the system matrices correspond to (nested) sums

and maxima of process times and transportation times (see

also Section 3), these entries are nonnegative. Furthermore,

if we define the maximum dwelling time in the system as

dmax = maxk=1,...,N(y(k)−u(k)), then

0 6 âiA jA , b̂iB jB , ĉiC jC 6 dmax

for all (iA, jA) ∈ If(A),(iB, jB) ∈ If(B),(iC, jC) ∈ If(C),
where If(A) = {(i, j) |ai, j 6= ε}. So all the finite entries of

Â, B̂ and Ĉ are bounded.

Since the maximum dwelling time is dmax, we have

ŷ(k)6 u(1)+ kdmax for k = 1, . . . ,N . (16)

In combination with (15) this implies that the entries of ŷtot

are also bounded from above and from below.

Since we assume that are no unobservable modes, and since

the maximum dwelling time in the system is dmax, we have5

x̂(k)6 u(1)+(k+n−1)dmax for k = 0, . . . ,N .

In general x(0) may contain ε-entries. However, if we re-

place these entries by u(1)− (N + 1)dmax then the input-

output behavior of the system does not change. Hence, the

entries of x̂(0) can also be bounded from below. In com-

bination with (15) this implies that x̂(k) is bounded from

below for k = 0,1, . . . ,N. Hence, x̂tot is bounded.

So, since all variables of the ELCP that corresponds to

the constraints of MPL state space identification problem

are bounded, the surplus variables of the ELCP are also

bounded (cf. Remark 1.2 and (10)). Hence, the ELCP can

be recast as a mixed integer feasibility problem. In combi-

nation with the quadratic objective function this results in a

mixed integer quadratic programming problem of the form

min
ẑ,δ

‖ŷtot − ytot‖
2
2

subject to Fẑ+Gδ 6 h and δ ∈ {0,1}q,

for appropriately defined matrices F , G and a vector h,

where the vector ẑ contains the (non-ε) entries of Â, B̂, Ĉ,

x̂tot, and ŷtot. This optimization problem can be solved us-

ing, e.g., a branch-and-bound algorithm [2, 9].

2.3 System matrices with unknown structure

If we do not know the system’s internal structure, we have

to determine a system order n̂ and adapt the lower bounds

derived above so that all entries of Â, B̂, Ĉ are finite. To

the authors’ best knowledge there currently exist no effi-

cient methods to determine a good estimate of the minimal

system order of an MPL DES from input-output data in the

5The extra factor (n−1)dmax with respect to (16) is introduced since in

general not every state is directly coupled to the output. However, since we

assume that there are no unobservable modes, the influence of each state

component can be noticed at the output after at most n− 1 event steps or

processing cycles.

case of noise or model structure mismatch. Therefore, we

first assume that a reasonable estimate of the system order

is available (e.g., based on physical insight or based on par-

tial knowledge about the system). If such an estimate is not

available, we can determine an upper bound for the system

order and then use a binary or enumerative search procedure

in combination with the above identification approach to ob-

tain a system order that yields the best trade-off between fit

of the output and size of the system matrices.

Similar to the reasoning made in Section 2.2 it can be shown

that in this case we can also use the transformation into a

mixed integer optimization problem to obtain an estimated

state space model of the given system.

Remark 2.3 In the preceding sections we have assumed

that the states could not measured (e.g., since not all in-

ternal starting and finishing times are monitored, measured

or communicated to the control center). However, if par-

tial (or even full) state measurements are available, they can

easily be incorporated into the MPL state space identifica-

tion problem by adding an extra term ‖x̂meas,tot − xmeas,tot‖
2

to the objective function, where xmeas,tot contains all mea-

sured state components in the event horizon [1,N] and is de-

fined similarly to ytot, and x̂meas,tot contains the correspond-

ing components of x̂tot. Note that we have x̂meas,tot = Dmx̂tot

for an appropriately defined “selector” matrix Dm that has

exactly one 1 entry on each row, and 0 entries elsewhere.

Hence, this augmented MPL state space identification prob-

lem can also be recast as a mixed integer quadratic program-

ming problem. ✸

2.4 An alternative approach without state estimates

If the state measurements are not available or not used, we

may as well eliminate the state estimates from (11)–(12).

This results in

ŷtot =











Ĉ

Ĉ⊗ Â
...

Ĉ⊗ Â⊗N











⊗ x̂(0)⊕ (17)











Ĉ⊗ B̂ ε . . . ε
Ĉ⊗ Â⊗ B̂ Ĉ⊗ B̂ . . . ε

...
...

. . .
...

Ĉ⊗ Â⊗N−1
⊗ B̂ Ĉ⊗ Â⊗N−2

⊗ B̂ . . . Ĉ⊗ B̂











⊗utot

where Â⊗k
= Â ⊗ Â ⊗ . . .⊗ Â (k times) denotes the kth

max-plus-algebraic matrix power of Â, ε is the max-plus-

algebraic zero matrix (i.e., (ε )i j = ε for all i, j), and utot =
[

uT (1) uT (2) . . . uT (N)
]T

.

Now we consider the following alternative MPL state space

identification problem:

min
Â,B̂,Ĉ,x̂(0),ŷtot

‖ŷtot − ytot‖
2
2

subject to (17) and (13)–(14).
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Figure 1: A simple manufacturing system.

The constraints of this problem can also be recast as an

ELCP, and it can thus also be solved using a mixed integer

quadratic programming method. The ELCP of the alterna-

tive MPL state space identification problem will have less

variables but more equations than the ELCP of the origi-

nal MPL state space identification problem. In general, it is

quite difficult to make hard claims which of the ELCPs can

be solved most efficiently. This is a topic for future research.

3 Worked example

Consider the production system of Figure 1. This manufac-

turing system consists of three processing units: P1, P2 and

P3, and works in batches (one batch for each finished prod-

uct). Raw material is fed to P1 and P2, processed and sent to

P3, where assembly takes place. Note that each input batch

of raw material is split into two parts: one part of the batch

goes to P1 and the other part goes to P2.

The processing times for P1, P2 and P3 are respectively d1,

d2 and d3 time units. We assume that it takes t1 time units

for the raw material to get from the input source to P1, and t2
time units for a finished product of P1 to get to P3. The other

transportation times are assumed to be negligible. At the

input of the system and between the processing units there

are buffers with a capacity that is large enough to ensure that

no buffer overflow occurs. A processing unit can only start

working on a new product if it has finished processing the

previous one. We assume that each processing unit starts

working as soon as all parts are available.

Now we write down the max-plus-algebraic state space

model of this DES. First, we determine x1(k), i.e., the time

instant at which processing unit P1 starts working for the

kth time. If we feed raw material to the system for the kth

time, then this raw material is available at the input of pro-

cessing unit P1 at time t = u(k)+ t1. However, P1 can only

start working on the new batch of raw material as soon as it

has finished processing the current, i.e. the (k−1)th, batch.

Since the processing time on P1 is d1 time units, the (k−1)th
intermediate product will leave P1 at time t = x1(k−1)+d1.

Since P1 starts working on a batch of raw material as soon

as the raw material is available and the current batch has left

the processing unit, this implies that we have

x1(k) = max ( x1(k−1)+d1, u(k)+ t1 ) .

Using a similar reasoning we find

2 4 6 8 10 12 14

0

50

100

150

200

k

y

ynom

u

ynom − y

Figure 2: The input u, the nominal output ynom, and the measured

output signal y used for the identification.

x2(k) = max ( x2(k−1)+d2, u(k))

x3(k) = max ( x1(k)+d1 + t2, x2(k)+d2, x3(k−1)+d3 )

= max ( x1(k−1)+2d1 + t2, x2(k−1)+2d2,

x3(k−1)+d3, u(k)+max(d1 + t1 + t2,d2))

y(k) = x3(k)+d3 .

If we rewrite the above evolution equations as an MPL state

space model of the form (1)–(2), we obtain

x(k) =





d1 ε ε
ε d2 ε

2d1 + t2 2d2 d3



⊗ x(k−1)⊕ (18)





t1
0

max(d1 + t1 + t2,d2)



⊗u(k)

y(k) =
[

ε ε d3

]

⊗ x(k) . (19)

Assume that the nominal values of the processing and trans-

portation times are given by d1 = 10, d2 = 11, d3 = 5, t1 = 1,

t2 = 1, and that the actual process and transportation times

are corrupted by zero-mean Gaussian noise with a standard

deviation of 1 for d1 and d2, 0.5 for d3, and 0.25 for t1 and

t2. Let x(0) =
[

0 6 35
]T

and6 N = 15. We have chosen

the following input signal:

{u(k)}N
k=1 = 10, 21, 29, 43, 65, 80, 89, 97, 109,

129, 148, 163, 173, 189, 201 .

The corresponding output signals for nominal and perturbed

processing and transportation times are plotted in Figure 2.

Now we use the transformation into mixed integer quadratic

programming problem to obtain estimates of the system ma-

trices. First, we explicitly impose the ε-structure of the sys-

tem matrices. This yields

6In practice, much higher values will be used for N, but in order not to

overload the plots, we have selected this value.
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Figure 3: The difference between the estimated and measured

output signals for structured identification, parameter

identification, and fully parameterized identification.

Âstr =





10.00 ε ε
ε 6.38 ε

16.98 19.93 1.55





, B̂str =





3.02

0.00

11.00





, (20)

Ĉstr =
[

ε ε 6.40
]

, x̂str(0) =





1.13

15.85

38.69





, (21)

with an error ‖ŷtot − ytot‖2 of 3.98. Note that the entries of

the system matrices given by (20)–(21) are not consistent

with the model (18)–(19) since, e.g., a32 6= 2a22 and a33 6=
c13. Using the identification method of this paper to directly

estimate the parameters of the model (18)–(19) yields

d̂1 = 9.28, d̂2 = 6.38, d̂3 = 1.80, t̂1 = 3.51, t̂2 = 2.83,

and x̂par(0) =
[

−5.14 27.62 43.04
]T

with an error of 4.23.

Note that the parameters values are not estimated accurately.

This is probably due to the fact that the parameters of the

model cannot be identified uniquely from the input-output

behavior only, and that we did not specify extra constraints

on the (approximate) range or the relative order of the pa-

rameters. This issue will be a topic for further research.

The fully parameterized state space identification results in

Âfull =





−12.21 −18.85 −19.55

13.89 5.98 −13.38

18.91 16.03 1.79





, B̂full =





4.29

−0.89

14.39





,

Ĉfull =
[

−12.21 0.32 2.94
]

, x̂full(0) =





−1.07

7.55

41.91





,

with an error of 3.89. Note that this realization has no phys-

ical meaning or any clear relation with the structure of the

system anymore.

4 Conclusions and further research

We have presented a method to identify max-plus-linear

state space models of discrete event systems from input-

output data. This method does not require measurements

of the state — although (partial) state measurements can

easily be taken into account, — and it works for both struc-

tured and fully parameterized state space models. In order

to solve optimization problem that corresponds to the max-

plus-linear identification problem we have transformed it

into a mixed integer quadratic programming problem.

Topics for future research include: development of more

efficient algorithms for max-plus-linear state space identifi-

cation, further investigation and comparison of the compu-

tational requirements of the ELCPs with and without state

estimates, and development of methods to obtain good esti-

mates for the system order based on input-output data.

References

[1] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat, Syn-

chronization and Linearity. Wiley, 1992.

[2] A. Bemporad and D. Mignone, “miqp.m: A Matlab func-

tion for solving Mixed Integer Quadratic Programs,” Tech. rep.

AUT00-22, Inst. für Automatik, ETHZ, Zürich, Switzerland, 2000.
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