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T.J.J. van den Boom a, B. Heidergott b, B. De Schutter a

aDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
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Abstract

Model predictive control (MPC) is a popular controller design technique in the process industry. Recently, MPC has been
extended to a class of discrete event systems that can be described by a model that is “linear” in the max-plus algebra. In this
context both the perturbations-free case and for the case with noise and/or modeling errors in a bounded or stochastic setting
have been considered. In each of these cases an optimization problem has to be solved on-line at each event step in order
to determine the MPC input. This paper considers a method to reduce the computational complexity of this optimization
problem, based on variability expansion. In particular, it is shown that the computational load is reduced if one decreases the
level of “randomness” in the system.

Key words: Discrete event dynamic system, model predictive control, stochastic disturbance, complexity, variability expansion.

1 Introduction

Model predictive control (MPC) [4,8] is a well-
established technology for the control of multivariable
systems in the presence of input, output and state con-
straints. Usually, MPC uses (non)linear discrete-time
models. However, the attractive features mentioned
above have led us to extend MPC to discrete event
systems (DES). The class of DES essentially consists
of man-made systems that contain a finite number of
resources (such as machines, communications channels,
or processors) that are shared by several users (such
as product types, information packets, or jobs) all of
which contribute to the achievement of some common
goal (the assembly of products, the end-to-end trans-
mission of a set of information packets, or a parallel
computation) [1]. In this paper we focus on the class
of DES with synchronization but no concurrency. Such
DES can be described by a model that is “linear” in the
max-plus algebra [1,2,7], and therefore they are called
max-plus-linear (MPL) DES.

⋆ This paper was not presented at any IFACmeeting. Corre-
sponding author T.J.J. van den Boom. Tel. +31-15-2784052.
Fax +31-15-2786679.

Email addresses: a.j.j.vandenboom@tudelft.nl
(T.J.J. van den Boom), bheidergott@feweb.vu.nl
(B. Heidergott), b@deschutter.info (B. De Schutter).

In [13] an MPC controller has been developed for the un-
certainMPLDES and there it was also shown that under
quite general conditions the resulting MPC optimization
problem is a convex optimization problem. However, for
many practical situations, the computational complex-
ity will increase significantly as the prediction horizon
and the system order increase.

In this paper, we will present a novel approach to the
approximate calculation of stochastic integrals, called
variability expansion [5]. Since variability expansion is
an analytical method and does not resort to simulation,
it is, in principle, possible to compute higher moments
of performance characteristics of stochastic systems. We
combine this general method with MPL systems, which
enables us to solve the MPC optimization problem for
MPL DES very efficiently. An extended version of this
paper, including additional proofs and examples can be
found at [14].

The paper is organized as follows. In Section 2 we in-
troduce max-plus algebra and stochastic MPL DES. In
Section 3 we give a short overview of the MPC algo-
rithm for MPL DES. Section 4 introduces the method of
variability expansion and describes how the complexity
of the MPC optimization problem for MPL DES can be
reduced significantly by using this method. Finally, Sec-
tion 5 gives a worked example and a comparison of com-
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putational performance for the new method and previ-
ous methods.

2 Stochastic max-plus-linear systems

In this paper we consider MPL DES that include
stochastic uncertainty (see also [13]). Define ε = −∞
and Rε = R ∪ {ε}, and let the system matrices of such
a system be given by A(k) ∈ R

nx×nx
ε , B(k) ∈ R

nx×nu
ε ,

C(k) ∈ R
ny×nx
ε ; then the system is described by a state

space model of the form

xi(k) = max
(

max
j=1,...,nx

(Aij(k) + xj(k−1)) ,

max
j=1,...,nu

(Bij(k) + uj(k))
)

, i = 1, . . . , nx, (1)

yℓ(k) = max
j=1,...,nx

(Cℓj(k) + xj(k)) , ℓ = 1, . . . , ny . (2)

The index k in (1)–(2) is called the event counter. The
state x(k) typically contains the time instants at which
the internal events occur for the kth time, the input
u(k) contains the time instants at which the input events
occur for the kth time, and the output y(k) contains the
time instants at which the output events occur for the
kth time.

Remark 1 Recurrence relations (1) and (2) can be writ-
ten in a concise way using max-plus-algebra [1,2,7]. To
see this, let x⊕ y = max(x, y) and x⊗ y = x+ y for
x, y ∈ Rε. For matrices A ∈ R

n×m
ε and B ∈ R

m×l
ε , their

⊗-product is defined by [A ⊗ B]ij =

m
⊕

k=1

Aik ⊗ Bkj =

maxk=1,...,m(Aik + Bkj). In the same vein, ⊕-addition
of matrices A ∈ R

n×m
ε and B ∈ R

n×m
ε is defined by

[A⊕B]ij = Aij ⊕Bij = max(Bij , Aij). With these def-
initions, the system equations (1) and (2) become

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k)

y(k) = C(k)⊗ x(k) .

The system equations become thus linear in the max-plus
algebra, and therefore the system is called a max-plus
linear system.

The entries of system matrices A(k), B(k) and C(k) are
uncertain due to modeling errors or disturbances. Usu-
ally fast changes in the system matrices will be consid-
ered as noise and disturbances, whereas slow changes or
permanent errors are considered as model mismatch. In
this paper both features will be treated within one sin-
gle framework. The uncertainty caused by disturbances
and errors in the estimation of physical variables, can
be gathered in the uncertainty vector e(k). In this paper
we assume that the uncertainty has stochastic proper-
ties. Hence, e(k) is a stochastic variable. We assume that

e(k) captures the complete event-varying aspect of the
system.

Now we will describe how the entries of e(k) enter the
system. Let Smpns be the set of max-plus-nonnegative-
scaling functions, i.e., functions f of the form f(z) =
maxi=1,...,m(µi+νi,1z1+ . . .+νi,nzn), with variable z ∈
R

n
ε and constants νi,j ∈ R

+ and µi ∈ R, where R+ is the
set of nonnegative real numbers. If we want to stress that
f is a function of z we will denote this by f ∈ Smpns(z).

Note that the system matrices of an MPL model usually
consist of sums or maximizations of internal process
times, transportation times, etc. (see, e.g., [1] or Sec-
tion 5). Since the entries of e(k) directly correspond to
the uncertainties in the duration times, and using the
fact that the set Smpns is closed under the operations
max, +, and scalar multiplication by a nonnegative
scalar [12], we know that the entries of the uncertain
system matrices belong to Smpns: A(k) ∈ Snx×nx

mpns (e(k)),

B(k) ∈ Snx×nu
mpns (e(k)), C(k) ∈ S

ny×nx
mpns (e(k)). System

(1)–(2) with such system matrices will be called a
stochastic MPL DES. Some results for the analysis of
stochastic MPL DES can be found in [10,11].

3 Model predictive control for stochastic MPL
systems

In [3,12,13] the MPC framework has been extended to
MPL models (1)–(2) as follows. Just as in conventional
MPC [4,8] we define at each event step k a cost criterion
J(k) in the event period [k, k +Np − 1]:

J(k) =

Np−1
∑

j=0

ny
∑

i=1

IE[ηi(k+j)]−λ

Np−1
∑

j=0

nu
∑

ℓ=1

uℓ(k+j) (3)

where Np is the prediction horizon, λ is a weighting
parameter, and where IE[ηi(k)] denotes the expected
value of the ith “tardiness” ηi(k), given by ηi(k) =
max( yi(k)−ri(k) , 0 ), in which r(k) is the due date for
output signal y(k). Note that this choice of J(k) favors
on-time delivery and penalizes late delivery.

Define the vectors

ũ(k) = [ uT (k) · · · uT (k+Np−1) ]T ,
r̃(k) = [ rT (k) · · · rT (k+Np−1) ]T ,
ỹ(k) = [ yT (k) · · · yT (k+Np−1) ]T ,
ẽ(k) = [ eT (k) · · · eT (k+Np−1) ]T .

The aim is now to compute an optimal input sequence
u(k), . . . , u(k +Np − 1) that minimizes J(k) subject to
some linear constraints on the inputs and outputs (e.g.,
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minimal and maximal input or output rates 1 , hard due
dates) of the form [3]

Aconstr(k)ũ(k) +Bconstr(k)IE[ỹ(k)] ≤ cconstr(k) . (4)

As the u(k)’s correspond to consecutive event occurrence
times, we have to add the condition

∆u(k + j) = u(k + j)− u(k + j − 1) ≥ 0

for j = 0, . . . , Np − 1. (5)

Furthermore, in order to reduce the number of decision
variables and the corresponding computational com-
plexity we introduce a control horizon Nc (≤ Np) and
we impose the additional condition that the input rate
should be constant from event step k +Nc − 1 on:

∆u(k+j)=∆u(k+Nc−1), for j = Nc, . . . , Np−1. (6)

MPC uses a receding horizon principle. This means
that after computation of the optimal control sequence
u(k), . . . , u(k + Nc − 1), only the first control sample
u(k) will be implemented, subsequently the horizon is
shifted one event step, the state and/or model is up-
dated with new information of the measurements, and
the optimization is restarted.

The MPL-MPC problem for event step k can be defined
as:

min
ũ(k)

Jout(k) + λJin(k) s. t. (1), (2), (4), (5) and (6).

In order to compute the optimal MPC input signal, we
need the expected value of the signals ηi(k+j) and yi(k+
j). We will now consider the computation of IE[ηi(k+j)]
and IE[yi(k + j)]. In [13] it is shown that ηi(k + j) and
yi(k + j) are max-plus-nonnegative-scaling functions of

the variable w(k) =
[

−r̃T (k) xT (k − 1) ũT (k)
]T

.

Proposition 2 [13] Consider a signal v(k) that is a
max-plus-nonnegative-scaling function of w(k) and ẽ(k):

v(k) = max
j=1,...,nv

(

αj + βT
j w(k) + γT

j ẽ(k)
)

, (7)

where αj ∈ Rε, βj ∈ (R+)nw , γj ∈ (R+)nẽ , and ẽ(k) ∈
R

nẽ is a stochastic variable with probability density func-
tion p. If we define the sets Φj(w(k)), j = 1, . . . , nv such
that

∀ẽ(k) ∈ Φj(w(k)) : v(k) = αj + βT
j w(k) + γT

j ẽ(k)

1 For a manufacturing system the input (output) rate corre-
sponds to the rate at which raw material/external resources
(finished products) are fed to (leave) the system.

and
⋃nv

j=1 Φj(w(k)) = R
nẽ , then the expected value of

v(k) is given by

IE[v(k)] =

nv
∑

j=1

∫

. . .

∫

ẽ∈Φj(w)

(

αj+βT
j w(k)+γT

j ẽ
)

p(ẽ) dẽ

where dẽ = dẽ1 dẽ2 . . . dẽnẽ
. Furthermore, the function

IE[v(k)] is convex in w(k) and a subgradient gv(w(k)) of
IE[v(k)] is given by

gv(w(k)) =

nv
∑

ℓ=1

βT
ℓ

∫

ẽ∈Φℓ(w(k))

· · ·

∫

p(ẽ) dẽ .

Now consider the MPL-MPC problem for event step k.
First note that ηi(k + j) and yi(k + j) depend on ẽ(k)
and can both be written as a function v(ẽ(k)) of the form
(7), and that, because of Proposition 2, IE[ηi(k+j)] and
IE[y(k+ j)] are convex in w(k). This means that Jout(k)
and J(k) are convex in ũ(k). Hence

Lemma 3 If the linear constraints are monotonically
nondecreasing as a function of IE[ỹ(k)] (in other words,
if [Bc]ij ≥ 0 for all i, j), constraint (4) becomes convex
in ũ(k).

Note that convex optimization problems can be solved
using reliable and efficient optimization algorithms,
based on, e.g., interior point methods [9,15].

4 Variability expansion

The algorithm described in the previous section has a
complexity that is growing fast with an increasing num-
ber of stochastic variables nẽ due to the numerical inte-
gration that is required when computing the expected
values of ηi(k + j) and yi(k + j). In this section we
will approximate the expected value of v(ẽ(k)) using the
method of variability expansion. To this end, we assume
that the entries of ẽ(k) are independent and identically
distributed (i.i.d) and we introduce an artificial param-
eter θ. We replace with probability 1− θ the ith entry of
random vector ẽ(k) by its mean. The result is denoted
by ẽθ(k). The parameter θ allows controlling the level of
randomness in the system, and letting θ go from 0 to 1
increases the level of stochasticity in the system.

The main idea of variability expansion is the following.
Considering IE[v(ẽθ(k))] as a function in θ, it can be de-
veloped into a Taylor series in θ that converges to the
true function on R; for a proof we refer to the Appendix.
Note that only θ ∈ [0, 1] has an interpretation in terms
of our model. In particular, if we denote the value of
dm/dθm IE[v(ẽθ(k))] for θ = 0 by dm/dθm IE[v(ẽ0(k))],
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then IE[v(ẽ(k))] = IE[v(ẽ1(k))], the “true” expected
value of v(ẽ(k)), is given by

IE[v(ẽ(k))] =

M
∑

m=0

1

m!

dm

dθm
IE[v(ẽ0(k))] +RM (k) ,

where, for M < nẽ,

RM ≤
1

(M + 1)!
sup

θ∈[0,1]

∣

∣

∣

∣

dM+1

dθM+1
IE[v(ẽ0(k))]

∣

∣

∣

∣

and RM = 0 otherwise. A closed-form expression for
themth order derivative dm/dθmIE[v(ẽ0(k))] can be ob-
tained as follows. Set for 0 ≤ m ≤ nẽ and i1 < i2 <
. . . < im:

V (i1, i2, . . . , im) = IE[v(ẽθ(k, i1, i2, . . . , im))]

where [ẽθ(k, i1, i2, . . . , im)]j equals the mean value of the
jth element of ẽ0 for j 6∈ {i1, i2, . . . , im} and [ẽ(k)]j
for j ∈ {i1, i2, . . . , im}, and where V (0) = v(ẽ0(k)).
This means that V (i1, i2, . . . , im) is the estimation of
v in the case where only the elements [ẽ(k)]j for j ∈
{i1, i2, . . . , im} are stochastic, and the elements [ẽ(k)]j
for j 6∈ {i1, i2, . . . , im} are fixed to their mean.

For m ≤ nẽ, set

V(m) =

nẽ−m
∑

i1=1

nẽ−m+1
∑

i2=i1+1

· · ·

nẽ
∑

im=im−1+1

V (i1, i2, . . . , im) .

The term V(m) yields the total effect of making m out
of nẽ variables stochastic.

Lemma 4 Provided that ẽ(k) has a bounded support, the
nth order derivative of IE[v(ẽθ(k))] with respect to θ is
for any θ ∈ R given by

dn

dθn
IE[v(ẽ(k))] = n!

n
∑

l=0

(

nẽ − l

n− l

)

(−1)n−lV(l) ,

for n ≤ nẽ, and zero otherwise.

Proof: We give a sketch of the proof; for details see [6].
Note that ẽ(k) can be written as f(X1, . . . , Xnẽ

) for
somemeasurable mapping f and i.i.d. random noise vari-
ables Xi. We formalize variability expansion as follows.
Choose l ∈ {0, 1}nẽ , let Xi following the “true” distri-
bution if li = 1 and let Xi = a (with probability one)
if li = 0. This is easily achieved be replacing those Xi

in f for which li = 1 by a . The thus modified map-
ping f is denoted by fl. Next, let the elements of l be
independently distributed with P(li = 1) = 1 − θ and

P(li = 0) = θ, where P(·) denotes probability. It then
holds that

IE[v(ẽθ(k))] = IE[f(X1(θ), . . . , Xnẽ
(θ))]

=
∑

l∈{0,1}nẽ

IE[fl(X1, . . . , Xnẽ
)] (1−θ)

∑

nẽ

i=1
li θnẽ−

∑

nẽ

i=1
li .

Note that the sum on the right-hand side of the above
equation is finite and we may interchange the order of
higher-order differentiation and summation. Since the
distribution of l is a polynomial in θ of order nẽ, it is
infinitely differentiable and its derivatives of order nẽ+1
and higher vanish. Taking (higher-order) derivatives and
regrouping the positive and negative parts, proves the
claim. �

By Lemma 4, IE[v(ẽθ(k))] is infinitely many times dif-
ferentiable with respect to θ. Moreover, the derivatives
vanish for sufficiently high order, which implies that
IE[v(ẽθ(k))] as a function of θ can be represented on
R by its Taylor series developed at θ = 0. This train
of thoughts leads to the following approximation for
IE[v(ẽ(k))].

IE[v(ẽ(k))] =

M
∑

l=0

(

M
∑

n=l

(

nẽ−l

n−l

)

(−1)n−l

)

V(l) +RM+1

=

M
∑

l=0

cMl V(l) +RM+1 .

We summarize our analysis in the following theorem.

Theorem 5 Let ẽ(k) has bounded support. For M ∈ N,
the Taylor polynomial for IE[v(ẽ(k))] of degreeM is given
by

IE[v(ẽ(k))] =
M
∑

l=0

cMl V(l) +RM (k) ,

with RM (k) = 0 for M ≥ ñẽ.

By Theorem 5 it holds that

IE[v(ẽ(k))]≈

M
∑

l=0

cMl V(l) . (8)

The subgradient ∇ũIE[v(ẽ(k))] can be computed using
the same weighted summation. For example, the approx-
imate subgradient for M ≤ nẽ becomes:

∇ũIE[v(ẽ(k))]≈
h
∑

l=0

cMl ∇ũV(l) .

The values of V and ∇ũV can be computed using
Proposition 2. Because of the dramatic reduction in
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number of stochastic variables, these values are com-
puted much faster than a full estimation of v(ẽ(k)) and
∇ũIE[v(ẽ(k))].

5 Example: A production system

Consider the production system in Figure 1. This sys-
tem consists of two machines M1 and M2 and operates
in batches. The raw material is fed to machine M1

M1 M2

d1(k) d2(k)

✲ ✲ ✲u(k) y(k)
x1(k) x2(k)

t1(k) t2(k) t3(k)

Fig. 1. A production system.

where preprocessing is done. Afterwards the intermedi-
ate product is fed to machine M2 and finally leaves the
system. We assume that each machine starts working as
soon as possible on each batch, i.e., as soon as the raw
material or the required intermediate product is avail-
able, and as soon as the machine is idle (i.e., the previ-
ous batch of products has been processed and has left
the machine).

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

−0.4

−0.5

−0.6

−0.7
0 5 1510 20 25 30 35 40

noiselevel=0.3

M=0
M=1
M=2
M=3
M=4

k −→

y
(k
)−

r
(k
)
−
→

Fig. 2. The due date error y(k)−r(k) for MPC with an Mth
order approximation, M ∈ {0, 1, 2, 3, 4} and a noise level
α = 0.3.

Define u(k) as the time instant at which the system is fed
for the kth time, y(k) as the time instant at which the
kth product leaves the system, xi(k) as the time instant
at which machine i starts for the kth time, tj(k) as the
transportation time on link j for the kth batch and di(k)
as the processing time on machine i for the kth batch.
We obtain (1)-(2) where the system matrices A, B and
C are given by [13]

A(k) =

[

d1(k−1) ε

d1(k−1) + d1(k) + t2(k) d2(k−1)

]

,

−5

−4

−3

−2

−1

0

1

2

3

noiselevel=3.5

4035302520151050

M=0
M=1
M=2
M=3
M=4

k −→

y
(k
)−

r
(k
)
−
→

Fig. 3. The due date error y(k)−r(k) for MPC with an Mth
order approximation, M ∈ {0, 1, 2, 3, 4} and a noise level
α = 3.5.

B(k) =

[

t1(k)

d1(k) + t1(k) + t2(k)

]

,

C(k) =
[

ε d2(k) + t3(k)
]

.

Let us now solve the stochastic MPC problem for this
perturbed MPL system. Assume that two of the trans-
portation times are constant: t1(k) = 0, t3(k) = 0,
and that transportation time t2(k) and the production
times d1(k) and d2(k) are corrupted by noise: d1(k) =
5 + α 0.2 e1(k), d2(k) = 1 + α 0.5 e2(k), t2(k) = 1 +
α 0.6 e3(k), whereα is a nonnegative constant and e(k) =
[

e1(k) e2(k) e3(k)
]T

is a random signal with probabil-

ity density function

p(e) =











1/8 if max
i=1,2,3

(|ei|) ≤ 1,

0 if max
i=1,2,3

(|ei|) > 1.
(9)

Assume that the initial state is equal to x(0) = [ 0 6 ]T ,
the due date signal is given by r(k) = 4 + 6 · k and the
cost criterion (3) is optimized for Np = 3, Nc = 2 and
λ = 0.1. With the choice of the cost criterion (3), we
can rewrite the stochastic MPC problem into a convex
optimization problem. For the computation of the cost
criterion we use an Mth order Taylor approximation
with M = 0, 1, 2, 3, 4.

Next we apply MPC for the Mth order approximation
for M = 0, 1, 2, 3, 4. The optimal input sequence is com-
puted for k = 1, . . . , 40, and for each k, the first element
u(k) of the sequence ũ(k) is applied to the perturbed
system (due to the receding horizon strategy). We per-
form two experiments with different noise levels α = 0.3
and α = 3.5. In the experiments, the true system is sim-
ulated for a random sequence e(k), k = 1, . . . , 40, satis-
fying the probability density function (9). The due date

5



error y(k)−r(k) for MPC is given in Figure 2 for a noise
level α = 0.3, and in Figure 3 for a noise level α = 3.5.
The 0th order approximation is in fact equal to the case
where no disturbance is taken into account. We see that
for M = 0 the scheme leads to a frequent violation of
the due dates (i.e. the difference signal y(k)−r(k) is fre-
quently positive). We see that for increasing approxima-
tion orderM the due date error decreases and y(k)−r(k)
is below zero most of the time (which means that our
product is delivered in time). Furthermore, the approx-
imation seems to converge for increasing M .

M = 0 M = 1 M = 2 M = 3 M = 4

CPU time 1 16.5 470 3810 34900

Table 1
(Scaled) CPU times for different levels in approximation

In Table 1 the (scaled) CPU times are given for the
computation of the cost criterion and its subgradient
for M ∈ {0, 1, 2, 3, 4}. From Table 1 we see that com-
putation time grows dramatically with increasing M .
Depending on the application and the available compu-
tation interval, we can choose the level of approxima-
tion. In general, the above trade-off will give us the best
possible approximation of the optimal solution, given
the constraints in computation time. For this system
M = 2 or M = 3 is probably sufficient for practical use.

6 Discussion

We have discussed complexity reduction in MPC for
max-plus linear discrete event systems with stochastic
uncertainties. From the MPC framework, a convex op-
timization problem results if the constraints are a non-
decreasing function of the output. With an increasing
number of stochastic variables, the computational com-
plexity of the optimization problem increases dramati-
cally due to the numerical integrations required to eval-
uate the objective function. To tackle this increase of
complexity, we use the method of variability expansion.
The key idea of this method is to introduce a parameter
θ that controls the level of stochasticity in the system.
In this paper we have derived explicit expressions for
the coefficients in the expansion (and we have provided
the proofs that were lacking in [5]). Based on a Taylor
expansion in the parameter θ, good approximations for
the expectations of the cost criterion and the constraints
can be computed, which leads to a significant reduction
of the computational complexity of our approach. From
the example it becomes clear that if we do not take the
stochastic perturbation into account (the case that the
approximation order is M = 0), the due-date error will
often be positive, which means for a production system
that the products are finished too late. Even for small
M the due-date error is reduced dramatically, and the
system can deliver products in time.
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