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Abstract: This paper described a prediction system called BSES (Boss Scenario
Evaluation System), which can evaluate control scenarios in real time, predicting
their effects in terms of various measures of effectiveness. The system is case-based,
i.e. it uses either synthetic or real-life examples of the effect of control scenarios
under different circumstances. It determines the similarity of the current situation
to different examples in the case-base using fuzzy logic, and uses agent-technology
to predict the effects of the different measures for small sub-networks and to
combine these predictions afterwards. The test results illustrate the workings of
the system, and show that the system can provide the operator with real-time
predictions. It is shown that the method is applicable to generalise the data it
uses.

Keywords: Decision Support Systems, Dynamic Traffic Management, Fuzzy
Logic, Traffic Control, Traffic Prediction.

1. INTRODUCTION

Dynamic Traffic Management (DTM) is moving
into a new era. Contemporary DTM focuses on the
integrated (opposed to isolated) and coordinated
(combination of different measures) deployment
of measures, anticipating on future changes in
traffic conditions. Controlling and guiding traffic
flows are the core tasks of the Regional Traffic
Management Centres (RTMC). In the RTMC,
traffic operators decide when and which DTM
measures are to be deployed in case of recurrent
and non-recurrent conditions. These decisions are
based on information from available measurement
systems, pertaining to the current state of the
network. It turns out that the operators require
support in order to come up with optimal control

decisions, mainly due to the fact that prediction
the effect of deploying different combinations of
control measures to different parts of the network
is very important, but also a very difficult task,
especially (but not only!) under non-recurrent
conditions such as incidents and special events.

This is why the Traffic Research Centre is de-
veloping a Decision Support System (DSS) called
BOSS. In broad terms, the objective of BOSS is to
provide the operators with conditional predictions
on the future state of the traffic network under
their supervision, given the current state of the
network and conditional on the candidate control
scenarios. The operator can use these predictions
to efficiently intervene at the network level by



deciding which control scenario is to be used. At
the present time, two systems are being developed:

(1) BOSS on-line (implemented in RTMC, uses
real-time traffic data to provide decision sup-
port to the network operator), and;

(2) BOSS off-line (used by traffic engineers to
prepare candidate control scenarios, used by
BOSS on-line).

BOSS uses traffic predictions of 1 hour ahead. The
system will become operational at the end of 2003
in the RTMC De Wijde Blik.

Given the complexity of the networks to be con-
trolled as well as the large number of control
scenarios that may be used, using traffic flow
models in the on-line simulation of these con-
trol scenarios will not be feasible due to limited
computational resources. This is why on behalf
of the AVV Transport Research Centre, Ministry
of Transport, Delft University of Technology has
developed an alternative method for the on-line
evaluation of these control scenarios. The method
that has been developed is referred to as Fuzzy
Multi-Agent Case-Base Reasoning (FMA-CBR).
The system is based on generalising examples (so-
called cases) that describe the effects of deploying
control measures under specific recurrent or non-
recurrent conditions. These cases may either be
represented by real data or synthetic data (from
simulation). The latter option was chosen here,
due to the limited data availability at the time of
writing. It is believed that the system will perform
satisfactory with real-data as well. The resulting
prediction method is called BSES (BOSS Scenario
Evaluation System).

2. DECISION SUPPORT FOR DTM

In The Netherlands, planning and instalment of
measures aiming to solve recurrent local and
network problems are designed according to the
guidelines provided in the Architecture for Traffic
Management. The framework prescribes how pol-
icy related issues are translated into a so-called
frame-of-reference, describing the desired traffic
state (in terms of average speeds, queues, waiting
times, etc.). The objective of operational DTM is
to control the system towards this desired state,
considering weighting factors indicating which
parts of the network are to be prioritised, or if
on certain parts of the network, congestion would
be acceptable to the policy-makers.

2.1 Operator tasks

The RTMC operates in a multi-level control
framework: at the lowest level, we have semi-
autonomous local traffic controllers. An active

traffic light or metering installation, operates us-
ing only local traffic conditions. At a higher level
the operation of several local traffic controllers is
coordinated and synchronised by the supervisory
operators in the RTMCs.

The traffic operators in RTMCs have a variety of
task, amongst which are

(1) Monitoring functioning subsystems /measures;
(2) Monitoring the state of the network, recog-

nising irregularities and other problems, and
diagnosing their causes;

(3) Setting up candidate solution scenarios to
solve identified problems, choosing scenario,
and implementing it in practise;

(4) Monitoring resulting developments in the
system;

(5) Informing other actors.

Especially the state monitoring, prediction and
control tasks are complicated. This is caused by
among other things the following issues:

• Data interpretation problems caused by the
large amount information received by the
operator

• Lack of insight into the network dynamics,
in particular under non-recurrent circum-
stances

• Diversity and complex interactions between
the measures

As a result of these complications, expert knowl-
edge and experience are often not sufficient to
adequately determine the cause of the problem at
hand, or to determine the most efficient control
scenario. This is why decision support is needed.

2.2 Tasks of a Decision Support System

The tasks of a Decision Support System (DSS)
are:

(1) Identification, consisting of monitoring (au-
tomatic collecting and summarising data
from the monitoring system), and diagnosis
(identification of the cause of the problem,
given the data collected during monitoring).

(2) Prediction, i.e. conditionally forecasting the
traffic conditions in the network, given pre-
vailing traffic conditions, the predicted traffic
demands, and the candidate control scenar-
ios.

(3) Providing advise, i.e. presenting to the op-
erator the control scenario that yields the
optimal predicted traffic conditions, as deter-
mined by comparing the predicted situation
with the frame of reference using weight fac-
tors.

The remainder of the paper focuses on the support
of prediction and advise tasks.



3. STATE-OF-THE-ART

Several authors have described decision support
systems for traffic management, such as FRED
(Freeway Real-Time Expert System Demonstra-
tion) (Ritchie, 1990; Ritchie and Prosser, 1991;
Zhang and Ritchie, 1994), or the Santa Monica
Smart Corridor Demonstration Project (Karimi
and Gupta, 1993; Roseman and Tvedten, 1997).
Fuzzy decision support systems for traffic con-
trol have been developed in (Cuena et al., 1995;
Krause and von Altrock, 1997; Molina et al.,
1998). The TRYS system described in (Cuena et
al., 1995; Molina et al., 1998) is an agent-based
system for urban motorway control. The network
is divided in overlapping regions and to each
region an agent is assigned. These agents have
to detect and diagnose traffic problems in their
regions and subsequently suggest possible control
measures to a higher-level coordinator, taking care
of negotiations, and deciding which action will be
taken. The decision process in the TRYS system
is based on knowledge frames, and some of these
frames use fuzzy logic. The paper (Krause and
von Altrock, 1997) describes a fuzzy logic control
architecture that can be applied in existing traffic
control systems on a multi-lane motorway with
VMS’s. This system uses fuzzy logic to incorpo-
rate the experience of human traffic operators.

The main aim of the system presented here is to
make the process of on-line, real-time evaluation
and selection of the traffic management measures
more efficient. To this end, fuzzy case-based in-
terpolation was used to evaluate the effects of
traffic control measures. In that way, a large set
of possible traffic control measures for a given
traffic situation can be rapidly evaluated, and
the best control scenarios can then be simulated
in more detail using microscopic or macroscopic
traffic simulation.

3.1 Case-based reasoning

A common approach to decision support is so-
called Case-Based Reasoning (CBR). Case-based
reasoning is the process of solving new problems
based on the solutions of similar past problems.
The main characteristics of CBR are (Aamodt and
Plaza, 1994):

• Actual knowledge describing what has hap-
pened in the past (domain knowledge) can be
used directly.

• After implementing the control scenario, the
resulting situation can be added to the case-
base (continuous step-wise learning).

Case-based reasoning is a four-step process:

(1) Retrieve (retrieve cases from memory that
are relevant to solving it)

(2) Reuse (map the solution from the previous
case to the target problem, for instance using
fuzzy reasoning)

(3) Revise (test solution and, if necessary, revise)
(4) Retain (learning, i.e. store resulting experi-

ence as a new case in memory)

CBR starts with a set of cases or training exam-
ples; it forms generalisations of these examples,
albeit implicit ones, by identifying commonalities
between a retrieved case and the target problem.

3.2 Case-base size and approach motivation

The advantages of using a case-based approach
are clear. However, given the high-dimensionality
of the prediction problem addressed here, setting
up a case-base that has sufficient coverage is
unfeasible. In illustration, the conditions in a
network are typically described by the period of
the day, densities of its links, traffic demands on
the network boundaries, control measures that
have been deployed, and the incident status. Using
these to describe the conditions on a 25 link
network would yield a case-base with a magnitude
in the order of 1024. Clearly, it is impossible
to collect and story such a number of cases.
Even if the number of cases can be reduced, by
considering less links, or applying some other form
of aggregations, the standard case-based approach
will thus yield considerable problems with respect
to the high number of cases (maintenance when
network is changed, ability to upgrade to larger
networks, etc.).

4. FMA-CBR APPROACH TO SCENARIO
EVALUATION

For the problem at hand, a case (either simu-
lated or measured on a real network) contains
the following information: description of the sit-
uation, including both the state in the network
at the initial time (average densities on a set
of network links referred to as subsubnetworks),
and the conditions at the boundary (inflows and
outflow restrictions) of the network during the
considered time period; the control scenario that
was used during the period, and finally the result
of applying the control scenario in terms of traffic
conditions (average flows, densities, speeds, etc.)
and criteria (travel times, fuel consumption).

To resolve the computational /memory issues de-
scribed in the previous section, as well as to keep
maintenance of the system possible, two aspects
are introduced into the CBR-framework. For one,
fuzzy logic is used to combine different cases in



the case-base (F-CBR: Fuzzy Case-Based Reason-
ing). By doing so, a precise match between the
current situation in the network and the exam-
ple situations in the cases is not required. This
approach has been successfully applied to small-
scale networks (Hegyi et al., 2001). For larger
networks, the dimensionality of the vector describ-
ing the situation in the network yields too many
combinations that need to be stored in the case-
base. Secondly, the network to be controlled is
divided in n partially independent subnetworks
for which the aforementioned F-CBR approach
can be applied. For each subnetwork j, a case-
base is established. Except for the situation in
the subnetworks itself (the state, described by
prevailing and future densities), also the outflows
to the other subnetworks are predicted using F-
CBR. The n subnetworks are of course interde-
pendent: traffic conditions in subnetwork j will
be dependent on the outflows from subnetworks
j′ 6= j. In turn, the traffic conditions in subnet-
works j′ may be dependent on the outflows from
subnetwork j. To attain consistency between the
predicted traffic conditions and the subnetwork
outflows, prediction of subnetwork conditions are
iterated until a situation results in which all flows
are consistent with each other.

In the remainder, we will describe the case-base
for a single subnetwork j. Next, the fuzzy case-
base reasoning approach predicting the subnet-
works’ traffic conditions will be described, fol-
lowed by the iterative approach applied to assure
consistency between the inter-subnetwork flows.
Finally, we will discuss the approach to determine
the network performance.

4.1 Specification of cases for a subnetwork

It was mentioned that for each of the subnetworks
j = 1, . . . , n case-bases are determined. These
case-bases contain specific situations that have
occurred in the subnetwork, and describe the
relation between the input of the subnetwork and
the output of the subnetwork for these situations.
These ‘situations’ are determined either from real-
data or from simulations pertaining to the entire
network.

Let Tpred denote the prediction horizon. A case for
subnetwork j is described by the following input
characteristics x:

• period of the day (morning, evening, off-
peak)

• current state (i.e. average densities) on all
subsubnetworks K = 1, . . . ,Kj of subnet-
work j at time t

• average external traffic demands (traffic flow-
ing into network) and internal traffic de-

mands (traffic flowing from other subnet-
works j′ to subnetwork j) during [t, t+Tpred)

• average external supply restrictions (for traf-
fic flowing out of network) and internal sup-
ply restrictions (for traffic flowing from sub-
network j to other subnetworks j′) during
[t, t+ Tpred)

• local measures deployed in current subnet-
work j (ramp-metering, speed-limit control)
and global measurements deployed in other
network parts (route information) during
[t, t+ Tpred)

• time-average incident conditions in subnet-
work (location, duration, severity) during
[t, t+ Tpred)

and output characteristics y:

• traffic conditions in subnetwork and in par-
ticular on boundaries (outflows, inflow re-
strictions) during [t, t+ Tpred)

• average performance expressed via Measures-
of-Effectiveness (e.g. queue lengths, travel
times, delay times, etc.) during [t, t+ Tpred)

The case base for subnetwork j consist of cases
i = 1, . . . ,mj that link the input x(j) for sub-
network j to the output y(j) from subnetwork j.
These cases can be written as rules Ri, which look
like

IF period = t̃i AND currstate = r̃i AND
demand = d̃i AND supplyrestr = s̃i AND
controlscenario = c̃i AND incidentscenario =
ĩi
THEN outflowspred = Qi AND inflowrestr-
pred = Si AND performance = Pi

for i = 1, . . . ,mj . We have used the tilde-notation
to show that the elements in the antecedent part
of the rule are in fact fuzzy numbers, while the el-
ements of the consequent part are crisp. The fuzzy
numbers (period, densities describing the current
state, demands, etc.) are determined based on
the (crisp) examples in the case-base. These are
fuzzified using either bell-shaped or triangular
membership functions, the centre of which lie at
the crisp values that describe a case. In illustra-
tion, case (or rule) i = 2 may be represented
by a time-averaged density of 30 veh/km/lane
on subsubnetwork j1 and of 20 veh/km/lane of
subsubnetwork j2, and the average external traffic
demand of 3000 veh/h flowing into the subnetwork
during a specific time period. These values will
then represent the centres of the bell-shaped or
triangular membership functions used to repre-
sent the current state and the demand. The width
of the membership functions is chosen relative to
the domain of the respective variable, and can be
specified by the end-user.



4.2 Fuzzy Case-Base Reasoning to determining
predictions for a subnetwork

To determine which cases correspond best to
the current situation, and to combine different
cases in order to provide a prediction of the
traffic conditions and performance indicators for
subnetwork j, fuzzy inference is used to describe
the similarity between the current state (period,
state, demand, supply restrictions) and the fuzzy
antecedent part of case i, which can be reflected
by rules as was shown in the previous section. For
each subnetwork j, this entails:

• Determining similarity of current situation
with each of the cases i in the case-base and

• Combining the consequences of the cases
using these similarities to determine total
prediction.

For each case i, the similarity (or degree of mem-
bership) with the current situation (current pe-
riod, state, demand, etc.) in subnetwork j is de-
termined by considering the mean membership of
the elements of the antecedent part of the rule,
i.e.

µi(x) =
1

Nj

Nj∑

l=1

µi,l(xl) , (1)

where Nj denotes the number of elements in the
antecedent part of rule i for subnetwork j. In other
words, the mean fuzzy membership was used to
quantify the fuzzy ‘AND’ operator used in the
rule-representation shown in the previous section.

When µi(x) has been determined for all cases i,
the prediction y = (Q,S, P ) for the conditions
in subnetwork j is determined by taking the
weighted sum of the consequent part of all rules
i, using µi(x) as weights, i.e.

y =

mj∑

i=1

µi(x)yi

mj∑

i=1

µi(x)

, (2)

where yi = (Qi, Si, Pi) denotes the crisp conse-
quent part of rule i (i.e. the output flows, inflow
restrictions, and the performance);mj denotes the
number of cases in the case-base of subnetwork j.
In turn, this operator describes the fuzzy ‘OR’
operator, used to aggregate consequences of the
specific prediction rules.

The approach will yield a conditional prediction
of the output (outflow and performance) of sub-
network j. The prediction is conditional, since
part of the state x (and thus also the prediction)
depends on the endogenous demands from other
subnetworks j′ as well as the supply restrictions
limiting the flows to these subnetworks j′.

To determine the cases for subnetwork j, real life
measurements can be used where traffic demands
and traffic conditions are monitored using for
instance inductive loops. The case-base used in
the prototype application have been determined
using simulation software. Using this software,
network traffic conditions for the entire network
(so not just the subnetwork) where determined
using various prespecified input and control set-
tings. For each subnetwork j, the traffic state was
determined from the simulation results.

4.3 Iterative approach for finding consistent solution

For each subnetwork, the approach discussed in
the previous section computes among other things
the conditional outflow and inflow restrictions.
These predictions are conditioned on the internal
traffic demands and supply restrictions for the
other subnetworks. In turn, these may depend on
the outflow and inflow restrictions of the current
network. In the end, the solution is sought in
which the internal traffic demands and the supply
restrictions are consistent. To solve this fixed-
point problem, an iterative scheme was developed.
Without formally deriving scheme stability cri-
teria, it turns out that in practice the scheme
converges within only a few iterations (less than
10).

4.4 Predicting network performance

Predicting the performance of the entire network
is an easy task: the different indicator values de-
termined for the subnetworks j are added or aver-
aged. The overlap between different subnetworks
is taken into account explicitly. The system will
provide both results pertaining to the different
subnetworks and the entire network.

5. EXAMPLE BSES APPLICATIONS

To test the concept of the system, an off-line
prototype BSES was implemented. The prototype
consists of the prediction model, and a simple
Graphical User-Interface (GUI). The user of the
system must first prepare a number of ‘scenarios’
or situations, which he or she aims to evaluate. A
scenario is defined by the following:

(1) The current state in the network, generally
determined by the monitoring system (e.g.
inductive loops), consisting of the densities
on the subsubnetworks of the network con-
sidered;



(2) The predicted network inflows (demands)
and network outflow restrictions (i.e. the ex-
ternal boundary conditions), in general de-
termined from historic traffic data;

(3) The control scenario (i.e. the settings of the
different control / ITS measures available in
the network, such as ramp-metering, speed
homogenising control, shoulder lanes open-
ing, lane closures, etc.);

(4) The incident conditions (duration of the in-
cident, severity of the incident, location).

The GUI allows the user to study the evaluation
results, to change the membership functions, and
to show the network and subnetwork definition.
Furthermore, the GUI warns the user when the
predictions become unreliable because the exam-
ples in the case-base are not representative for the
scenario the user wants to evaluate. If this occurs,
the user is advised to extend the case-base with
additional cases.

Let us remark that the verification results pre-
sented in the remainder are not intended to show
the expected effects of incidents or of deploying
DTM measures, but aims to show how the system
is able to predict network conditions in line with
the cases in the case-base; the predictions are
at best as accurate as the off-line predictions in
the case-base (which can be very accurate, when
historic data is used!).

5.1 Verification results

To test the BSES, a case-base was set-up using
simulation results of the macroscopic simulation
model METANET (cf. (Kotsialos et al., 1999)).
The initial case-base consists of 1464 cases de-
scribing different situations (e.g. control scenarios,
incident conditions, etc.) in the motorway network
around the Dutch city of Amsterdam (see Fig.
1). The network is divided into 5 subnetworks,
which are in turn split up into 3 or 4 subsub-
networks. The definition of subnetworks and sub-
subnetworks was done manually by identifying
which links belong to which (sub)subnetwork. The
subsubnetworks were defined such that they con-
tained at most one major link or a major node.
A major link may contain several on-ramps, off-
ramps, lane-drops, etc. A major node connects
two or more major links. It is clear that the way
in which the network is divided into sub- and
subsubnetworks has an influence on accuracy and
reliability. Fine-grained divisions lead to more ac-
curate results, at the expense of larger case-bases
and computation time.

METANET computes a number of performance
indicators, examples of which are shown in table
1. It is emphasised that the use of a different sim-

Subnetwork 1

Subnetwork 2

Subnetwork 3

Subnetwork 4

Subnetwork 5

Fig. 1. Amsterdam network and division in sub-
networks 1 to 5.

ulation model would naturally lead to a different
set of and values for the performance indicators.

Table 1 shows the prediction results for regular
circumstances, i.e. no incidents and no control
measures. The table shows how subnetwork 2 is
assigned a larger weight than the other subnet-
works, indicating the high importance of that
network part. Subnetwork 4 has a lesser impor-
tance, reflected by a smaller weight. In practical
applications, the weights will stem from the frame
of reference discussed in the introduction.

Another example is table 2, which shows the BSES
prototype prediction results of applying ramp-
metering on part of the Amsterdam network. In
this particular case, the scenarios 11–14 represent
different ramp-metering settings, i.e. which ramp-
meters are operational in different parts of the
network. In scenarios 11 and 12, all on-ramps to
the main arterial of subnetwork 4 (see Fig. 1) in
respectively the North-bound direction and the
South-bound direction are metered; scenario 13



Table 1. BSES prediction results for subnetworks 1–5 and entire network (reference)

Results scenario 1 subnetwork total

1 2 3 4 5 *

Weight 0.16 0.32 0.16 0.12 0.24 1.00

Vehicle loss time 894 301 127 679 634 2108

Total time spent 3278 5215 2911 8811 8286 22847

Total travel time 2960 4983 2750 3492 3029 14837

Total queueing time 318 232 161 5319 5258 8011

Mean queue length 19.55 9.78 6.78 202.62 221.38 81.06

Mean link speed 90.95 88.89 92.70 85.11 90.47 89.80

Mean vehicle speed 78.26 93.39 94.86 80.06 78.77 86.80

Distance travelled (×103) 231.2 465.2 260.7 279.5 238.5 1475.2

Total inflow 22250 30411 19221 22809 17676 95552

Total outflow 20897 35642 19546 24624 14165 98768

Total vehicle number 13111 20861 11643 35242 14165 98768

# vehicles in net 11840 19931 10999 13967 12114 59346

# vehicles in queues 1271 930 644 21275 21031 32042

Total fuel consumption 20853 36302 20689 32394 29307 117858

Table 2. Overview of BSES predictions describing the effects of ramp-metering

Result scenarios Scenario index

Performance criteria 1 11 12 13 14

Period 8:00–9:00 8:00–9:00 8:00–9:00 8:00–9:00 8:00–9:00

Reliability 0.847 0.826 0.790 0.768 0.794

Vehicle loss time -1805 -1806 -1686 -1687 -1799

Total time spent 18443 18463 18320 18340 18437

Total travel time 11308 11316 11196 11204 11303

Total queueing time 7134 7146 7123 7135 7133

Time stamp 0.25 0.25 0.25 0.25 0.25

Mean queue length 87.6 87.8 87.4 87.6 87.6

Mean link speed 89.8 89.8 90.1 96.1 89.8

Mean vehicle speed 85.5 85.5 86.5 86.5 85.5

Total distance travelled 966464 967171 967312 968018 966486

Total inflow 74691 74768 74722 74799 74692

Total outflow 76208 73194 76216 76202 76208

Total vehicle number 73772 73852 73281 73361 73749

# vehicles in net 45234 45266 44787 44819 45214

# vehicles in queues 28537 28585 28493 28541 28535

Total fuel consumption 93109 91389 91400 91479 91312

describes the case where all on-ramps of subnet-
work 4 are metered. Scenario 14 describes the
case where only 1 on-ramp in the Northbound
direction is metered. The results shown in table
2 pertain to the entire network. From table 2,
it can be observed that in general, deployment
of ramp-metering has a beneficial effect on traffic
conditions on the main-roads. Given the expected
effects and the effects predicted by BSES, we
conclude that the predictions are plausible.

5.2 Comparative analysis

It turns out that the predictions made by BSES
are in line with the predictions of METANET.
However, the time BSES needs to compute a
prediction is much less than the time needed to
do a METANET simulation (factor between 30
and 3000, depending on the mode of simulation of
METANET), showing the potential for the system
to be applied in an on-line system setting.

It is clear that the accuracy of the BSES pre-
dictions is directly determined by the accuracy
of the underlying METANET model simulation,
and that in fact verification only proves that the
system is able to reproduce the predictions of the
METANET model. However, the results obtained
so far indicate that the system work equally satis-
factory if the case-base is filled with either real-life
data or with results of more accurate simulation
models.

6. CONCLUSIONS AND FUTURE
RESEARCH

This paper describes a new approach to the on-
line prediction of the effect of control scenarios
under a variety of circumstances in the network.
It describes the developed approach, based on
combining fuzzy logic, case-based reasoning, and
multi-agent approaches. The main advantages are
the speed of computation (compared to using



traffic flow models), ability to use actual knowl-
edge directly (rather than general knowledge or
simulated data), and the ability to learn from
previous experiences. It turns out that the system
is able to very quickly produce predictions on
the impact of different control scenarios to the
traffic operations in the network, and can thus
support operators in their decision tasks in a real-
time decision environment. These predictions are
in line with expectations of the effects of DTM
and with the control simulations used to test the
system. It can therefore be concluded that the
system indeed functions properly.
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