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Abstract

Model predictive control (MPC) is a popular controller design technique in the
process industry. Conventional MPC uses linear or nonlinear discrete-time models.
Recently, we have extended MPC to a class of discrete event systems that can be
described by a model that is “linear” in the max-plus algebra. In our previous work
we have considered MPC for the time-invariant case. In this paper we consider an
adaptive scheme for the time-varying case, based on parameter estimation of input-
output models. In a simulation example we show that the combined parameter-
estimation/MPC algorithm gives a good closed-loop behavior.

1 Introduction

Clarke et al. [5] and Mosca [21] demonstrate how predictive control can provide adaptive
controllers. The predictive technique is seen as a tool to go beyond the conventional
single-step-ahead adaptive control strategies. Model predictive control (MPC) [11, 16] is
a proven technology for the control of multivariable systems in the presence of input and
output constraints and is capable of tracking pre-scheduled reference signals. At each time
instant the process model is updated, based on measured input and output data. On the
basis of this model, predictions of the process signals over a specified horizon are made. A
cost-criterion is formulated, reflecting the reference tracking error and the control effort. An
optimization algorithm will be applied to compute a sequence of future control signals that
minimizes the performance index subject to the given constraints. Predictive control uses
the receding horizon principle. This means that after computation of the optimal control
sequence, only the first control sample will be implemented, subsequently the horizon is
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shifted one sample and the parameter estimation and input optimization is restarted with
new information of the measurements. The above derived controller is called an adaptive
model predictive controller.

Usually adaptive MPC uses linear or nonlinear discrete-time models. However, the
attractive features mentioned above have led us to extend the adaptive MPC scheme to
discrete event systems. Typical examples of discrete event systems (DES) are flexible
manufacturing systems, telecommunication networks, parallel processing systems, traffic
control systems, and logistic systems. The class of DES essentially consists of man-made
systems that contain a finite number of resources (such as machines, communications chan-
nels, or processors) that are shared by several users (such as product types, information
packets, or jobs) all of which contribute to the achievement of some common goal (the
assembly of products, the end-to-end transmission of a set of information packets, or a
parallel computation) [1]. There exist many different modeling and analysis frameworks
for DES such as Petri nets, finite state machines, automata, languages, process algebra,
computer models, etc. [4, 13]. In this paper we consider the class of DES with synchro-
nization but no concurrency or choice. Such systems can be modeled using the operations
maximization (corresponding to synchronization: a new operation starts as soon as all
preceding operations have been finished) and addition (corresponding to durations: the
finishing time of an operation equals the starting time plus the duration). This leads to a
description that is “linear” in the max-plus algebra [1, 7]. Such DES are therefore called
max-plus-linear (MPL) DES. So typical examples are serial production lines, production
systems with a fixed routing schedule, queuing systems, telecommunication networks, and
railway networks.

Note that although the class of MPL DES is a small (but relevant) subclass of the
general DES, one of its main advantages is that having an analytic MPL model allows
us to derive some properties of the system (such as the steady state behavior) fairly
easily, and to develop efficient model-based control design methods for the MPL DES
[1, 2, 6, 8, 12, 14, 19, 20]. More specifically, in [8] we have derived an MPC controller for
this framework and we have also shown that under quite general conditions the resulting
MPC optimization problem is a convex optimization problem. This paper describes an
adaptive MPC methodology for slowly time-varying MPL systems using an input-output
model. An input-output setting is used because in many applications only input and output
measurements are available. In this paper we consider the noise-free case.

Note that the supervisory control framework for DES1 introduced by Wonham and
Ramadge [22, 23] also provides a feedback control structure. However, the main difference
between the supervisory control framework and MPC is that in supervisory control the
control actions consist in blocking certain events (i.e., preventing them from occurring),
whereas in MPC the control actions consist in delaying certain events (i.e., shifting their
occurrence time with a finite amount of time).

1This supervisory control framework has been developed for untimed automata and later on also ex-
tended to timed automata, which are a superclass of the MPL DES.
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The two main ingredients of the adaptive predictive controller are the identification
module and optimal control law module. We will discuss these modules in the Sections 3
and 4, respectively, and we give the final adaptive MPC algorithm in Section 5. Finally,
Section 6 gives a worked example and a comparison with conventional methods. We
start with the introduction of the max-plus algebra and the concept of MPL input-output
systems in Section 2.

2 Max-plus-linear input-output systems

In this section we define the class of MPL input-output systems. For this purpose we will
first give the basic definition of the max-plus algebra and min-plus algebra, and we present
some results for max-plus polynomials.

Max-plus algebra

Define ε = −∞ and Rε = R∪{ε}. The max-plus-algebraic addition (⊕) and multiplication
(⊗) are defined as follows [1, 7]:

x⊕ y = max(x, y) x⊗ y = x+ y

for numbers x, y ∈ Rε, and

[A⊕ B]ij = aij ⊕ bij = max(aij, bij)

[A⊗ C]ij =
n⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε .

Min-plus algebra

Define ⊤ = ∞ and R̄ = Rε ∪ {⊤} = R∪ {ε,⊤}. The min-plus-algebraic addition (⊕′) and
multiplication (⊗′) are defined as follows [1, 7]:

x⊕′ y = min(x, y) x⊗′ y = x+ y

for numbers x, y ∈ R̄. By definition ε ⊗ ⊤ = ⊤ ⊗ ε = ε and ε ⊗′ ⊤ = ⊤ ⊗′ ε = ⊤. For
matrices A,B ∈ R̄

m×n and C ∈ R̄
n×p we have

[A⊕′ B]ij = aij ⊕
′ bij = min(aij, bij)

[A⊗′ C]ij =
n⊕

k=1

′ aik ⊗
′ ckj = min

k=1,...,n
(aik + ckj)
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Max-plus polynomials

This section is based on Baccelli et al. [1]. Define the delay operator γ as

γ z(k) = z(k − 1)

Now we can define the max-plus polynomial

P (γ) = p0 ⊗ γ0 ⊕ p1 ⊗ γ1 ⊕ . . .⊕ pn ⊗ γn

then we obtain

P (γ) z(k) =
(

p0 ⊗ γ0 ⊕ p1 ⊗ γ1 ⊕ . . .⊕ pn ⊗ γn
)

z(k)

= p0 ⊗ γ0 z(k)⊕ p1 ⊗ γ1 z(k)⊕ . . .⊕ pn ⊗ γn z(k)

= p0 ⊗ z(k)⊕ p1 ⊗ z(k − 1)⊕ . . .⊕ pn ⊗ z(k − n)

Let P , Q and R be three max-plus polynomials:

P (γ) = p0 ⊗ γ0 ⊕ p1 ⊗ γ1 ⊕ . . .⊕ pn ⊗ γn

Q(γ) = q0 ⊗ γ0 ⊕ q1 ⊗ γ1 ⊕ . . .⊕ qn ⊗ γn

R(γ) = r0 ⊗ γ0 ⊕ r1 ⊗ γ1 ⊕ . . .⊕ rm ⊗ γm

(if some monomial γi is missing in P or Q, this means that the corresponding coefficient is
‘zero’, that is, it is equal to ε). The max-plus product and max-plus sum for polynomials
are defined as follows:

P (γ)⊕Q(γ) = p0 ⊗ γ0 ⊕ p1 ⊗ γ1 ⊕ . . .⊕ pn ⊗ γn ⊕ q0 ⊗ γ0 ⊕ q1 ⊗ γ1 ⊕ . . .⊕ qn ⊗ γn

=
n⊕

i=0

(pi ⊕ qi)⊗ γi

P (γ)⊗R(γ) =
(

p0 ⊗ γ0 ⊕ p1 ⊗ γ1 ⊕ . . .⊕ pn ⊗ γn
)

⊗
(

r0 ⊗ γ0 ⊕ r1 ⊗ γ1 ⊕ . . .⊕ rm ⊗ γm
)

=
n⊕

i=0

m⊕

j=0

(pi ⊗ rj)⊗ γi+j

Let P , Q and R be three max-plus polynomials and z and w two signals, then we can
observe the following properties of the max-plus polynomial expressions:

P (γ) z(k)⊕Q(γ) z(k) =
(

P (γ)⊕Q(γ)
)

z(k)

P (γ) z(k)⊕ P (γ)w(k) = P (γ)
(

z(k)⊕ w(k)
)

P (γ)
(

R(γ)z(k)
)

=
(

P (γ)⊗R(γ)
)

z(k)

4



Max-plus-linear Input-Output systems

In [8, 9] we have used a state-space setting to study DES in which there is synchronization
but no concurrency. In this paper we will consider these systems in an input-output setting.
Our motivation behind this is that in practice only input and output signals are available,
and the input-output form gives a compact description of the system. Consider systems
that can be described by the input-output relation

y(k) = a1 ⊗ y(k − 1)⊕ a2 ⊗ y(k − 2)⊕ . . .⊕ an ⊗ y(k − n)⊕

b0 ⊗ u(k)⊕ b1 ⊗ u(k − 1)⊕ . . .⊕ bm ⊗ u(k −m)

This can be rewritten in polynomial form as

y(k) = A(γ)y(k)⊕ B(γ)u(k) (1)

where A(γ) and B(γ) are polynomial operators

A(γ) = a1 ⊗ γ1 ⊕ a2 ⊗ γ2 ⊕ . . .⊕ an ⊗ γn

B(γ) = b0 ⊗ γ0 ⊕ b1 ⊗ γ1 ⊕ . . .⊕ bm ⊗ γm (2)

DES that can be described by this model will be called max-plus-linear input-output
(MPLIO) systems. The index k is called the event counter. The input u(k) contains
the time instants at which the input events occur for the kth time, and the output y(k)
contains the time instants at which the output events occur for the kth time2. The entries
of system polynomials A(γ) and B(γ) are varying in time due to slow changes in the
system.

3 Identification of MPLIO systems

Consider the SISO3 MPLIO model, described by the input-output relation (1) and (2).
We assume that the “real” system is in the model set, and we denote the estimates of the
input-output polynomials from (1) by Â(γ) and B̂(γ). The prediction error ξ(k) after the

2More specifically, for a manufacturing system, u(k) contains the time instants at which the kth batch
of raw material is fed to the system, and y(k) the time instants at which the kth batch of finished product
leaves the system.

3For sake of simplicity SISO systems are considered in this paper. However, most of the results are
easily extended to the MIMO case. It will be important to know the ε-structure of the system, which is
related to the layout and the internal connection between different subparts of the system (see, e.g., [1]).
The problem is comparable to system identification of time-driven systems (appendix 4A, [15]), where we
need to know the black-box multivariable model structure.
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measurements of the kth event is then defined as

ξ(k) = y(k)−
(

Â(γ)y(k)⊕ B̂(γ)u(k)
)

= y(k)−
( [

â1 · · · ân b̂0 · · · b̂m
]

︸ ︷︷ ︸

θ̂

⊗












y(k − 1)
...

y(k − n)
u(k)
...

u(k −m)












︸ ︷︷ ︸

p(k)

)

= y(k)− θ̂ ⊗ p(k) (3)

The elements of the vector θ̂ are estimates of the system parameters. Considering k con-
secutive events, i.e. the measurement data of k process cycles, one obtains the prediction
error matrix

[
ξ(k) · · · ξ(1)

]

︸ ︷︷ ︸

Ξ(k, 1)

=
[
y(k) · · · y(1)

]

︸ ︷︷ ︸

Y (k, 1)

−θ̂ ⊗
[
p(k) · · · p(1)

]

︸ ︷︷ ︸

P (k, 1)

(4)

or

Ξ(k, 1) = Y (k, 1)− θ̂ ⊗ P (k, 1) (5)

As shown in [10] the solution that minimizes the prediction error Ξ(k, 1) corresponds
to the greatest solution of the inequality

Y (k, 1) ≥ θ̂ ⊗ P (k, 1) (6)

and can be computed using the min–plus–algebraic operators ”⊕′” and ”⊗′”:

θ̂i =
k⊕

j=1

′ Yj(k, 1)⊗
′
(
− Pij(k, 1)

)
(7)

=
k⊕

j=1

′
(
y(j)− pi(j)

)
(8)

= min
j=1,...,k

(
y(j)− pi(j)

)
(9)

where Yj(k, 1) denotes the j-th column of Y (k, 1). For this solution, the following properties
hold [18]:

θ̂i ≥ θi (10)

θ̂ ⊗ P (k) = θ ⊗ P (k) (11)
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such that the prediction error ξ(j) = 0, for j = 1, . . . , k due to (11). On the other hand,
property (10) shows that in general, the parameters will be overestimated by this approach.
This issue has been investigated in [24] and a condition for convergence of the estimated
parameters to their true values was given. It essentially states that θi = θ̂i if there exist
y(j) and p(j) such that

y(j) = θi ⊗ pi(j) (12)

holds. Obviously, this condition can in general not be satisfied for MPLIO systems since
the required trajectories cannot be achieved for all parameters using only one input signal.
However, if no event trajectory that satisfies (12) for θ̂i exists, then the original system
and the estimated system are equivalent with respect to θi since both systems will always
lead to the same input–output behavior.

Hence, an initial estimate for the system parameters can be obtained based on k data
points using (8). To track changing system parameters, an update of the estimates after
each update of the output is necessary. A first possibility is the recursive evaluation of (8)
as first proposed in [17] for the estimation of the system’s impulse response. Thus,

θ̂i(k) =
k⊕

j=1

′
(
y(j)− pi(j)

)
(13)

=
k−1⊕

j=1

′
(
y(j)− pi(j)

)
⊕′
(
y(k)− pi(k)

)
(14)

= θ̂i(k − 1)⊕′
(
y(k)− pi(k)

)
(15)

= min
(

θ̂i(k − 1),
(
y(k)− pi(k)

))

(16)

However, since ⊕′ corresponds to minimization, an update where y(k)− pi(k) > θ̂i(k − 1)
will not have any influence on θ̂i(k). Thus, increasing parameter values will not be detected
by this approach. As a possible solution to this problem the estimation can be carried out
considering only the most recent Ne data points, and choosing

[
ξ(k) · · · ξ(k−Ne)

]

︸ ︷︷ ︸

Ξ(k, k−Ne)

=
[
y(k) · · · y(k−Ne)

]

︸ ︷︷ ︸

Y (k, k−Ne)

−θ̂ ⊗
[
p(k) · · · p(k−Ne)

]

︸ ︷︷ ︸

P (k, k−Ne)

(17)

However, using the reasoning above, it can be concluded that a change in a parameter θi
that leads to measurements with y(j) − pi(j) > θ̂i(k) may be detected only when all Ne

data points considered in the estimation are influenced by this new parameter value.
Therefore, the algorithm used in the sequel is based on a different strategy. Assume,

that the initial estimation θ̂(0) was determined from the first Ne data points by (8). Similar
to the conventional recursive estimation algorithms, the new estimate can be computed
by adding the (weighted) difference between the new measurement and the measurement
predicted by the model. This principle was used in [18] (though the similarity to the
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conventional recursive estimation was not pointed out) and will be applied for adaptive
MPC with some modifications. Let θ̂(k − 1) be the estimate at the end of the (k − 1)th
cycle. If θ̂(k − 1) satisfies y(k) = θ̂(k − 1)⊗ p(k), we choose θ̂(k) = θ̂(k − 1). If not, then
θ̂(k) is obtained by the series

{
θ̂(0)(k) = θ̂(k − 1)

θ̂(ℓ)(k) = θ̂(ℓ−1)(k) + α∆(ℓ−1)(k) ℓ > 0
(18)

where 0 < α ≤ 2 is a weighting parameter and

∆(ℓ−1)(k) =
[(

Y (k, k−Ne))⊗
′
(
− P T (k, k−Ne)

))

−
((

θ̂(l−1)(k)⊗ P (k, k−Ne)
)
⊗′ (−P T (k, k−Ne))

)]

(19)

In [18] it is proven that for α = 1 and (Y (k, k−Ne)⊗
′ (−P T (k, k−Ne)))⊗P (k, k−Ne) =

Y (k, k −Ne) the iteration (18)-(19) will converge to a value that satisfies y(k) = θ̂(ℓ)(k)⊗
p(k). In appendix A we show that we expect convergence for all α ∈ (0, 2). The choice
α 6= 1 will slow down the convergence of the iterative procedure, and so we choose tuning
parameter α = 1.

Note that in contrast to [18], in this paper we use an MPLIO model rather than an
impulse response model. The MPLIO description is more compact and so the estimation
can be done using less information. Furthermore we have two new parameters: Ne, the
number of past values of input and outputs, and the parameter α, which can be used to
tune the convergence rate of the recursive estimation algorithm.

4 Model predictive control for MPLIO systems

In [8, 26] we have extended the MPC framework to MPL state-space models. Following the
strategy for conventional discrete-time systems in an input-output setting [3, 5] we define
a cost criterion J(k) that reflects the output and input cost functions (Jout(k) and Jin(k),
respectively) in the event period [k, k +Np − 1]:

J(k) = Jout(k) + λJin(k) (20)

in which

Jout(k) =

Np−1
∑

j=0

max
(

ŷ(k + j|k)− r(k + j) , 0
)

Jin(k) = −

Np−1
∑

j=0

u(k + j)

where Np is the prediction horizon and λ is a weighting parameter, ŷ(k + j|k) is the
prediction of the output signal y(k+ j), based on the knowledge at event step k, and r(k)
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is the due date signal. The function Jout(k) reflects the due date-error and Jin(k) is used
to penalize a large input-buffer. Other choices for cost function J are given in [8, 9].

In order to compute the optimal MPC input signal, we need to make predictions of the
output signal.

Lemma 1 Consider an MPLIO system (1)-(2). For any non-negative integer j, there
exist polynomials

Cj(γ) = c1,j ⊗ γ1 ⊕ c2,j ⊗ γ2 ⊕ . . .⊕ cn,j ⊗ γn (21)

Dj(γ) = d0,j ⊗ γ0 ⊕ d1,j ⊗ γ1 ⊕ . . .⊕ dm−1,j ⊗ γm−1 (22)

Fj(γ) = f0,j ⊗ γ0 ⊕ f1,j ⊗ γ1 ⊕ . . .⊕ fj,j ⊗ γj (23)

such that

ŷ(k + j|k) = Cj(γ)y(k)⊕Dj(γ)u(k − 1)⊕ Fj(γ)u(k + j) (24)

Proof :
We will use a proof by induction. Define

C0(γ) = A(γ) , D0(γ) = b1 ⊗ γ0 ⊕ b2 ⊗ γ1 ⊕ . . .⊕ bm ⊗ γm−1 , F0(γ) = b0 ⊗ γ0

and for j < 0

Cj(γ) = γ−j , Dj(γ) = ε , Fj(γ) = ε

then (24) is satisfied for j = 0, because

y(k) = A(γ)y(k)⊕B(γ)u(k) = C0(γ)y(k)⊕D0(γ)u(k − 1)⊕ F0(γ)u(k)

and for j < 0, because with i = −j > 0 we find

y(k − i) = γiy(k)

Let for j ∈ Z, j > 0, the polynomials Cj−ℓ(γ), Dj−ℓ(γ) and Fj−ℓ(γ) for all ℓ ∈ Z, ℓ > 0 be
such that

ŷ(k + j − ℓ|k) = Cj−ℓ(γ)y(k)⊕Dj−ℓ(γ)u(k − 1)⊕ Fj−ℓ(γ)u(k + j − ℓ)

9



then

ŷ(k + j|k) = A(γ)ŷ(k + j|k)⊕B(γ)u(k + j)

= (a1 ⊗ ŷ(k + j − 1|k)⊕ a2 ⊗ ŷ(k + j − 2|k)⊕ . . .⊕ an ⊗ ŷ(k + j − n|k))

⊕B(γ)u(k + j)

=
n⊕

ℓ=1

aℓ ⊗
(

Cj−ℓ(γ)y(k)⊕Dj−ℓ(γ)u(k − 1)⊕ Fj−ℓ(γ)u(k + j − ℓ)
)

⊕B(γ)u(k + j)

=
n⊕

ℓ=1

(aℓ ⊗ Cj−ℓ(γ))y(k)⊕
n⊕

ℓ=1

(aℓ ⊗Dj−ℓ(γ))u(k − 1)

⊕

n⊕

ℓ=1

(aℓ ⊗ Fj−ℓ(γ)⊗ γℓ)u(k + j)⊕B(γ)u(k + j)

=
n⊕

ℓ=1

(aℓ ⊗ Cj−ℓ(γ))y(k)⊕
n⊕

ℓ=1

(aℓ ⊗Dj−ℓ(γ))u(k − 1)

⊕

(
n⊕

ℓ=1

(aℓ ⊗ Fj−ℓ(γ)⊗ γℓ)⊕B(γ)

)

u(k + j)

Now define two polynomials Bfut
j (γ) and B

past
j (γ) for j < m:

Bfut
j (γ) = b0 ⊗ γ0 ⊕ b1 ⊗ γ1 ⊕ . . .⊕ bj ⊗ γj

B
past
j (γ) = bj+1 ⊗ γ0 ⊕ bj+2 ⊗ γ1 ⊕ . . .⊕ bm ⊗ γm−i−1

and for j ≥ m:

Bfut
j (γ) = B(γ) B

past
j (γ) = ε

Then we find for all j ∈ Z, j > 0:

B(γ)u(k + j) = Bfut
j (γ)u(k + j)⊕B

past
j (γ)⊗ γj+1u(k + j)

= Bfut
j (γ)u(k + j)⊕B

past
j (γ)u(k − 1)

and so

ŷ(k + j|k) =
n⊕

ℓ=1

(aℓ ⊗ Cj−ℓ(γ))y(k)⊕
n⊕

ℓ=1

(aℓ ⊗Dj−ℓ(γ))u(k − 1)

⊕

(
n⊕

ℓ=1

(aℓ ⊗ Fj−ℓ(γ)⊗ γℓ)⊕Bfut
j (γ)

)

u(k + j)⊕B
past
j (γ)u(k − 1)

= Cj(γ)y(k)⊕Dj(γ)u(k − 1)⊕ Fj(γ)u(k + j)
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where

Cj(γ) =
n⊕

ℓ=1

(aℓ ⊗ Cj−ℓ(γ))

Dj(γ) = B
past
j (γ)⊕

n⊕

ℓ=1

(aℓ ⊗Dj−ℓ(γ))

Fj(γ) = Bfut
j (γ)⊕

n⊕

ℓ=1

(aℓ ⊗ Fj−ℓ(γ)⊗ γℓ)

This concludes the proof. ⋄

Note that in (24) the first part of the expression, Cj(γ)y(k)⊕Dj(γ)u(k−1), only depends
on values of previous event steps and the second part of the expression, Fj(γ)u(k+ j), only
on present and future values of the input signal.

Using the results of lemma 1, we can construct matrices that relate the future output
signal with past values of the output and future values of the input. By defining the vector

ỹ0(k) =






C0(γ)y(k)⊕D0(γ)u(k − 1)
...

CNp−1(γ)y(k)⊕DNp−1(γ)u(k − 1)




 , (25)

and the constant matrix

F̃ =








f0,0 ε · · · ε

f0,1 f1,1
...

...
. . .

f0,Np−1 · · · fNp−1,Np−1







, (26)

we obtain the relation
ỹ(k) = ỹ0(k)⊕ F̃ ⊗ ũ(k)

where

ỹ(k) =






ŷ(k|k)
...

ŷ(k+Np−1|k)




 , ũ(k) =






u(k)
...

u(k+Np−1)






The aim is now to compute an optimal input sequence ũ(k) that minimizes J(k) subject
to constraints on the inputs and outputs. These constraints are due to limits on the input
and output event separation times or due to maximum due dates for the output events.
Since the elements of u(k) correspond to consecutive event occurrence times, we have the
additional condition ∆u(k + j) = u(k + j) − u(k + j − 1) ≥ 0 for j = 0, . . . , Np − 1.
Furthermore, in order to reduce the number of decision variables and the corresponding

11



computational complexity we introduce a control horizon Nc (≤ Np) and we impose the
additional condition that the input rate4 should be constant from event step k + Nc − 1
on:

∆u(k + j) = ∆u(k +Nc − 1) for j = Nc, . . . , Np − 1,

or equivalently

∆2u(k + j) = ∆u(k + j)−∆u(k + j − 1) = 0 for j = Nc, . . . , Np − 1.

MPC uses a receding horizon principle. This means that after computation of the
optimal control sequence u(k), . . . , u(k+Nc− 1), only the first control sample u(k) will be
implemented, subsequently the horizon is shifted one event step, and the optimization is
restarted with new information of the measurements. The MPC problem for MPL systems
for event step k is formulated as follows (compare with [8] for the state-space case):

min
ũ(k),ỹ(k)

J(ũ(k), ỹ(k)) = min
ũ(k),ỹ(k)

Jout(ỹ(k)) + λJin(ũ(k)) (27)

subject to

ỹ(k) = ỹ0(k)⊕ F̃ ⊗ ũ(k) (28)

Ac(k)ũ(k) + Bc(k)ỹ(k) 6 cc(k) (29)

∆u(k + j) > 0 for j = 0, . . . , Np−1 (30)

∆2u(k + j) = 0 for j = Nc, . . . , Np−1, (31)

where equation (29) reflects the constraints on the inputs and outputs. If we replace (28)
by the following inequality:

ỹ(k) ≥ ỹ0(k)⊕ F̃ ⊗ ũ(k) (32)

we obtain the relaxed MPL-MPC problem, which is defined by the optimization of (27)
subject to (32), (29), (30) and (31).

Theorem 2 Let the mapping ỹ → Bc(k)ỹ be a monotonically non-decreasing function of
ỹ. Let (ũ∗, ỹ∗) be an optimal solution of the relaxed MPL-MPC problem. If we define
ỹ♯(k) = ỹ0(k) ⊕ F̃ ⊗ ũ∗(k), then ỹ♯(k) is an optimal solution of the original MPL-MPC
problem.

Proof : Similar to [8]. ⋄

So if the linear constraints are monotonically non-decreasing as a function of ỹ(k), the
MPL-MPC problem can be recast as a convex problem. Moreover, by introducing some
additional dummy variables the problem can even be reduced to a linear programming
problem (see [8]).

4For a manufacturing system the input rate corresponds to the rate at which raw material or external
resources are fed to the system
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5 The adaptive MPC algorithm

The two important ingredients of the adaptive controller, identification and control law,
have been discussed in the previous sections. This leads to the final adaptive MPC algo-
rithm, which consists of the following 5 steps.

step 1 (initial identification): The model is initialized by computing θ̂0 using equa-
tion (8).

step 2 (measurement): Obtain new measurement y(k) at event step k.

step 3 (adaptation): Make a recursive estimation of θ̂(k) using equation (18)-(19).

step 4 (control law): Compute new control sequence ũ∗(k) by solving the relaxed MPL-
MPC problem, which is defined by the optimization of (27) subject to (29), (30), (31)
and (32). The first element u(k) of ũ∗(k) is fed to the system.

step 5 (receding horizon): The horizon is shifted one step k → k+1. Return to step 2.

As was pointed out in [26], MPC for MPL systems is different from conventional MPC
in the sense that the event counter k is not directly related to a specific time. The best time
t(k) to start the estimation of θ̂(k) and subsequently to start the optimization to compute
the optimal control sequence ũ(k) with elements u(k|k), u(k+ 1|k), . . . , u(k+Nc − 1|k), is
the moment that a new measurement y(k) becomes available, so t(k) = y(k).

The tuning rules of a predictive controller for max-plus-linear systems, as derived in
[26] are still valid. Of course one should keep in mind that the prediction horizon Np is
related to the length of the step response of the open-loop system: the time interval [1, Np]
should contain the crucial dynamics of the process. Therefore, Np should be larger than the
worst-case step response length. The trade-off constant λ should satisfy 0 < λ < 1 and
it is usually chosen as small as possible without causing instability or numerical problems
in the optimization. The parameter Nc, called control horizon, can be chosen between 1
and Np. We usually take it equal to the upper bound of the minimal system order, which
is equal to n (=order of the A polynomial) in the time-varying case.

Note that the identification of the MPL system will be done in closed-loop. As in system
identification of time-driven systems, we have to take care that the input signal will be
‘rich’ enough to be able to estimate all parameters. In [25] we have derived constraints
for signals to be persistently exciting. If in step 3 we find that the input signal is not
persistently exciting, we can add additional requirements on the input signal in step 4
to make sure that the future input signal will become ‘rich’ enough to do an accurate
parameter estimation.5

13



P1

P2

P3

P4

P5

✲

✲

✲

✲

✲

✲

✲

✲

✛

x1

x2

x3

x4

x5

u y

d1

d2

d3

d4

d5

Figure 1: A simple manufacturing system.

6 Example

Consider the production system of Fig. 1. This manufacturing system consists of five
processing units, P1 to P5. Raw material is fed to P1, P2 and P3, processed and sent to
P4 where assembly takes place. Unit P4 works with pallets, on which the assembly takes
place. Each production cycle one pallet is used in unit P4, while at the same time a second
pallet is recycled through unit P5. The units P1, P2 and P3 work continuously, and may
work on more products at the same time6. The units P4 and P5 work in batches (one
batch for each finished product), and can only start working on a new product if they have
finished processing the previous product. Each processing unit starts working as soon as
all parts are available. The preprocessing in P2 and P3 takes so much time that the output
is delayed one cycle in P2 and two cycles in P3. The processing time for Pi, i = 1, . . . , 5
is denoted by di. It takes t4 time units for the pallet to get from P4 to P5. The other
transportation times and the set-up times are assumed to be negligible.

The system is described by the following state space model:

x1(k) = x2(k) = x3(k) = u(k)

x4(k) = max
(

x1(k) + d1, x2(k−1) + d2, x3(k − 2) + d3, x4(k−1) + d4, x5(k−1) + d5

)

= max
(

u(k) + d1, u(k−1) + d2, u(k − 2) + d3, x4(k−1) + d4, x5(k−1) + d5

)

x5(k) = max
(

x4(k−1) + d4 + t4, x5(k−1) + d5

)

with u(k) the time at which a batch of raw material is fed to the system for the (k + 1)th
time, xi(k) the time at which Pi starts working for the kth time, and y(k) the time at
which the kth finished product leaves the system.

Define the state space parameter vector

θss =
[
d1 d2 d3 d4 d5 t4

]

5This implies that system (27)–(31) will be extended with some extra constraints.
6e.g. a conveyor belt with a heating step.
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We simulate the system for k = 1, . . . , 300 where

θss =
[
3 6 10 2 1 2

]
for k = 1, . . . , 100,

θss =
[
3 5 8 1 1 1

]
for k = 101, . . . , 200,

θss =
[
1 3 9 1.5 1 2.5

]
for k = 201, . . . , 300.

We can translate the MPL state space system into an MPLIO system7, described by the
input-output relation

y(k) = A(γ)y(k)⊕ B(γ)u(k)

where A(γ) and B(γ) are polynomial operators

A(γ) = a1 ⊗ γ1 ⊕ a2 ⊗ γ2 , B(γ) = b0 ⊗ γ0 ⊕ b1 ⊗ γ1 ⊕ b2 ⊗ γ2

The input-output parameter vector

θ =
[
a1 a2 b0 b1 b2

]

7The similarity is proven by showing that the impulse responses of both systems are equivalent. Loosely
speaking, the impulse response of the systems can be computed by successive substitution with u(k) = 0,
for k = 0 and u(k) = ε elsewhere, with the initial conditions all set to ε.
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is now given by
θ =

[
2 5 3 6 10

]
for k = 1, . . . , 100,

θ =
[
1 3 3 5 8

]
for k = 101, . . . , 200,

θ =
[
1.5 5 1 3 9

]
for k = 201, . . . , 300.

An adaptive model predictive controller strategy is applied following section 5. The due
date signal r(k) is a non-decreasing random8 signal with an average slope of 3.013 and
variance 19.4. The initial state is set to p(0) = [ 0 0 0 0 0 ]T and the criterion function is
given by (27) for Np = 10, Nc = 2 and λ = 0.01. For each k, the model is updated using an
update interval with Ne = 15 and α = 1, and (with the updated model) the optimal input
sequence is computed, and finally the first element u(k) of the sequence ũ(k) is applied to
the system (due to the receding horizon strategy).

Figure 2 gives the due date error, i.e. the difference between the due date signal and
the output signal y(k). Note that when the due date error is positive, we have a due
date violation. Most of the time this happens near the jumps of the parameters. Figure 3
shows the model parameters, as estimated by the identification algorithm. Note that after
a transient interval, the estimated parameters converge to their true values.

8The due date signal is chosen random to express the varying customer demand.
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7 Discussion

In this paper we have derived a technique for adaptive MPC of MPL systems, given an
input-output description. We have included the identification and estimation update into
the algorithm. If the linear constraints are a non-decreasing function of the output the
computation of the MPC control law can be done using a linear programming algorithm.
An simulation example has shown that the algorithm gives a good closed-loop behavior in
the case of a MPLIO models with time-varying parameters.
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thesis, Université d’Angers, Angers, France, 1997.

[18] E. Menguy, J. L. Boimond, L. Hardouin, and J. L. Ferrier. A first step towards
adaptive control for linear systems in max algebra. Discrete Event Dynamic Systems,
10(4):347–368, 2000.

[19] E. Menguy, J.L. Boimond, and L. Hardouin. A feedback control in max-algebra. In
Proceedings of the European Control Conference (ECC’97), Brussels, Belgium, paper
487, July 1997.

[20] E. Menguy, J.L. Boimond, L. Hardouin, and J.L. Ferrier. A first step towards adaptive
control for linear systems in max algebra. Discrete Event Dynamic Systems: Theory
and Applications, 10(4):347–367, 2000.

[21] E. Mosca. Optimal Predictive and Adaptive Control. Prentice Hall, Englewood Cliffs,
NJ, 1995.

18



[22] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event
processes. SIAM Journal on Control and Optimization, 25(1):206–230, January 1987.

[23] K. Rudie and W.M. Wonham. Think globally, act locally: Decentralized supervisory
control. IEEE Transactions on Automatic Control, 37(11):1692–1708, November 1992.

[24] G. Schullerus and V. Krebs. A method for estimating the holding times in timed event
graphs. In Proceedings of the 6th Workshop on Discrete Event Systems (WODES’02),
pages 119–124, Zaragossa, 2002.

[25] G. Schullerus, V. Krebs, T.J.J. van den Boom, and B. De Schutter. Input signal design
for max–plus–linear system identification using model predictive control. In European
Control Conference 2003, Cambridge, UK, paper 26, 2003.

[26] T.J.J. van den Boom and B. De Schutter. Properties of MPC for max-plus-linear
systems. European Journal of Control, 8(5), 2002.

Appendix A

In this appendix we investigate the effect of tuning parameter α ∈ (0, 2). Denote

θ̂(k, k −Ne) = Y (k, k−Ne))⊗
′
(
− P T (k, k−Ne)

)
(33)

˜̂
θ(ℓ−1) =

(
θ̂(l−1)(k)⊗ P (k, k−Ne)

)
⊗′ (−P T (k, k−Ne)) (34)

For the sake of simplicity the arguments k and k − Ne will be omitted in the subsequent
considerations.

˜̂
θ(ℓ−1) is the greatest solution to the inequation

θ ⊗ P ≤ θ̂(ℓ−1) ⊗ P ,

such that
˜̂
θ(ℓ−1) ≥ θ̂(ℓ−1) also holds. Using this property, one obtains an upper bound,

from (18) for θ̂(ℓ):

θ̂(ℓ) = θ̂(ℓ−1) + α(θ̂ −
˜̂
θ(ℓ−1)
︸ ︷︷ ︸

≥ θ̂(ℓ−1)

) (35)

≤ θ̂(ℓ−1) + α(θ̂ − θ̂(ℓ−1)) = θ̂(ℓ−1)(1− α) + αθ̂ ℓ > 0 .

Thus, θ̂(1) ≤ θ̂(0)(1− α) + αθ̂ also holds. Assume now that

θ̂(ℓ) ≤ θ̂(0)(1− α)ℓ + θ̂
(
1− (1− α)ℓ

)
(36)

holds. Then

θ̂(ℓ+1) ≤ θ̂(ℓ)(1− α) + αθ̂ ≤ (1− α)
(

θ̂(0)(1− α)ℓ + θ̂
(
1− (1− α)ℓ

))

+ αθ̂

≤ θ̂(0)(1− α)ℓ+1 + θ̂
(
1− (1− α)ℓ+1

)
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such that by induction (36) holds for any ℓ > 0. As α ∈ (0, 2) and therefore |1− α| < 1,

lim
ℓ→∞

θ̂(ℓ) ≤ lim
ℓ→∞

(

θ̂(0)(1− α)ℓ + θ̂
(
1− (1− α)ℓ

))

= θ̂ (37)

holds, such that θ̂ is an upper bound for θ̂(ℓ) for ℓ sufficiently large.
Assume now, that for all ℓ ≥ ℓ̃, θ̂ ≥ θ̂(ℓ) holds. Following the same reasoning than in

[17] one obtains

θ̂(ℓ) ⊗ P =
˜̂
θ(ℓ) ⊗ P ≤ θ̂ ⊗ P ≤ Y (38)

Since θ̂ is the greatest solution to x⊗ P ≤ Y , one concludes that θ̂ ≥
˜̂
θ(ℓ).

Thus from (35) one obtains

θ̂(ℓ) − θ̂(ℓ−1) = α(θ̂ −
˜̂
θ(ℓ−1)) ≥ 0 ℓ ≥ ℓ̃

such that for sufficiently large ℓ, the series θ̂(ℓ) is increasing and bounded from above by θ̂

according to (37).
Note that convergence in a strict mathematical sense can not be concluded from the

above considerations. However, they provide an insight in the behavior of the series θ̂(ℓ).
As in practical applications, the tolerances are typically not too tight, the series will in
practice converge for ℓ sufficiently large. The above considerations follow the same ideas
than the proof given in [17] for α = 1. Since in [17] θ̂(ℓ) is increasing and bounded from
above by θ̂ for ℓ > 0, it seems that using a tuning parameter α 6= 1 slows down the
convergence of the iterative procedure.

The convergence of the series for some ℓ implies θ̂ =
˜̂
θ(ℓ). Provided that Y = θ̂ ⊗ P ,

using the reasoning from [17] one can replace the inequalities in (38) by the corresponding
equalities. Then

Y = θ̂(ℓ) ⊗ P

is verified in for ℓ sufficiently large.
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