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Abstract

This paper presents a methodological approach for validation of advanced driver assistance sys-

tems. The methodology relies on the use of randomized algorithms that are more efficient than

conventional validation using simulations and field tests, especially with increasing complexity of

the system. The methodology consists of first specifying the perturbation space and performance

criteria. Then a minimum number of samples and a relevant sampling space is selected. Next

an iterative randomized simulation is executed, followed by validation of the simulation model

by hardware tests, in order to increase the reliability of the estimated performance. The proof

of concept is illustrated with some examples of a case study involving an adaptive cruise control

system. The case study also points out some characteristic properties of randomized algorithms

regarding the necessary sample complexity, and the sensitivity to model uncertainty. Solutions for

these issues are proposed as well as corresponding recommendations for future research.

1 Introduction

1.1 State-of-the-Art of Advanced Driver Assistance Systems

The increasing demand for safer passenger vehicles has stimulated the research and development of

advanced driver assistance systems (ADASs) over the past decade. An ADAS typically consists of

environment sensors (e.g. radar, laser, and vision sensors) and controllers to improve driving comfort

and traffic safety by warning the driver, or even autonomous control of actuators. State-of-the-art

examples of ADASs that have already been introduced by the automotive industry are adaptive cruise

control (ACC) [1] [2], collision warning systems [3], and pre-crash systems [4].

1.2 Challenges in Design and Validation of ADASs

The demand for safety and reliability naturally increases with this increasing automation of the vehi-

cle’s driving task, since the driver must fully rely on a flawless operation of the ADAS. For instance,

autonomous braking in an ACC should be executed only if the distance to the preceding vehicle will

otherwise become unacceptably small, or even results in a collision. In order to handle a large variety
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of complex traffic scenarios and disturbances, redundancy and fault-tolerance measures are often im-

plemented. In practice, it is however difficult to choose the right control measures and to validate their

effectiveness. Manufacturers thus face an increasing effort in the design and validation of ADASs in

contrast to a desired shorter time-to-market.

Currently, an iterative process of simulations and prototype test drives on a test track is used

for validation purposes. The simulation effort can however be inefficient, since a large number of

simulations are necessary. Instead, a worst-case analysis is often used, which leads to a conservative

control system design, thus limiting the functional performance of the ADAS. On the other hand,

test drives are more reliable, but can never cover the entire set of operating conditions, due to time

and cost constraints. Furthermore, test results can be difficult to analyze for controller validation

and benchmarking, because traffic scenarios cannot be exactly reproduced during a test drive. It

may therefore become impossible to evaluate an ADAS with guaranteed measures for the level of

performance, safety, and reliability.

1.3 Need for New Tools and Methods

The objective of this paper is therefore to present a methodological approach to provide an efficient

test program in order to cover the entire set of operating conditions. Here we define efficiency in terms

of a minimum number of experiments to be performed, in order to reduce the costs for validation. A

simplified case study will be used as an illustration of this methodology for reasons of transparency.

Note that the emphasis of this paper is therefore on the validation process, and not on control system

design.

One validation tool in this methodology is the software tool PRESCAN, which is used in a prob-

abilistic simulation strategy with the operating conditions chosen to be representative for the ‘real’

conditions. The simulation models can subsequently be validated with another tool: the VEhicle-

Hardware-In-the-Loop (VEHIL) facility, TNO’s tailor-made laboratory for testing ADASs. In VEHIL

a real ADAS equipped vehicle is tested in a hardware-in-the-loop simulation, as shown by the work-

ing principle in Figure 1. With VEHIL the development process and more specifically the validation

phase of ADASs can be carried out safer, cheaper, more manageable, and more reliable. However,

before VEHIL testing takes place, the simulation phase should be able to provide a reliable estimate of

the performance. Both VEHIL and PRESCAN are fully described in [5], and in this paper we restrict

the discussion to the underlying validation methodology, as outlined below.

1.4 Outline of this Paper

In Section 2 a simplified model of an ACC system is presented, together with its performance measures

and the perturbations acting on the system. Section 3 treats the background theory of a randomized

algorithm (RA) that is subsequently applied to the ACC case study in a number of examples. These

examples illustrate the advantages of using RAs, but also highlight some points for improvement,

especially regarding the required number of samples. Section 4 discusses some possibilities for ad-

dressing this issue. Subsequently, Section 5 presents an improved methodological approach for the

validation of ADASs. Finally, Section 6 summarizes the validation approach, and discusses ongoing

research activities.
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Figure 2: Two vehicles in ACC mode: one leader and one follower.

2 A Case Study: Adaptive Cruise Control

2.1 A Simplified Model for Adaptive Cruise Control

The ACC longitudinal control problem consists of two vehicles, as shown in Figure 2. This figure also

indicates the position x and the velocity v, where the subscripts ‘l’ and ‘f’ denote leader and follower

respectively. Further defined are the distance between the two vehicles (the headway) xr = xl−xf , the

relative velocity vr = vl−vf , the desired distance xd, and the headway separation error ex = xd−xr.
ACC tries to maintain a pre-defined velocity set-point vcc, unless a slower vehicle is detected

ahead. In that case vehicle ‘f’ is controlled to follow vehicle ’l’ with equal velocity vf = vl at

a desired distance xd. Since the ACC objective is to control the motion of a vehicle relative to a

preceding vehicle, the vehicle state is chosen as x =
[

xr vr

]T
. The initial condition of x is

defined as x(0) =
[

xr, 0 vr, 0

]T
, i.e. every time that the sensor detects a new lead vehicle that ACC

should follow. We can then write the state space representation as

ẋ =

[

0 1
0 0

] [

xr
vr

]

+

[

0
−1

]

af +

[

0
1

]

al, (1)

where the acceleration of the following vehicle af is the control input, and the acceleration of the

leading vehicle al forms the disturbance to the system.
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2.2 Constant Spacing Control Law

In velocity control mode, the ACC operates as a conventional cruise control, where the desired accel-

eration ad is given by a simple proportional controller

ad = kcc(vcc − vf), kcc > 0. (2)

In distance control mode, ad is given by proportional feedback control of the distance separation error

ex = xd − xr and its derivative ev = ėx = vd − vr

ad = −k2ev − k1ex, k1, k2 > 0. (3)

The distance xd and the feedback gains ki can be a function of a number of state variables (usually xr,
vf , and vr), tuned in order to achieve a natural following behavior. However, here we use a constant

spacing control law, where xd is equal to a constant value s0 = 40m, k1 = 1.2, and k2 = 1.7. Since

the desired relative velocity is obviously equal to zero, Eq. (3) can be rewritten as

ad = k2vr + k1(xr − s0). (4)

Although control law Eq. (4) is not used for ACC systems because of string stability issues [6]

and unnatural following behavior, we will use it in this paper for reasons of simplicity. The control

law is however proven to be asymptotically stable, such that both ex and ev are always regulated to

zero, provided k1, k2 > 0 [6].

In this paper we also neglect sensor processing delay and vehicle dynamics by assuming that the

desired acceleration is realized at the input of the controlled system without any time lag, such that

af = ad. However, we do introduce an actuator saturation, since ACC systems usually restrict the

minimum and maximum control input for safety reasons. In this case study we use the restriction that

af is bounded between −2.5 and 2.5 m/s2.

2.3 Performance Criteria for ACC

The performance of an ACC can be quantified in a number of measures ρi, e.g. overshoot, tracking

error, time response, control effort, ride comfort, and string stability. Here we restrict the controller

validation to the measure of safety, expressed as the probability p that no collision will occur for a

whole range of traffic situations. The safety measure for a single experiment is denoted by ρs ∈ {0, 1},

where ρs = 1 means that the ACC system manages to follow the preceding vehicle at a safe distance,

and ρs = 0 means that the traffic scenario would require a brake intervention by the driver to prevent

a collision1. Depending on the resulting value for p, the feedback gains k1 and k2 can be optimized.

In practice, it is not desirable to achieve p = 1 for all traffic scenarios, since this would necessitate

a very conservative controller with high autonomous braking capacity. ACC field test results suggest

that p = 0.95 is more or less appropriate for highway cruising [7]2.

2.4 Perturbation Space

The value of ρs for a particular traffic scenario obviously depends on the perturbations imposed by

that scenario. The disturbance to the ACC system is formed by the motion of other vehicles that

1Please note the difference between the performance level ρ for a particular experiment and its probability p for a whole

range of experiments.
2This means that in 5 % of the scenarios the driver has to intervene, which is a reasonable value for ACC. Note that ACC

is designed as a comfort system, not as a collision avoidance system.
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are detected by the environment sensors (which form the interface between the environment and the

system). Apart from the acceleration of the preceding vehicle al, also the initial conditions x(0) de-

termine the probability of a collision. These scenario parameters, together with measurement noise,

process noise, unmodeled dynamics and various types of faults construct an n-dimensional pertur-

bation space ∆. It is then of interest to evaluate the function ρ∆ that reflects the dependency of ρ
on the structure of ∆. In this paper we first consider the situation where ∆ is limited to the subset

S = {al, xr, 0, vr, 0} of uncertain traffic scenario parameters and where the resulting safety measure

ρs is non-decreasing.

2.5 The Control System Validation Problem

Designing a simple stable controller that meets the ACC performance requirements is not difficult.

However, validation of this controller with respect to these requirements and subsequent tuning re-

quires a lot of effort. For low-order systems, controller validation can still be solved in a deterministic

way or by using iterative algorithms. But when the dimension of ∆ increases and ρ∆ becomes non-

convex, the problem will eventually become more difficult to solve, i.e. it becomes intractable, as

shown by the tutorial paper [8].

Currently, controller validation is therefore often performed by a grid search, where all parameters

are varied through their operating range, as applied in the clearance of flight control laws [9]. However,

an exhaustive grid search may require an inefficient large number of experiments, perhaps even too

large to be feasible. Alternatively, a worst-case analysis can be performed by lumping together a

combination of disturbances, each with the direction and magnitude that has the worst impact on the

system performance ρ. However, a worst-case control system analysis is often not realistic, since

it may result in a conservative controller that is tuned to a specific non-reachable combination of

operating conditions. In the next sections we therefore discuss and further extend an approach to

address this problem, using a simple case study for proof of concept.

3 A Randomized Algorithm for Control System Validation

3.1 Motivation for a Probabilistic Approach

An alternative approach for solving a complex problem exactly, is to solve it approximately by using a

randomized algorithm (RA). An RA is an algorithm that makes random choices during its execution,

and covers both Monte Carlo, sequential and other probabilistic algorithms [10].

The use of an RA can turn an intractable problem into a tractable one, but at the cost that the

algorithm may fail to give a correct solution (without the user knowing). The probability that the RA

fails can be made arbitrarily close to zero, but never exactly equal to zero. A popular example is a

Monte Carlo simulation strategy, where this probability depends on the sample complexity, i.e. the

number of simulations performed.

An important issue is therefore the necessary sample complexity that guarantees a certain level

of confidence for the simulation outcome. In this section we show that this sample complexity is

bounded, depending on the desired level of accuracy and reliability, but also that these bounds are

rather conservative.
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3.2 Bounded Sample Complexity for RAs

The use of a randomized approach for controller validation can be illustrated as follows. Consider an

arbitrary process with only two possible outcomes: ‘failure’ (ρ = 0) and ‘success’ (ρ = 1). Suppose

that we wish to determine the probability p for a successful outcome of this process. If N denotes the

number of experiments with this process and NS the number of experiments with successful results,

then the ratio NS/N is called the empirical probability or empirical mean p̂N for a successful result

of the process.

However, p̂N is unlikely to be exactly equal to the real probability p, although it is reasonable to

expect that p̂N will approach p, as N → ∞, and as long as the samples are chosen to be representative

of the set ∆. The question thus arises in what sense p̂N converges to p, and how many experiments N
have to be performed to give a reasonable estimate of p. An estimate p̂N can be called reasonable if

it differs from the real (unknown) value p by no more than ǫ > 0, such that

|p− p̂N | ≤ ǫ, (5)

where ǫ is called the accuracy of the estimate.

Since p̂N is a random variable depending on the particular realization of the N samples, the

outcome of the inequality Eq. (5) is a random variable as well with a certain probability of realization.

Therefore, we cannot always guarantee that |p − p̂N | ≤ ǫ, even with a large number of experiments.

This means that if the experiments are performed another N times, the estimate p̂N will probably

have another value. The probability that |p − p̂Nj
| > ǫ for a particular set of simulations Nj is then

the unreliability δ of the estimate p̂N . We would therefore like to know the level of accuracy ǫ, and

reliability 1 − δ, that can be obtained with one particular set of N simulations. In practice, often the

reverse problem is considered: how many experiments N are necessary to achieve a desired level of

confidence, in terms of ǫ and δ?

To answer this question, first define the desired accuracy for determining the unknown quantity

p by some number ǫ > 0. Then, in order to know the reliability of our set of experiments, it is

necessary to determine the probability that performing N experiments will generate an estimate p̂N
for which |p − p̂N | > ǫ. A popular measure available is the Chernoff bound [11], which states that

this probability, defined as δ > 0, is no larger than 2e−2Nǫ2 . This means that, after performing

the experiment N times, we can state with a confidence of at least 1 − 2e−2Nǫ2 that the empirical

probability p̂N is no more than ǫ different from the true but unknown probability p. Therefore, in

order to estimate the unknown quantity p to an accuracy of ǫ and with a confidence of 1 − δ, the

number of experiments N should be chosen such that

2e−2Nǫ2 ≤ δ. (6)

Eq. (6) can also be written as

Nch ≥
1

2ǫ2
ln

2

δ
, (7)

which is known as the additive Chernoff bound. Table 1 presents the necessary sample complexity to

calculate p̂N for some values of ǫ and δ. Since p̂N has a confidence interval, the upper bound for N is

called a soft bound, as opposed to hard bounds given by a deterministic algorithm.

3.3 Formulation of an RA

The Chernoff bound forms the basis for the application of Monte Carlo methods, used widely in

engineering for design and analysis of control system performance. Several references give a clear
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δ ǫ Nch Nwc

0.10 0.10 150 22

0.05 0.10 185 29

0.03 0.10 210 34

0.02 0.10 231 38

0.01 0.10 265 44

0.002 0.10 346 59

0.05 0.05 738 59

0.02 0.05 922 77

0.01 0.05 1060 90

0.02 0.03 2559 129

0.01 0.01 26492 459

0.001 0.001 3800452 6905

Table 1: Values for ǫ, δ, Nch, and Nwc, according to the Chernoff bound Eq. (7) and the worst-case

bound Eq. (14).

tutorial introduction to the use of RAs [12, 13, 14, 8]. Here we summarize the main steps to be taken

in control system analysis using RAs.

Suppose that the closed-loop system (in our case the ACC equipped vehicle and its controller)

must be verified for a certain performance level ρ. It is then the goal to estimate the probability p
that this performance ρ lies above a pre-specified threshold value γ. In order to compute p̂N (γ), we

generate N independent identically distributed (iid) samples 3

∆1,∆2, . . . ,∆N

in the perturbation space ∆ according to its probability density function (pdf) f∆. The outcome of

every i-th experiment is represented by an indicator function J , given by

J(∆i) =

{

0, if ρ < γ
1, if ρ ≥ γ

(8)

The empirical probability p̂N can then be estimated as

p̂N =
1

N

N
∑

i=1

J(∆i), (9)

which is known as the simple sampling estimator.

Since the outcome of the inequality |p− p̂N | ≤ ǫ is a random variable, it has a certain probability

of realization. By introducing a confidence degree 1− δ, this probability is defined as

Pr{|p(γ)− p̂N (γ)| ≤ ǫ} ≥ 1− δ, ∀ γ ≥ 0, δ ∈ (0, 1), ǫ ∈ (0, 1) (10)

The sample complexity N that is required for Eq. (10) to hold, can then be calculated from Eq. (7).

This method for probabilistic control system analysis is formalized as follows.

3In the following we will also use p̂N instead of p̂N (γ) for reasons of clarity.
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Algorithm 3.1 (Probabilistic performance verification [14])

Given ǫ > 0, δ ∈ (0, 1) and γ ≥ 0, this RA returns with probability at least

1− δ an estimate p̂N (γ) for the probability p(γ), such that |p(γ)− p̂N (γ)| ≤ ǫ.

1. Determine the necessary sample size

N = Nch ≥ 1
2ǫ2

ln 2
δ
;

2. Draw N samples ∆1, . . . ,∆N according to f∆;

3. Return the empirical probability

p̂N (γ) = 1
N

∑N
i=1 J

(

∆(i)
)

where J (·) is the indicator function of the set B = {∆ : ρ (∆) ≥ γ}.

3.4 Examples of Application of an RA

In this section we will apply Algorithm 3.1 to the simplified ACC case study, of which the ‘true’

outcome is exactly known. If we are interested in knowing the number of traffic situations that would

become dangerous, given a stochastic distribution of traffic scenarios, we can use Algorithm 3.1 to

give an estimate p̂N of this probability p with an accuracy level ǫ and a confidence level δ, based on

N simulations.

3.4.1 Example 1: Uniformly Distributed Disturbance

Scenario Definition In this first example we choose a highway cruising scenario where the lead

vehicle approaches a traffic jam and brakes to a full stop. The initial conditions are xr, 0 = xd = 40m,

and vl(0) = vf(0) = 30m/s. We assume that the deceleration of the preceding vehicle is the only

disturbance with a uniform distribution between −10 and 0m/s2, denoted as fU(al) ∼ U [−10, 0].
We also restrict the analysis to the measure of safety ρs.

In situations when the lead vehicle brakes hard, the ACC vehicle cannot obtain the necessary de-

celeration ad, since the actuator saturates at -2.5 m/s2. Now, for fine-tuning the controller parameters,

we would like to know the percentage of brake situations for which ρs meets a pre-defined threshold.

The threshold γ is simply set at 1 in this case (no collision).

The safety of the system obviously decreases with a stronger deceleration al, such that the func-

tion ρs(al) is non-decreasing. Therefore, the boundary value ∆γ , for which only just a collision is

prevented, can easily be calculated using an iterative algorithm as −3.015m/s2. Below this value

(the scenario will always result in a collision, above this value the ACC vehicle will be able to stop

autonomously and prevent a collision. Since al is uniformly distributed on the interval [−10, 0], the

real value for p is thus equal to (3.015/10) = 0.3015. The probability that the estimated value p̂N
differs from this real value by an accuracy smaller than ǫ is then larger than 1 − δ, as defined by Eq.

(10).

Randomization of the Problem Although for this example it is feasible to formulate a deterministic

algorithm, in practice it can be difficult or even impossible to determine p in a deterministic way, when

the dimension of ∆ increases and the relation ρ∆ becomes non-convex. So instead of calculating p
explicitly in deterministic sense, the function is randomized in such a way that it takes a random input

∆i from its distribution function fU(al), according to Algorithm 3.1.
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In order to verify the performance of Algorithm 3.1, we execute it 500 times (each with N = 100).

So every j-th simulation set, for j = 1, . . . , 500, gives us an estimate p̂Nj
. The distribution of the

estimate is shown in the histogram in Figure 3(a). With this example, the accuracy and reliability for

a single simulation set (each consisting of 100 simulations), can be estimated as ǫ̂ and δ̂ respectively.

The empirical mean p̂M of the probability of a collision-free scenario is 0.30714, based on all

M ·N = 50 000 simulations, which is very close to p = 0.3015, as could be expected. The variance

of each individual estimate p̂Nj
can be found by the unbiased estimator for the variance

σ2
Nj−1 =

1

Nj − 1

Nj
∑

j=1

(p̂Nj
− p̂M )2, (11)

which gives σ2
Nj−1 = 0.0021042.

Analysis of the Simulation Results Suppose we desire that δ = 0.10 and ǫ = 0.10. Eq. (7) then

gives Nch = 150 as an upper bound on the sample complexity. The desired values for δ and ǫ imply

that the empirical mean p̂Nj
for the j-th set of simulations should lie in the interval [0.2015, 0.4015]

for every 9 out of 10 simulation sets. However, from Figure 3(a) it can be observed that in total only

15 out of the 500 simulation sets result in p̂Nj
/∈ [0.2015, 0.4015]. This means that δ is empirically

determined at δ̂ = 15/500 = 0.03, which is smaller than the desired δ. The estimate p̂Nj
for any

simulation set j is thus more reliable than desired, and we only used 100 experiments, whereas Eq.

(7) requires Nch = 150.

This example shows that a certain value for δ and ǫ can be achieved with a lower number of

samples than deemed necessary by the Chernoff bound. Correspondingly, by choosing N = Nch, a

higher level of accuracy and reliability can be obtained. Although the degree of conservatism for this

example is rather limited, it can be shown that this conservatism increases with smaller values for δ
and ǫ [8].

3.4.2 Example 2: Gaussian Distributed Disturbance

In the previous example, fU(al) may not be representative for the entire operating range, whereas

p̂N greatly depends on the correctness of the underlying pdf. Let us therefore assume a more general

acceleration profile for highway cruising. Typical vehicle measurements during ACC field testing [7]

suggest that the acceleration profile can be roughly described as a random signal with a Gaussian

distribution fN with mean µ = 0 and standard deviation σ = 1.5, denoted as N (0, 1.5), truncated on

the interval [−10, 10] m/s2.

We now execute Algorithm 3.1 again with al ∼ N (0, 1.5). The resulting histogram with the

estimated collision probability p̂Nj
for every simulation set is shown in Figure 3(b). The empirical

mean p̂M is now 0.97752, with a variance of σ2
Nj−1 = 0.00020506. This variance is much smaller

than in Example 1, due to the lower occurrence rate of dangerous situations.

Suppose that δ = 0.02 and ǫ = 0.03 are desired, Eq. (7) then gives Nch = 2559. From Figure

3(b) can be seen that only 10 out of 500 estimates p̂Nj
fall outside the interval [p − ǫ, p + ǫ], which

indicates an estimated reliability δ̂ = 0.02. So the same level of accuracy and reliability has been

achieved with only N = 100 instead of Nch = 2559 samples.
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3.4.3 Example 3: Multi-Dimensional Disturbance

In the previous two examples al was considered the only disturbance. However, in practice p depends

also on the initial distance and velocities of both vehicles at the moment of first detection by the

sensor. Consider for instance a cut-in situation at close distance xr, which is more dangerous than

a vehicle cutting-in at larger distance (with identical al and vr). The crash probability thus depends

on the entire set S = {vl, vf , xr, al} that defines the longitudinal scenario, as discussed in Section

2.4. In this example we assume Gaussian distributions for both the velocities (with µ = 30m/s and

σ = 5m/s), and distance xr (with µ = 60m, σ = 20m, and truncated on [10, 150]m).

Figure 3(c) shows the resulting histogram after execution of Algorithm 3.1 with p̂M = 0.86848
and σ2

Nj−1 = 0.0010378. Compared to Example 2 it can be seen that the variance is much larger,

since the outcome of the experiment now depends on four independent pdf’s. The sample complexity

N is again conservative, since Figure 3(c) shows that only one estimate falls outside the interval

[p − ǫ, p + ǫ], indicating δ̂ = 0.002. So the same level of accuracy and reliability has been achieved

with only N = 100 instead of Nch = 346 samples.

3.5 Characteristics Properties of RAs

The examples and key references [8, 12, 13, 14] point out the following characteristic properties:

• A limited number of test runs is necessary as compared to deterministic algorithms. However,

the sample complexity to achieve a reasonable ǫ and δ, as given by the Chernoff bound, is quite

conservative.

• An RA is very simple, since the Chernoff bound is completely independent of the nature of the

underlying process and the perturbation space ∆. However, this also means that no advantage

is taken of any a priori knowledge of the structure of ∆. It is therefore desired to modify the

simulation approach such that knowledge of the system is applied.

• The reliability of the simulation outcome strongly depends on the reliability of the pre-defined

pdf f∆. In the examples we have used simplified pdf’s, which in practice have to be improved by

empirical data. The outcome of the simulation approach also greatly depends on the modeling

effort.

• The empirical mean p̂N does not say anything about the minimum or maximum level of perfor-

mance that can be expected. It may well be that a control system has a good average perfor-

mance, but also a poor worst-case performance.

In the next section methods used in conventional control system validation will be applied to address

these issues. These methods will be integrated with the RA approach, and illustrated with the ACC

case study. The resulting methodology will be presented in Section 5.

4 Reduction of the sample complexity

As mentioned in the previous section, the sample complexity N given by the Chernoff bound is too

conservative. Reduction of N for ADAS validation is therefore an important challenge. One way is

to reformulate the problem and use a different test objective. In addition, the sampling space ∆ can

be reduced by neglecting certain subsets that are impossible to occur. Subsequently, N can be further

reduced by using a priori knowledge on which samples will be more interesting than others.
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∆S

∆S
∆F

Figure 4: Scatter plot with the occurrence of collisions. Furthermore, the subspaces ∆S and ∆F of

which the outcome can be a priori established as success or failures.

4.1 A Reduced Worst-Case Bound

The examples in Section 3 were based on estimation of the mean performance p. Alternatively, we

can estimate the worst-case performance ρmax by

ρ̂N = max
i=1,2,...,N

ρ(∆i). (12)

Tempo [15] proves that the minimum number of samples N which guarantees that

Pr {Pr {ρ (∆) > ρ̂N} ≤ ǫ} ≥ 1− δ (13)

is then given by

N ≥
ln(1/δ)

ln(1/ (1− ǫ))
. (14)

The sample complexity given by Eq. (14) is much lower than for Eq. (7), as shown in Table 1, and is

more suitable in case of a worst-case analysis.

4.2 Reduction of the Sampling Space

Figure 4 shows a scatter plot with the occurrence of collisions in the perturbation space ∆, corre-

sponding to Example 3. Obviously, a collision is more likely with lower values for xr, 0, vr, 0, and al,
such that the collision occurrences are clustered in a specific subspace ∆F.

12



γ

ρ

∆i∆min ∆ρsim ∆max
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ρsim(∆)

ρmin(∆)

Figure 5: Dependency between the performance characteristic ρ and the specific value of ∆.

This means that there is structure in the perturbation space ∆ and in the function ρ∆ that can be

used to reduce the necessary perturbation space of interest. The sampling space can then be reduced

by disregarding specific subsets of ∆, of which the outcome is a priori known. An example is the

subset ∆S with combinations of positive acceleration and positive relative velocity that will never

result in a potential collision.

When this dependency ρ∆ can be proven to be convex or non-decreasing, the sample complexity

N can be significantly reduced, as illustrated in Figure 5. In case of a convex performance function,

an RA can then iteratively search for the boundary value ρ(∆γ) = γ, and neglect any ∆i larger than

∆γ , since the outcome of those samples can be predicted in advance.

4.3 Importance Sampling

As stated above, it makes sense to give more attention to operating conditions that are more likely to

cause a collision than others.

4.3.1 A Randomized Algorithm for Importance Sampling

Suppose that we want to estimate a probability p, given a perturbation ∆. If f∆ is a pdf ∼ U [0, 1] on

the interval S = [0, 1], our goal is then to estimate

p =

∫

S

J(∆)f∆(∆)d∆ = E[J(∆)] (15)

where J is the performance function, and ∆ ∼ f∆. Importance sampling is a sampling technique to

increase the number of occurrences of the event of which the probability p should be estimated [16].

This estimation is corrected by dividing it by the increased probability of the occurrence of the event.

In order to highlight the interesting subset ∆F it thus makes sense not to sample from the original pdf

f∆, but instead use an artificial pdf, reflecting the importance of the events, and then reweighing the

observations to get an unbiased estimate.
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We can now define an importance sampling pdf ϕ that is strictly positive on S. We can then write

p =

∫

S

(

J(∆)f∆(∆)

ϕ(∆)

)

ϕ(∆)d∆ = E

[

J(Φ)f∆(Φ)

ϕ(Φ)

]

, (16)

where Φ ∼ ϕ. The importance sampling estimator based on ϕ is

p̂[ϕ]N =
1

N

N
∑

i=1

J(Φi)f∆(Φi)

ϕ(Φi)
(17)

where Φ1, . . . ,ΦN are iid with pdf ϕ. Its variance is

var (p̂ [ϕ]N ) =
1

N

[
∫

S

J(∆)2f∆(∆)2

ϕ(∆)
d∆− p2

]

(18)

An efficient estimator p̂[ϕ]N is obtained by choosing ϕ proportional to the ‘importance’ of the

individual samples, where importance is defined as |J(∆)f∆(∆)|. A rare but dangerous event can

thus be equally important as a more frequent but less dangerous event. A randomized algorithm can

then be formulated as follows.

Algorithm 4.1 (Importance Sampling)

Given ǫ, δ ∈ (0, 1), γ, and the true distribution function f∆, this RA returns

with probability at least 1 − δ an estimate p̂N for the probability p, such that

|p− p̂N | < ǫ.

1. Determine a strictly positive importance sampling pdf ϕ that emphasizes

the interesting events;

WHILE Nis < λisNch;

2. Draw Nis = λisNch samples ∆1, . . . ,∆N according to ϕ;

3. Return the empirical probability

p̂[ϕ]N = 1
Nis

Nis
∑

i=1

J(Φi)f(Φi)
ϕ(Φi)

4. Determine the importance sampling variance

σ2
is =

1
Nis−1

Nis
∑

i=1
(p̂[ϕ]N − p̂M )2

5. Determine the importance sampling reduction factor

λis =
σ2

is

σ2
ss

where σ2
ss is the variance for the simple sampling technique;

6. Check if Nis ≥ λisNch;

IF yes, THEN end algorithm;

IF no, THEN increase Nis and return to step 2;

14



4.4 Example 4: Importance Sampling

Suppose that we again want to estimate the probability p of a collision-free ACC system for the given

perturbation, as specified by Example 2. The goal is then to estimate

p =

∫

S

J(al)f
N(al)dal = E[J(∆)] (19)

where ∆ ∼ fN. Assuming that this Gaussian distribution function fN(al) is correct, then with a

simple sampling method relatively few samples will lie in the interval of interest, i.e. [-10, -3.015], as

was observed in Example 2.

We therefore define a more suitable ϕ to sample from. We therefore choose the linear pdf ϕ(al) =
−0.005al + 0.05 with al bounded on the interval S = [−10, 10]. Note that

∫ 10
−10 ϕ(al) = 1, as is the

integral of the Gaussian distribution (neglecting the tails of the distribution), such that the reweighting

process gives an unbiased estimator.

With Algorithm 4.1 more ‘important’ samples will be generated for every j-th simulation set, thus

decreasing the variance of p̂N . This result can be seen from the histogram in Figure 3(d), where the

empirical mean p̂M = 0.97751 and the variance σ2
is = 5.92 ·10−5, based on 50 000 simulations. Note

that p̂M is approximately equal to the situation in Example 2. However, the variance of a particular

realization p̂Nj
has decreased by a factor of 3.5! The inverse of this factor is called the importance

sampling reduction factor λis, which indicates the reduction in the sample complexity necessary to

achieve the same level of accuracy and reliability as the Chernoff bound [17].

However, the performance of the importance sampling method heavily depends on the reliability

of the pdf ϕ to generate random variables, and of the models used in the simulation. In addition, the

sample complexity cannot be determined a priori, thus requiring an iterative loop in Algorithm 4.1

and the need for a suitable stopping criterion.

5 Methodological Approach

A major problem with ADAS controller validation is that the system cannot be tested exhaustively for

every disturbance under every operating condition. A validation methodology should therefore pro-

vide a suitable test program in order to sufficiently (but also efficiently) cover the entire perturbation

space. To this aim we propose a generic methodological approach, consisting of the steps described

in the following sections.

5.1 Specification

Firstly, define performance measures ρ and corresponding evaluation criterion γ. In addition, the

desired δ and ǫ must be defined. Correspondingly, select the test objective in order to determine the

type of bound for N :

• Probability of performance satisfaction: for a given δ, ǫ, check if the performance measure ρ is

below threshold γ with a certain probability level p for the whole perturbation space ∆.

• Worst-case performance: check if the worst-case performance ρmax is within ǫ of ρ̂N with a

certain probability 1− δ.

Then, identify the perturbation space ∆ and its pdf f∆ by using preliminary field test results.

Using knowledge on the structure of ∆ or the function ρ∆, determine subsets ∆F and ∆S, of which
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the outcome is a priori known (either failure or success). Furthermore, a simulation model of the

vehicle, its sensor system, and its control system is designed using the dedicated simulation tool

PRESCAN [18].

5.2 Simulation

Then execute Algorithm 4.1 to cover the important part of the perturbation space to estimate the

performance p̂N with respect to the criteria defined earlier. In general ρ can be a continuous value,

although we used a discrete value in the examples.

The performance of Algorithm 4.1 depends heavily on the reliability of the models and the pdf’s

used in the simulation phase. The robustness of p̂N to model uncertainty should therefore be con-

sidered when validating an ADAS in a randomized approach. The experimental relation between ρ
and ∆ from the simulations is then bounded between ρmax and ρmin, as illustrated in Figure 5. This

means that the estimated boundary value lies within the interval [∆min, ∆max], provided that ρ∆ is a

non-decreasing relation.

5.3 Model Validation

Therefore, the most interesting samples of the perturbation space ∆i are chosen to be reproduced

in the VEHIL facility, also in a randomized approach to efficiently cover ∆. These particular ∆i

are selected to lie within the interval [∆min, ∆max]. In VEHIL disturbances can be introduced in a

controlled and accurate way, thereby achieving a more reliable estimate than ρsim(∆). In this way the

model uncertainty can be reduced, because of the replacement of a vehicle and sensor model by real

hardware. The corresponding test program can be formalized as follows

Algorithm 5.1 (Probabilistic model validation)

1. Choose initial values for ∆min and ∆max in accordance with the uncer-

tainty size, and a suitable N .

2. Test ρ at ∆min

3. IF ρ ≥ γ, THEN decrease ∆min and GOTO 2.

IF ρ < γ, THEN decrease ∆max and GOTO 4.

4. Test ρ at ∆max

5. IF ρ ≥ γ, THEN increase ∆min and GOTO 2.

IF ρ < γ, THEN increase ∆max and GOTO 4.

6. Return the empirical probability

p̂N = 1
N

∑N
i=1 J

(

∆(i)
)

The sample complexity N for VEHIL is calculated as follows. Suppose that the requirement is

that ρ ≤ γ, where γ is a small number, and we want to determine N in the case that all tests have been

successful, i.e. p̂N = 1. Then we want to check if Pr{|p̂N − p| ≤ ǫ} ≥ 1− δ, where ǫ is set equal to

γ. From ǫ and the desired confidence level δ, the necessary number N can then be derived with the

Chernoff bound.
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Apart from obtaining ρVEHIL, the test results can also be used for model validation. The estimate

p̂N may indicate necessary improvements in the system design regarding fine-tuning of the controller

parameters. Improve the simulation model using the VEHIL test results until the simulation model

proves to provide adequate performance, convergence in p̂N and sufficient samples N .

5.4 Performance Measure

In an iterative process the simulation results in step 5.2 and thus the estimate p̂N can be improved.

Subsequently, the VEHIL test program in step 5.3 can be better optimized by choosing a smaller

interval [∆min, ∆max]. From the combination of simulation and VEHIL results the performance p̂N
of the ADAS can then be estimated with a high level of reliability, and the controller design can be

improved. Finally, determine ρVEHIL with Eq. (17), correcting it for the higher occurrence rate in the

interval [∆min, ∆max].

6 Conclusions

We have presented a methodological approach for probabilistic performance validation of advanced

driver assistance systems, and applied a randomized algorithm (RA) to a simple adaptive cruise control

problem. This probabilistic approach cannot prove that the system is safe or reliable. However, we

accept a certain risk of failure (though small), since any other conventional validation process (e.g. test

drives) is also based on a probabilistic analysis. Furthermore, use can be made of a priori information

on the system, thereby emphasizing interesting samples.

However, the resulting probabilistic measure p̂N is always associated with a certain level of con-

fidence, depending greatly on the reliability of the simulation models, the perturbation space ∆ and

its pdf f∆. The use of VEHIL hardware tests with the real vehicle and sensor can reduce this model

uncertainty and improve the estimate p̂N in an iterative approach.

Ongoing research is focused on extension of this methodological approach to more complex

ADAS models, with non-convex performance functions ρ∆, a reliable pdf f∆ formed by empirical

data, and multiple performance criteria (safety, stability, and driving comfort). Finally, the presented

methodology will be integrated with the use of PRESCAN and VEHIL.
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