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ABSTRACT. In this paper we propose an on-line diagnosis algorithm for Time Petri Nets (TPN).
The plant observation is given by a subset of transitions and the faults are modeled by a subset
of unobservable transitions. The plant behavior is derived on-line and the diagnosis is obtained
checking whether or not some or all of the traces in the behavior that obey the plant observation
contain fault events. We calculate the legal plant behavior as a set of configurations in the net
unfolding. We calculate the set of legal traces in the TPN deriving for each configuration the
solution set of a system of (max,+)-linear inequalities called the characteristic system of the
configuration. We present two methods to derive the entire set of solutions of a characteris-
tic system: the first method is based on Extended Linear Complementarity Problem while the
second method is based on constraint propagation.
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1. Introduction

This paper provides a survey of recent work on the on-line diagnosis of Time Petri
Nets (TPNs) based on partial orders. In [JIR 06b] and [JIR 06c] we have described
algorithms for solving this problem. Further details can be found in [JIR 06a].

TPNs are extensions of untimed Petri Nets (PNs) where timing information about
the execution of some operations in the plant is available. In a TPN a transition can be
fired after a delay within a given interval and its execution takes no time to complete
[MER 74]. A trace in the plant comprises the transitions (events) that are executed in
the TPN model (the untimed support) as well as the time of their occurrence.

In this paper we consider the plant observation given by a subset of transitions
whose occurrence is always reported including also the accurate time when an ob-
served transition is executed, measured according to a global clock. The unobservable
events are silent, i.e. the execution of an unobservable transition is not acknowledged
to the monitoring system. The fault transitions are modeled by a subset of the unob-
servable transitions.

The model-based diagnosis for TPNs requires to detect the occurrence of a fault
event based on the model and the observation generated by the plant up to the current
time. The on-line diagnosis requires first to calculate the set of traces that are legal,
according to the model specifications, starting from the initial marking, and that obey
the received observation. Then the diagnoser must check whether some or all of the
legal traces include fault transitions.

There are several approaches to this problem. A possible approach is to derive
off-line the full behavior of the plant and then to take into account the received obser-
vation by eliminating traces that do not obey the observation. This is a very expensive
method since calculations are performed first and then discarded and more importantly
it can be applied only to models of small size that moreover do not change often their
structure.

In this paper we consider a different approach. When the process starts we derive
time interval configurations in the TPN model up to the first discarding time. A dis-
carding time is the time when in absence of any observation one can discard untimed
support traces and it corresponds with the smallest value of the latest time when an
observable event is forced to happen. The occurrence of an observable transition be-
fore the first discarding time is taken into account by eliminating traces that are not
consistent with the received observation. Then the plant behavior is derived up to a
next discarding time.

This method obviously requires less calculations but it requires the assumption that
the faults are not predictable. This simply means that one cannot predict for sure that
a fault will happen in the future. This assumption is trivial for untimed PNs. However
for TPN models this assumption cannot be checked unless the full state space of the
TPN under investigation is generated. Notice that if the faults can be predictable at
a certain time, given the observation generated by the plant up to that time, then the
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on-line diagnosis method that we propose would not predict the sure occurrence of a
fault at the earliest time possible.

In this paper we impose a structural condition that assures that the faults are un-
predictable, namely for each fault transition there is a non-fault transition that has its
pre-set included in or equal to the pre-set of the fault transition and moreover has a
lower bound of its static interval that is not greater than the upper bound of the static
interval of the fault transition. Notice that this condition is only a sufficient condition
for the faults to be unpredictable.

The analysis of Petri Nets (PN) is an NP-hard problem because of the state space
explosion due to the interleaving of concurrent events. The same problem remains
also for PN models where the time is considered as a quantifiable and continuous
variable. To cope with this difficulty methods based on partial orders were proposed
for the analysis of untimed PNs [MCM 92],[ESP 94], [BEN 03] as well as for Time
Petri Nets [SEM 96],[AUR 97],[CHA 05].

The plant analysis is based on time configurations (time-processes in [AUR 97]).
A time configuration is an untimed configuration (a configuration in the net-unfolding
of the untimed PN support of the TPN model) with a valuation of the execution times
for its events. A time configuration is legal if there is a time trace in the original TPN
that can be obtained from a linearization of the events of the configuration where the
occurrence times of the transitions in the trace are identical with the valuation of their
images in the time configuration. A linearization of the events in a configuration is a
trace that comprises all the events of the configuration executed once s.t. the partial
order between the events in the configuration is preserved in the order in which they
appear in the trace.

The set of all legal time-traces in the original TPN can be obtained by computing
for each configuration the entire solution set of a (max,+)-system of linear inequal-
ities called the characteristic system of the configuration. The characteristic system
of a configuration comprises (max,+)-inequalities relating the execution times of the
events within the configuration as well as (max,+)-inequalities that assure that a con-
flicting event (an event that is not considered in the configuration but has its preset of
conditions in the set of conditions of the configuration) was not forced to be executed.

The calculations involve time interval configurations. A time interval configuration
is an untimed configuration endowed with time intervals for the execution of the events
within the configuration. A time interval configuration is legal if for every event and
for every execution time of the event within its execution time interval there exists a
legal time configuration that considers the event executed at that time.

Thus, we need to derive for each configuration the entire solution set of its char-
acteristic system. The naive approach to enumerate all the possible max-elements
would imply to interleave concurrent events which is exactly what we wanted to avoid
by using partial orders to represent the plant behavior. To cope with this difficulty
we present two methods that avoid the explicit consideration of all the cases for each
max-term in the characteristic system.
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The first method uses the Extended Linear Complementarity Problem (ELCP)
[DES 95] for deriving the set of all solutions of the characteristic system of the con-
figuration. The solution set can be represented as a union of faces of a polyhedron that
satisfy a cross-complementarity condition.

The second method is based on constraint propagation and exploits the partial or-
der relation between the events within the configuration. We derive for each untimed
configuration a set of hyperboxes of dimension equal to the number of events within
the configuration such that the union of all the subsets of solutions that are circum-
scribed by the hyperboxes is a cover of the solution set.

The paper is organized as follows. In Section 2 we provide definitions and the
notation used in the paper and in Section 3 we formalize the diagnosis problem for
TPNs models. The analysis of TPNs based on partial orders is described in Section
4. Section 5 and Section 6 present the two methods to derive the solution set of
a characteristic system of a configuration and in Section 7 we present the on-line
diagnosis algorithm that we propose. The paper is concluded in Section 8 with final
remarks and future work.

2. Notation and definitions

2.1. Petri nets

A Petri Net is a structure N = (P, T , F ) where P denotes the set of | P | places,
T denotes the set of | T | transitions, and F = Pre ∪ Post is the incidence function
where Pre(p, t) : P ×T → {0, 1} and Post(t, p) : T ×P → {0, 1} are the pre- and
post-incidence function that specify the arcs.

We use the standard notations: p•, •p for the set of input, respectively output
transitions of a place; similarly •t and t• denote the set of input places to t, and the
set of output places of t respectively. A marking M of a PN is represented by a
| P |-vector, M : P → IN, that assigns to each place of N a non-negative number of
tokens.

The set LN (M0) of all legal traces of a PN, 〈N ,M0〉, with initial marking M0

is defined as follows. A transition t is enabled at the marking M if M ≥ Pre(·, t).
Firing, an enabled transition t consumes Pre(p, t) tokens in the input places p ∈ •t

and produces Post(t, p) tokens in the output places p ∈ t•. The next marking isM
′

=

M + Post(t, ·)− Pre(·, t). A trace τ is defined as τ =M0
t1−→M1

t2−→ . . .
tk−→Mk,

where for i = 1 . . . k, Mi−1 ≥ Pre(ti). M0
τ
−→ Mk denotes that the sequence τ may

fire atM0 yieldingMk. Given a markingM denote by Enbl(M) the set of transitions
that are enabled in M , i.e. Enbl(M) = {t ∈ T | Pre(·, t) ≤M}.

A PN 〈N ,M0〉 is 1-safe if for every place p ∈ P we have that M(p) ≤ 1 for any
marking M that is reachable from M0.
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Denote by T ∗ the Kleene closure of the set T and by ǫ the empty string. Then let
σ ∈ LN (M0) ⊆ T ∗ and T ′ ⊂ T . The projection ΠT ′ : LN (M0) → T ′∗ is defined
as: i) ΠT ′(ǫ) = ǫ; ii) ΠT ′(t) = t if t ∈ T ′; iii) ΠT ′(t) = ǫ if t ∈ T \ T ′; and iv)
ΠT ′(σt) = ΠT ′(σ)ΠT ′(t) for σ ∈ LN (M0) and t ∈ T .

2.2. Occurrence nets

Definition 1. Given a PN N = (P, T , F ) the immediate dependence relation �1⊂
(P × T ) ∪ (T × P) is defined as:

∀(a, b) ∈ (P × T ) ∪ (T × P) : a �1 b if F (a, b) 6= 0

Define � as the transitive closure of �1 (�=�∗
1).

Definition 2. Given a PN N = (P, T , F ) the immediate conflict relation ♯1 ⊂ T ×T
is defined as:

∀(t1, t2) ∈ T × T : t1♯1t2 if •t1 ∩
•t2 6= ∅

Define ♯ ⊂ (P ∪ T )× (P ∪ T ) as ∀(a, b) ∈ (P ∪ T )× (P ∪ T ):

a♯b if ∃t1, t2 s.t. t1♯1t2 and t1 � a and t2 � b

The independence relation ‖ ⊂ (P ∪ T ) × (P ∪ T ) is defined as ∀(a, b) ∈ (P ∪
T )× (P ∪ T ):

a‖b⇒ ¬(a♯b) ∧ (a 6� b) ∧ (b 6� a)

Definition 3. Given two PNs N = (P, T , F ) and N ′ = (P ′, T ′, F ′), φ is a homo-
morphism from N to N ′, denoted φ : N → N ′ where:

1) φ(P) ⊆ P ′ and φ(T ) ⊆ T ′

2) ∀t ∈ T , the restriction of φ to •t is a bijection between •t and •φ(t)

3) ∀t ∈ T , the restriction of φ to t• is a bijection between t• and φ(t)•

Definition 4. An occurrence net is a net O = (B,E,�1) such that:

i) ∀a ∈ B ∪ E : ¬(a � a) (acyclic)

ii) ∀a ∈ B ∪ E : | {b : a � b} |<∞ (well-formed)

iii) ∀b ∈ B : | •b |≤ 1 (no backward conflict)

In the following B is referred as the set of conditions while E is the set of events.

Definition 5. A configuration C = (BC , EC ,�) in the occurrence net O is defined
as follows:
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i) C is a proper sub-net of O (C ⊆ O)

ii) C is conflict free, i.e. ∀(a, b) ∈ (BC ∪ EC)× (BC ∪ EC) ⇒ ¬(a♯b)

iii) C is causally upward-closed, i.e. ∀b ∈ BC ∪ EC : a ∈ B ∪ E and a �1 b⇒
a ∈ BC ∪ EC

iv) min�(C) = min�(O)

Definition 6. Consider a PN 〈N ,M0〉 s.t. ∀p ∈ P : M0(p) ∈ {0, 1}. A branching
process B of a PN 〈N ,M0〉 is a pair B = (O , φ) where O is an occurrence net and φ
is a homomorphism φ : O → N s.t.:

1) the restriction of φ to min�(O) is a bijection between min�(O) and M0 (the
set of initially marked places)

2) φ(B) ⊆ P and φ(E) ⊆ T

3) ∀a, b ∈ E : ( •a = •b) ∧ (φ(a) = φ(b)) ⇒ a = b

For a configuration C in O denote by CUT (C) the maximal (w.r.t. set inclusion)
set of conditions in C that have no successors in C:

CUT (C) = [(
⋃

e∈EC

e•) ∪ (min�(O)] \ (
⋃

e∈EC

•e)

Definition 7. Given a PN 〈N ,M0〉 and two branching processes B,B′ of the PN
〈N ,M0〉 then B′ ⊆ B if there exists an injective homomorphism ϕ : B′ → B s.t.
ϕ(min(B′)) = min(B) and φ ◦ ϕ = φ′.

There exists (up to an isomorphism) a unique maximum branching process (w.r.t.
⊆) that is the unfolding of 〈N ,M0〉 and is denoted UN (M0) [MCM 92].

Denote by C the set of all the configurations C of the unfolding UN (M0). For
a configuration C ∈ C denote by 〈EC〉� the set of strings that are linearizations of
(EC ,�) where a string σ = e1e2 . . . eυ is a linearization of (EC ,�) if υ =| EC | and
∀eι, eλ ∈ EC we have that: i) eι = eλ ⇒ ι = λ and ii) for ι 6= λ, if eι � eλ then
ι < λ.

2.3. Time Petri nets

A Time Petri Net (TPN) N θ = (P, T , F, Is), consists of an (untimed) Petri Net
N = (P, T , F ) (called the untimed support of N θ) and the static time interval func-
tion Is : T → I(Q+), Is(t) = [Lst , U

s
t ], L

s
t , U

s
t ∈ Q+, representing the set of all

possible time delays associated to transition t ∈ T .

In a TPN 〈N θ,Mθ
0 〉 we say that a transition t becomes enabled at the time θent

then the clock attached to t is started and the transition t can and must fire at some
time θt ∈ [θent + Lst , θ

en
t + Ust ], provided t did not become disabled because of the

firing of another transition. Notice that t is forced to fire if it is still enabled at the time
θent + Ust .
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Definition 8. A state at the time θ (according to a global clock) of a TPN 〈N θ,Mθ
0 〉

is a pair Sθ = (M,FI) where M is a marking and FI is a firing interval function
associated to each enabled transition in M (FI : T → I(Q+)).

If t is executed at the time θt ∈ Q+ we write (M,FI)
〈t,θt〉
−−−→ (M ′, F I ′) or simply

S
〈t,θt〉
−−−→ S′:

1) (M ≥ Pre(·, t) ∧ θt ≥ θent + Lst ) ∧ (∀t′ ∈ T s.t. M ≥ Pre(·, t′) ⇒
θt ≤ θent′ + Ust′)

2) M ′ =M − Pre(·, t) + Post(t, ·)

3) ∀t′′ ∈ T s.t. M ′ ≥ Pre(·, t′′) we have:

- if t′′ 6= t∧M ≥ Pre(·, t′′) then FI(t′′) = [max(θent′′ +L
s
t′′ , θt), θ

en
t′′ +U

s
t′′ ]

- else θent′′ = θt and FI(t′′) = [θent′′ + Lst′′ , θ
en
t′′ + Ust′′ ]

A legal time trace τθ in a TPN N θ satisfies: τθ = S0

〈t1,θt1 〉−−−−−→ S1

〈t2,θt2 〉−−−−−→

Sυ−1 . . .
〈tυ,θtυ 〉
−−−−−→ Sυ .

Definition 9. Denote
∗
−→ the reflexive and transitive closure of →. The state graph of

a TPN N θ is SG = (S,
∗
−→, S0) where S =

{
S | S0

∗
−→ S

}
is the set of reachable

states from the initial state S0 = (M0, F I0) with FI0(t) = Is(t) for all t ∈ T s.t.
M0 ≥ Pre(·, t) otherwise FI0(t) is not defined.

In the following for a time trace τθ we use the notation τ to denote its untimed
support. For the initial state S0 we use also the notation Mθ

0 . Denote LθN θ (M
θ
0 ) the

set of all legal time traces that can be executed in 〈N θ,Mθ
0 〉. We call LθN θ (M

θ
0 ) the

time language of the TPN 〈N θ,Mθ
0 〉.

LN θ (Mθ
0 ) is the untimed support language of the time language LθN θ (M

θ
0 ), i.e.:

LN θ (Mθ
0 ) =

{
τ | ∃τθ ∈ LθN θ (M

θ
0 )
}

3. Diagnosis of TPNs

We consider the following plant description:

1) the TPN model 〈N θ,Mθ
0 〉 is untimed 1-safe

2) T = To ∪ Tuo where To is the set of observable events and Tuo is the set of
unobservable (silent) events

3) lo is the observation labeling function lo : T → Ωo ∪ {ǫ} where Ωo is a set of
labels and ǫ is the empty label. lo(t) = ǫ if t ∈ Tuo and lo(t) ∈ Ωo if t ∈ To

4) when an observable transition to ∈ To is executed in the plant the label lo(to)
is emitted together with the global time θlo(to) when this execution of to took place
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5) the observation is always correct and the execution time of an observed event
is measured with perfect accuracy according to a global clock, and received without
delay

6) the execution of an unobservable event does not emit anything (is silent)

7) the faults are modeled by a subset of unobservable events, Tf ⊆ Tuo. Tf can
be partitioned regarding the kinds of faults that may happen in the process as Tf =
TF1 ∪ TF2 . . . ∪ TFm .

Formal description of the problem: Given the plant model 〈N θ,Mθ
0 〉 as de-

scribed above, design an on-line algorithm that derives the fault diagnosis of the plant
based on the model and the received observation. The exact meaning of diagnosis is
defined below.

We make the assumption that a cycle that contains only unobservable transitions
that can be executed infinitely often contains at least one transition that has a non-zero
lower bound of its static interval. This avoids the possibility of infinitely many events
occurring at the same point in time.

The observation available to the diagnoser at the time the nth observable event is
executed in the plant is denoted as:

Oθ
n = 〈obs1, θobs1〉, . . . , 〈obsn, θobsn〉

where obs1, . . . , obsn ∈ Ωo are the labels that are received and θobs1 ≤ θobs2 . . . ≤
θobsn are the times at which the corresponding events occur.

Denote by Oθ
n,ξ the plant observation at the time ξ > θobsn , i.e. Oθ

n,ξ includes Oθ
n

together with the information that no observation is received in the interval [θobsn , ξ].

LθN θ (M
θ
0 ,O

θ
n) is the set of all time traces that are feasible in 〈N θ,Mθ

0 〉 up to the
time of the last observation θobsn and that obey the received observation Oθ

n where
τθ ∈ LθN θ (M

θ
0 ,O

θ
n) if:

1) τθ ∈ LθN θ (M
θ
0 , θobsn) (τθ is legal)

2) lo(τ) = obs1, . . . , obsn (τθ obeys the "untimed" observation)

3) for each observable transition tok ∈ To, k = 1, . . . , n we have that lo(tok) =
obsk ⇒ θtk = obsk (τθ obeys the execution times of the observed transitions)

where τθ ∈ LθN θ (M
θ
0 , θobsn) if the execution time of the last event in τθ is smaller

than or equal θobsn .

Similarly LθN θ (M
θ
0 ,O

θ
n,ξ) is the set of all time traces that are feasible in 〈N θ,Mθ

0 〉

up to the time ξ and that obey the received observation Oθ
n,ξ.

The plant diagnosis DN θ (Oθ
n,ξ) based on the received observation Oθ

n,ξ comprises
the untimed strings obtained by projecting the untimed support traces contained in
LN θ (Mθ

0 ,O
θ
n,ξ) onto the set of fault transitions Tf :

DN θ (Oθ
n,ξ) =

{
τf | τθ ∈ LθN θ (M

θ
0 ,O

θ
n,ξ) and τf = ΠTf

(τ)
}

(1)
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The diagnosis result of the plant at time ξ with the received observation Oθ
n,ξ is:

DRN θ (Oθ
n,ξ) =





F iff ǫ 6∈ DN θ (Oθ
n,ξ)

N iff {ǫ} = DN θ (Oθ
n,ξ)

UF otherwise

(2)

where similarly as defined for the untimed case in [SAM 95] we have that:

1) F means that a fault did necessarily happen in the plant:

∀τθf ∈ DN θ (Oθ
n,ξ) : ΠTf

(τf ) 6= ǫ

2) N means that a fault did not happen in the plant:

∀τθf ∈ DN θ (Oθ
n,ξ) : ΠTf

(τf ) = ǫ

3) UF means that it is uncertain whether a fault happened or not in the plant that
is, there exist two legal time-strings τθf , τ

′θ
f ∈ DN θ (Oθ

n,ξ) s.t. ΠTf
(τf ) 6= ǫ and

ΠTf
(τ ′f ) = ǫ.

In order to address properly the on-line fault diagnosis problem one must assume
that the faults are unpredictable, i.e. faults cannot be detected that will happen for sure
in the future. Otherwise one should be required to make calculations in advance so as
to detect the imminent occurrence of a fault at the earliest time possible.

We illustrate this via the following example.

p1

t1
[10,20]

[10,30]

t5

p7

t6
[10,30]

p9p8

t4
[12,20]

p6p5

[15,20]
t3

3p
p2

t2
[10,20]

p4

Figure 1. The TPN of Example 1.

Example 1. Consider the TPN displayed in Fig.1. Static intervals are attached to
each transition. t2 and t5 are observable transitions and t3 is a fault transition.

Consider that the occurrence of t2 is observed at the (global) time 20. We claim
that having this observation we know that the fault event t3 happens for sure in the
future. This is because t1 happened at the time θt1 = 10 that means that the fault
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transition t3 is forced to fire at the time 30. Since the observable transition t2 was not
executed yet, it means that t4 can become enabled only after the time 20 and can fire
at the earliest time 32 that is after the time t3 is forced to fire.

Thus after the first observation and regardless of the time of the next observation,
it is certain that a fault will happen. This means that the plant analysis should be
developed up to an arbitrary large time in the future, and to check each time if a fault
becomes imminent in the future given the plant observation up to the current time of
the process. But this is very inefficient since it is known that the state space of TPNs
of reasonable size can be very large.

In order to address properly the problem of on-line fault diagnosis we assume
that the faults are unpredictable, i.e. given any observation generated by the plant
one cannot predict that a fault will happen for sure in the future. Unfortunately, this
condition cannot be checked for general TPNs unless expensive calculations on the
complete state space of the model are made.

However we impose a structural assumption on the TPN model that is a sufficient
condition for the faults to be unpredictable. It simply says that for any fault transition
tf ∈ Tf , there is a non-fault transition t that has its pre-set •t included in or equal to
the pre-set of tf (•t ⊆ •tf ) and moreover the lower bound of the static interval of
the normal transition Lst is not larger than the upper bound of the static interval of the
fault transition tf (Lst ≤ Ust ).

Assumption 1. The TPN model N θ = (P, T , F, Is) is such that ∀t ∈ Tf , ∃t′ ∈ T \Tf
s.t. i) •t′ ⊆• t and ii) Lst′ ≤ Ust .

It is easy to see now that if Assumption 1 is satisfied then the faults are unpre-
dictable. This is because the time a fault transition tf becomes enabled is not smaller
than the time the normal transition t becomes enabled (condition i)) and tf is not
forced to fire at a time before t can fire (condition ii)).

4. The analysis of TPNs based on partial orders

In this section we present the analysis of TPNs based on partial orders. The reason
is that the state class graph methods [BER 83],[YON 98] have the drawback, when
applied for partial observable TPNs as proposed in [GHA 05], that they consider all
the interleavings of the unobservable transitions. Even though not all the interleavings
of the untimed concurrent transitions can be possible in a TPN, their consideration
makes the analysis of TPNs of reasonable size sometimes impossible.

Example 2. Consider the TPN displayed in Fig. 2. Static intervals are attached to
each transition. The observable transitions are t4, t7 and t10 and they emit the same
label. t3 and t9 are faulty transitions.
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1
p4 p7

p10

12t
[2,9]

p

2p p5 8p 11p

9t

p9

[2,9]
10t

t11
[2,5]

[1,3][1,2]
6t

p6

[9,10]
7t

t4
[1,8]

p3

t3
[2,4]

[2,4]

2t

[3,9]

t1
8t

[1,4][1,5]

5t

Figure 2. The TPN of the Example 2.

For instance if the plant analysis is based on the state class graph construction
[BER 83] one should consider when the process starts all the possible interleavings
of the unobservable concurrent transitions t2, t5, t8, and t11.

Hence in this example the timing information does not reduce the number of the
interleavings of the concurrent (unobservable) events that are considered. The partial
order reduction techniques developed for untimed PN [MCM 92],[ESP 94], [BEN 03]
are shown in [HUL 95], [SEM 96], [AUR 97], [CHA 05] to be applicable for TPN.
Consider a configuration C in the unfolding UN (M0) of the untimed PN support of a
TPN. Then consider a valuation Θ of the execution times at which the events e ∈ EC
in the configurationC are executed. I.e. for each e ∈ EC consider a time value θe ∈ TT
(TT the time axis) at which e occurs and Θ is an | EC |-tuple comprising all the values
at which all the events e ∈ EC are executed.

An untimed configuration C together with a valuation Θ ∈ TT|EC | of the execution
time for its events is called a time configuration (time process in [AUR 97]) of the
TPN model.

A time configuration is legal if there is a legal trace τθ ∈ LθN θ (M
θ
0 ) in the TPN

〈N θ,Mθ
0 〉 whose untimed support τ is a linearization of the partial order relation of

the events in the configuration (i.e. τ = φ(σ) and σ ∈ 〈EC〉�) while the execution
time θt of every transition t considered in the trace τθ is identical with the valuation
θe of the event e for which t is its image via φ.

Consider an untimed configuration C ∈ C. The TPN Cθ is obtained from the
untimed configuration C attaching to each event the static interval Ist that corresponds
in the original TPN to transition t s.t. φ(e) = t.

Cθ = (BC , EC ,�, min�(UN ), Is)
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where:

1) BC is the set of places

2) EC is the set of events (transitions)

3) � is the incidence function

4) min�(UN ) is the initial marking (the tokens "arrive" in these places at the time
when the process starts)

5) Is : EC → I(TT+), Is(e) = Is(t) with t = φ(e)

Denote by K̃Cθ the following system of inequalities:

K̃Cθ =
{
max
e′∈••e

(θe′) + Lse ≤ θe ≤ max
e′∈••e

(θe′) + Use for all e ∈ EC (3)

where in (3) ••e = ∅ implies maxe′∈••e(θe′) = 0.

Proposition 1. ∀τθ ∈ LθN θ (M
θ
0 ) we have that if τ = φ(σ) and σ ∈ 〈EC〉�, then Θ is

a solution of K̃Cθ , where Θ = (θt1 , . . . , θt|EC |
) = (θe1 , . . . , θe|EC |

) with φ(ei) = ti,
i = 1, . . . , | EC |.

Proof. The proof is straightforward since for 1-safe PN there exists an unique con-
figuration C in the net unfolding UN s.t. τ = φ(σ) and σ ∈ 〈EC〉�. Obviously
the conditions required for Θ to be a solution of K̃Cθ are satisfied by any legal time
trace.

Denote by Sol(K̃Cθ ) the set of all solutions of K̃Cθ . The | EC |-hyperbox Ĩ that
circumscribes Sol(K̃Cθ ) is easily obtained in the following way:

1) ∀e ∈ EC s.t. ••e = ∅, Ĩ(e) = [L̃(e), Ũ(e)] with L̃(e) = Lse and U(e) = Use

2) e ∈ EC s.t. ••e 6= ∅, Ĩ(e) = [L̃(e), Ũ(e)] with L̃(e) = maxe′∈••e(L̃(e
′))+Lse

and Ũ(e) = maxe′∈••e(Ũ(e′)) + Use

We cannot claim yet that for ∀C ∈ C there exists at least a legal time configuration
that corresponds with C because for a general TPN the enabling of a transition does
not guarantee that it eventually fires because some conflicting transition may be forced
to fire before.

Denote by ĔC the set of conflicting events of a configuration C ∈ C where EC
comprises the events that could have been executed but are not included in EC :

ĔC = {ĕ ∈ E \ EC | •ĕ ⊆ BC}

The characteristic systemKCθ of configurationCθ ∈ C is obtained adding to K̃Cθ

all the inequalities regarding all the conflicting events :

KCθ =





max
e′∈••e

(θe′) + Lse ≤ θe ≤ max
e′∈••e

(θe′) + Use for all e ∈ EC

min
e′♯1ĕ

(θe′) ≤ max
e′′∈ ••ĕ

(θe′′) + Usĕ for all ĕ ∈ ĔC
(4)
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Proposition 2. Given an arbitrary time ξ we have that τθ ∈ LθN θ (M
θ
0 , ξ) if:

1) τ = φ(σ), σ ∈ 〈EC〉� and C ∈ C

2) Θ is a solution of KCθ

3) ∀e ∈ EC ⇒ θe ≤ ξ,

4) ∀e ∈ Enbl(C), maxe′∈••e(θe′) + Use ≥ ξ.

Proof. ⇒ Condition 1 and 3 are trivial and the proof that Θ = (t1, . . . , tn) is a solu-
tion of KCθ is by induction.
⇐ The proof is trivial.

The problem the we should answer next is:

Up to what time ξ to make the calculations for the on-line monitoring ?

There are different solutions to answer this question, depending on the computa-
tional capability, the plant behavior, and the requirements for the diagnosis result.

Solution 1: Calculations in advance

This solution is appropriate for a plant known to have a cyclic behavior, such that
periodically the plant halts in a "quiescent state" [BAR 99] (a state s.t. no transition
is executed until a next trigger-event is executed). E.g. the protection system in an
electrical network is triggered by the occurrence of a short-circuit and the plant returns
to a quiescent state after the fault is cleared. Another example is the cyclic operation
of a plant, where each operation cycle is initiated by the plant operator.

Having derived the plant behavior up to some time ξ̂, the plant is monitored on-line
in the following way:

1) the received observation is taken into account by adding (in)equality constraints
to the characteristic system of a configuration

2) or discarding configurations when the current time exceeds the latest execution
time of an observable event in a configuration.

Remark 1. The faults are considered under Assumption 1. Thus only fault transitions
that are executed before the current time of the plant can be detected to have happened
for sure. In other words, computing the future plant behavior does not change the
detection of the faults w.r.t. the state F of the diagnoser.

The main drawback of this method is that a large amount of calculations is required
to be performed in advance and then discarded because of the received observation.
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Solution 2: Calculations after each observation

The second solution is to perform calculations each time an event is observed in
the plant. E.g. when the first observable event is executed in the plant we derive the
plant behavior up to the time θobs1 in the following way.

Let the first observation be Oθ
1 = 〈obs1, θobs1〉. Consider the set of configurations

C(Oθ
1) s.t. C ∈ C(Oθ

1) if:

1) EC contains only one event eo that corresponds with an observable event

2) φ(eo) = to and ℓ(to) = obs1 and θobs1 ∈ Ĭ(eo)

3) ∀e ∈ •CUT (C) ⇒ L̃(e) < θobs1

4) ∀e ∈ Enbl(C) ⇒ Ũ(e) > θobs1

where Enbl(C) denotes the set of events that correspond via φ to transitions that are
enabled from the marking φ(CUT (C)).

The characteristic system KCθ (Oθ
1) of configuration Cθ ∈ C(Oθ

1) is obtained
adding to K̃Cθ inequalities regarding the conflicting events and the received observa-
tion:

KCθ (Oθ
1) =





max
e′∈••e

(θe′) + Lse ≤ θe ≤ max
e′∈••e

(θe′) + Use for all e ∈ EC

min
e′♯1ĕ

(θe′) ≤ max
e′′∈ ••ĕ

(θe′′) + Usĕ for all ĕ ∈ ĔC

θeo = θobs1 for φ(eo) = to ∧ ℓ(to) = obs1

θe′o ≥ θobs1 for all e′o ∈ Enbl(C)

(5)

This method requires less computations but the price to be paid is that a fault may
be detected with a delay. This is because no calculations are performed until a new
observation is received, thus the fact that the current time of the plant exceeds the
latest execution time of an observable event is not taken into account.

However this method can be applied when the rate of receiving observations is
high, i.e. the time interval in between two observations is short and control actions are
taken with some latency.

Solution 3: Calculations up to a discarding time

A discarding time is the earliest time when in absence of any observation one can
discard untimed support traces because it can be proved that they are not valid. E.g. the
first discarding time is the smallest among the latest execution times of an observable
transition in the plant.

Definition 10. A configuration Cυ ∈ C is generated up to the time ξ if:



The on-line diagnosis of Time Petri Nets 15

1) maxe∈ •CUT (Cυ)(L̃υ(e)) ≤ ξ

2) mine∈Enbl(Cυ)(Ũυ(e)) > ξ

Given a configuration Cν ∈ C that is generated up to a time ξ′, denote by Cν(ξ) the
set of extensions of Cν up to the time ξ > ξ′ where Cℓν ∈ Cν(ξ) if:

– Cν ⊆ Cℓν (Cℓν is a continuation of Cν)

– and Cℓν is generated up to the time ξ.

The first discarding time θ̂ is calculated iteratively as follows.

Starting from the initial configuration C⊥ = (B⊥, E⊥,�1) we construct an initial
part of the net unfolding by appending events as in the untimed case, the only differ-
ence being that among all the enabled events only the events with the smallest upper
bound Ũ(e) are appended, until the first observable event say eo is encountered.

The discarding time is set equal with Ũ(eo) and then the configurations that con-
tain eo are extended up to the time Ũ(eo). Denote this set by Cnewobs . Then for each
configuration Cν ∈ Cnewobs we calculate Sol(KCθ

ν
) and for those configurations that

have a non-empty solution set we calculate Uν(e′o), i.e. the latest time when eo can
be executed. Obviously Uν(e′o) ≤ Ũν(e

o).

The discarding time θ̂ is set as the smallest among the latest times when an observ-
able event can be executed considering all Cν ∈ Cnewobs . Notice that a configuration Cν
may contain some other observable events and after calculating Sol(KCθ

ν
) some other

observable event may have the minimal latest time for its execution.

Recursively all the configurations that contain only unobservable events are ex-
tended up to the new discarding time θ̂ by appending those events among all the en-
abled events with the smallest upper bound Ũ(e) until either a new observable event
is encountered or no more events can be appended.

Algorithm 1 provides the pseudo-code for the computation of the first discarding
time. Notice that because θ̂ is calculated recursively some configurations (that contain
at least one observable event) are generated up to times bigger than θ̂. However this
does not affect the diagnosis result since the events that can be executed after the time
θ̂ are seen as a prognosis.

Example 3. Consider the TPN displayed in Fig. 2. The first discarding time is calcu-
lated as follows. (see Fig. 3 where a part of the unfolding UN (M0) is drawn attaching
to each event e ∈ E the time interval Ĩ(e)).

1) first e2 and e8 are appended since they have the smallest upper bound among
the enabled events from the initial marking (Ũ(e2) = Ũ(e8) = 4)

2) then e5 and e11 are appended

3) unobservable transitions are appended until a first observable transition is ap-
pended; in this example this can be either e4, e7 or e10
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Algorithm 1 Discarding_time

Require: C⊥ = (B⊥, E⊥,�1)

Ensure: θ̂

1: AllC =
{
C⊥

}
, θ̂ = +∞

2: repeat

3: Enbl(AllC) =
⋃
C∈AllC Enbl(C)

4: APP (AllC) =
{
e ∈ Enbl(AllC) | ∀e′ ∈ Enbl, Ũ(e) ≤ Ũ(e′) ∧ L̃(e) ≤ θ̂

}

5: APP obs(AllC) = {e ∈ APP (AllC) | φ(e) ∈ To}
6: if APP obs(AllC) 6= ∅ then

7: Cnewobs =
{
Cnewobs | C ∈ AllC, eo ∈ APP obs(AllC), Cnewobs = C ⊙ eo

}

8: for all Cν ∈ Cnewobs do

9: calculate Cν(θ̂ν) as the set of extensions of Cν up to the time θ̂ν =

min(Ũ(eo), θ̂)

10: for all Cℓν ∈ Cν(θ̂ν) do

11: calculate Sol(KCℓν
)

12: if Sol(KCℓν
) 6= ∅ then

13: calculate the smallest Uℓν (e
′o) for e′o ∈ ECℓν

, φ(e′o) ∈ To
14: Cobs = Cobs ∪ Cℓν
15: end if

16: end for

17: θ̂ν = min
Cℓν∈Cν(θ̂ν)

(Uℓν (e
o))

18: end for

19: θ̂ = min(θ̂,minCν∈Cnew
obs

(θ̂ν))
20: else

21: Cnewuno = {Cnewuno | C ∈ AllC, e ∈ APP (AllC), Cnewuno = C ⊙ e}
22: AllC = AllC ∪ Cnewuno

23: end if

24: until APP (AllC) = ∅

4) then transitions are appended until the enabled transitions have their lower
bound bigger than θ̂

5) for each configuration that contains an event say e that corresponds with θ̂ we
calculate the solution set

6) if calculating the solution set we obtain for an observable event e thatU(e) < θ̂,
then U(e) becomes the new discarding time.

The on-line diagnosis algorithm works as follows. When the process starts we
derive the set of configurations up to the first discarding time and then we have two
cases:
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Figure 3. A part of the unfolding of the TPN displayed in Fig. 2.

Case 1 If no observation is received until the time of the process becomes equal
with the discarding time θ̂ then:

1) the configurations that contain observable events with the upper bound corre-
sponding with θ̂ are discarded

2) for all the other configurations that contain observable events inequalities of the
form:

Kobs1 =
{
θeo > θ̂ | eo ∈ EC and φ(eo) ∈ To

}

are added to the characteristic systems KCθ and we derive the entire solution set

3) for all the configurations Cυ ∈ Cuno that contain only unobservable events we
check only if Sol(KCθ

υ
) has a non-empty set of solutions

4) denote by E(Oθ
1) the set of traces that are obtained as linearizations of the set

of events of the configurations that are not discarded

5) the diagnosis result Dpo

N θ (O
θ

0,θ̂
) is obtained by projecting E(Oθ

1) onto Tf .

Case 2 If the first observation 〈obs1, θobs1〉 is received before the time of the pro-
cess becomes equal with the discarding time θ̂ then:

1) the set of configurations Cuno that contain only unobservable events is discarded
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2) for all the other configurations Cν ∈ Cobs that contain observable events an
equality relation:

K′
obs1

= {θeo = θobs1 | lo(e
o) = obs1 ∧ e

o ∈ Cν}

and for observable events other than eo inequalities of the form:

K′′
obs1

=
{
θe′o > θ̂ | e′o ∈ EC and φ(e′o) ∈ To

}

are added to the characteristic systems KCθ and then we derive the entire solution set

3) denote by E(Oθ
1) the set of traces that are obtained as linearizations of the set

of events of the configurations that are not discarded

4) the diagnosis result Dpo

N θ (O
θ
1) is obtained by projecting E(Oθ

1) onto Tf .

Algorithm 2 provides the pseudo-code for the plant diagnosis based on partial
orders.

Algorithm 2 Diagnosis_1

Require: 〈N θ,Mθ
0 〉, To, Tuo

Ensure: DRN θ (Oθ
ξ )

1: Discarding_time(C⊥)
2: if θobs1 < θ̂ then

3: for all Cν ∈ Cobs s.t. ∃e ∈ ECν
, lo(e) = obs1 do

4: calculate Sol(KCθ
ν
∧ K′

obs1
∧ K′′

obs1
)

5: if Sol(KCθ
ν
∧ Kobs1) 6= ∅ then

6: E(Oθ
1) = E(Oθ

1) ∪ {σ | σ ∈ 〈ECν
〉�}

7: end if

8: end for

9: DN θ (Oθ
1) =

{
τf | τf = ΠTf

τ ∧ τ = φ(σ) ∧ σ ∈ E(Oθ
1)
}

10: else

11: for all Cυ ∈ Cobs ∪ Cuno do

12: check Sol(KCθ
υ
∧ Kobs1)

13: if Sol(KCθ
ν
∧ Kobs1) 6= ∅ then

14: E(Oθ

0,θ̂
) = E(Oθ

1) ∪ {σ | σ ∈ 〈ECν
〉�}

15: end if

16: end for

17: Dpo

N θ (O
θ

0,θ̂
) =

{
τf | τf = ΠTf

τ ∧ τ = φ(σ) ∧ σ ∈ E(Oθ

0,θ̂
)
}

18: end if

Notice that the plant diagnosis is derived either at the time θobs1 of the first ob-
served event Dpo

N θ (O
θ
1) or in absence of any observation at the first discarding time θ̂

Dpo

N θ (O
θ

0,θ̂
). We have that:
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Theorem 1. Given a TPN model 〈N θ,Mθ
0 〉 we have that:

1) when the first observable event is executed:

DRN θ (Oθ
1) = {F} ⇔ DRpo

N θ (O
θ
1) = {F}

2) if no observation is received until the first discarding θ̂:

DRN θ (Oθ

0,θ̂
) = {F} ⇔ DRpo

N θ (O
θ

0,θ̂
) = {F}

3) and for any time ξ ≤ θ̂, in absence of any observation, the diagnosis result is
different from F:

DRN θ (Oθ
0,ξ) 6= {F}

Proof. (1) and (2) have a similar proof. Based on Proposition 1 we calculate the set of
legal traces up to a given time ξ. However some configurations include events that are
executed after the time θobs1 or θ̂. Since the faults are unpredictable the consideration
of some events that can be executed after the time θobs1 or θ̂ does not change the
diagnosis result w.r.t. the detection of faults that for sure happened. (3) is proved
straightforwardly by the assumption that the faults are unpredictable.

Remark 2. Obviously by imposing the inequalities that all the events in a configura-
tion have execution times smaller than θobs1 or θ̂ one can derive exactly the diagno-
sis result at the time θobs1 respectively θ̂. However this is not efficient for practical
calculations especially when the frequency of observations is high. Notice also that
calculations in advance are not fully developed, thus it may be that an event that is
considered executed after θobs1 might not be executed since an event that is successor
of the observed event can pre-empt its execution.

In what follows we present two methods to derive the solution set of the charac-
teristic system of a configuration. The first method is based on the Extended Linear
Complementarity Problem and derives the entire solution set as a union of faces of a
polyhedron that satisfy the cross-complementarity condition [DES 95].

The second method is based on constraint propagation and derives for a configu-
ration C a set of | EC |-hyperboxes s.t. the union of the subsets of solutions that are
circumscribed by the | EC |-hyperboxes is a cover of the entire solution set.

5. The Extended Linear Complementarity Problem

The ELCP is defined as follows (see [DES 95]):
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Given A ∈ IRw×z , G ∈ IRq×z , c ∈ IRw, d ∈ IRq , and m index sets
ψ1, . . . , ψm ⊆ {1, . . . , w}, find x ∈ IRz such that

Ax ≥ c, Gx = d (6)
m∑

j=1

∏

i∈ψj

(Ax− c)i = 0 . (7)

Condition (7) can be interpreted as follows. Since Ax ≥ c, all the terms in (7)
are nonnegative. Hence, (7) is equivalent to

∏
i∈ψj

(Ax − c)i = 0 for j = 1, . . . ,m.
So we could say that each set ψj corresponds to a group of inequalities in Ax ≥ c,
and that in each group at least one inequality should hold with equality. In [DES 95]
an algorithm to find all solutions of an ELCP was developed. This algorithm yields
a description of the complete solution set of an ELCP by finite points, generators for
extreme rays, and a basis for the linear subspace associated with the maximal affine
subspace of the solution set of the ELCP.

Let us now explain how (max,+) equations of the form

max
i∈J

(θi) + L ≤ θ ≤ max
i∈J

(θi) + U (8)

can be recast as an ELCP. First of all we introduce a dummy variable γ = maxi∈J θi.
Then (8) reduces to the linear inequality

γ + L ≤ θ ≤ γ + U , (9)

which already fits the ELCP format. Let us now look at the equation γ = maxi∈J θi.
This can be recast as

γ ≥ θi for all i ∈ J , (10)

where for at least one index i ∈ J equality should hold, i.e.

∏

i∈J

(γ − θi) = 0 . (11)

Clearly, equations (9)–(11) constitute an ELCP.

Thus KCθ can be treated as an ELCP. First we derive the polyhedron that provides
the set of solution for the system of linear (in)equalities given by (6). The solution
set of the ELCP is obtained as a union of faces of a polyhedron that satisfy the cross-
complementarity condition [DES 95].

Example 4. Consider the TPN 〈N θ,Mθ
0 〉 displayed in Fig. 4.

Since N θ is acyclic, N θ is isomorphic with its unfolding. Consider the configura-
tion C that includes t1, t2, t3.

The following (max,+)-system of linear inequalities provides the characteristic
system of the configuration C.
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[2,15]
1t

p1

b2

[5,10]

t5

t2

p2

[2,15]

b5
p4

t3
[5,20]

p4 p5

[10,20]
6tt4

[10,20]

p3

Figure 5. A configuration of the TPN displayed in Fig. 4.





2 ≤ θt1 ≤ 15

2 ≤ θt2 ≤ 15

min(θt1 , θt2) ≤ 10

max(θt1 , θt2) + 5 ≤ θt3 ≤ max(θt1 , θt2) + 20

θt3 ≤ θt1 + 20

θt3 ≤ θt2 + 20

(12)

We use the notation xi for the execution time θti of transition ti, i = 1, 2, 3,
z1 = min(x1, x2), and y1 = max(x1, x2).
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A =




x1 x2 x3 y1 z1 δ

−1 0 0 0 1 0
0 −1 0 0 1 0
1 0 0 −1 0 0
0 1 0 −1 0 0
1 0 0 0 0 −15

−1 0 0 0 0 2
0 1 0 0 0 −15
0 −1 0 0 0 2
0 0 0 0 1 −10
0 0 −1 1 0 5
0 0 1 −1 0 −20

−1 0 1 0 0 −20
0 −1 1 0 0 −20




We have the characteristic system KCθ in (12) expressed in the form of an ELCP,
(6) and (7). 




A · x ≥ 0

(A1 · x)(A2 · x) = 0

(A3 · x)(A4 · x) = 0

(13)

where x = [x1, x2, x3, y1, z1, δ]
T .

Additionally consider that x3 = 23, which simply means that we want to derive
the solution set ofKCθ considering that the observable event t3 is executed at the time
θt3 = 23.

The solution set of the characteristic system is displayed in Fig. 6 as a union of
2 polytopes (trapezia). The first one has as vertices (3, 15), (10, 15), (3, 3), (10, 10)
and the second one has as vertices (3, 3), (10, 10), (15, 10), (15, 10).

6. The method based on constraint propagation

Before formally presenting the second algorithm we introduce first the definition
of a time interval configuration.

A time interval configuration C(I) is an untimed configuration C ∈ C endowed
with time intervals for the execution of the events within the configuration. I is a
vector of dimension | EC | that comprises for each event e ∈ EC the time interval
I(e) in which the event e is assumed executed.

Definition 11. Given the observation Oθ
1 and a configuration C ∈ C(Oθ

1) we have
that the time interval configuration C(I) is legal if for any event ei (∀ei ∈ EC) and
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Figure 6. The projection of the solution set of the characteristic system KCθ of the
Example 4 onto the plane (θt1 , θt2).

for any execution time θei of the event ei (∀θei ∈ I(ei)) there exist execution times
for all the other events within the configuration (∃θej ∈ I(ej) for all ej ∈ EC \ {ei})
s.t. Θ = (θe1 , . . . , θei , . . . θe|EC |

) is a solution of the characteristic system KCθ (Θ ∈

Sol(KCθ (Oθ
1))).

Given a hyperbox Iν ⊆ I denote by [Lν(e), Uν(e)] the execution time interval for
the event e. Then for a conflicting event ĕ denote byLν(ĕ) = maxe′∈••ĕ(Lν(e

′))+Usĕ
and Uν(ĕ) = maxe′∈••ĕ(Uν(e

′)) +Usĕ the earliest respectively the latest time when ĕ
is forced to fire. We have that.

Proposition 3. C(Iν) is a legal time interval configuration if the following conditions
hold true:

1) Iν ⊆ Ĩ such that Lν(e) ≤ maxe′∈••e(Lν(e
′)) + Use and Uν(e) ≥

maxe′∈••e(Uν(e
′)) + Lse

2) ∀ĕ ∈ ĔC , ∃e ∈ EC s.t. e♯1ĕ and Lν(e) ≤ L̆ν(ĕ) and Uν(e) ≤ Ŭν(ĕ)

3) θobs1 = θeo for eo ∈ EC , φ(eo) = l(obs1)

4) ∀e ∈ •CUT (C) ⇒ Uν(e) ≤ θobs1

5) ∀e ∈ Enbl(C) ⇒maxe′∈••e(Lν(e
′)) + Use ≥ θobs1 .

Proof. The proof is as follows. Consider a hyperbox Iν ⊆ Ĩ that satisfies the proper-
ties 1− 5 above.

Denote EC = EC ∪ ĔC ∪ EenC , where EenC is the set of events that are enabled
from CUT (C).
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Consider the characteristic systemKCθ (Oθ
1) augmented with the dummy variables

θĕ, θ
en
e that correspond with the conflicting events and the events that are enabled from

CUT (C) where θĕ = maxe∈••ĕ(θe) + Usĕ and θeen = maxe∈••een(θe) + Useen .

Given the execution time θei of ei ∈ EC , denote by Solν(KCθ | θei) the subset
of solutions of KCθ parameterized by θei . For ej ∈ EC , denote by Iν(ej | θei)
the projection of Solν(KCθ | θei) onto the plane (ei, ej), Iν(ej | θei) = [Lν(ej |
θei), Uν(ej | θei)].

Consider θ′ei ∈ Iν(ei) s.t. Lν(ei) ≤ θei ≤ θ′ei ≤ Uν(ei).

We have that:
0 ≤ ∆Lν(ej | θei) ≤ ∆θei

0 ≤ ∆Uν(ej | θei) ≤ ∆θei
(14)

where ∆Lν(ej | θei) = Lν(ej | θ′ei) − Lν(ej | θei), ∆Uν(ej | θei) = Uν(ej |

θ′ei)− Uν(ej | θei), and ∆θei = θ′ei − θei .

By item 2 we have that ∀ĕ ∈ ĔC , ∃e ∈ EC s.t. e♯ĕ and Lν(e) ≤ L̆ν(ĕ) and
Uν(e) ≤ Ŭν(ĕ).

Claim: ∀θĕ ∈ Iν(ĕ) we have that Lν(e | θĕ) ≤ θĕ.

Proof. (Claim) By item 3 we have that Lν(e) ≤ L̆ν(ĕ) and Uν(e) ≤ Ŭν(ĕ) and by
(14) ∆Lν(e | θĕ) ≤ ∆θĕ.

Based on this result we have that imposing the constraints due to the conflicting
events (45 degree planes) does not modify the projection of the solution set on to the
axis. This means that the projection of the solution set Solν(KCθ ) onto any of the
axis is a single interval (and not a union of intervals). This completes the proof.

In the following we present an algorithm that derives a set of | EC |-hyperboxes,
{Iν | ν ∈ V} (V the set of indexes) s.t. for each | EC |-hyperbox Iν , C(Iν) is a legal
time interval configuration and the union of the subsets {Solν(KCθ ) | ν ∈ V} that are
circumscribed by Iν , ν ∈ V is a cover of the entire solution set Sol(KCθ ), i.e.

⋃
ν∈V Solν(KCθ ) = Sol(KCθ ), where Solν(KCθ ) = Sol(KCθ ) ∩ Iν

The idea behind developing the algorithm that we propose is as follows. First we
calculate the hyperbox Ĩ that circumscribes Sol(K̃Cθ ). Then we should impose the
timing constraints imposed by the conditions 2 − 5 in Proposition 3. We have three
kinds of constraints. Denote by Kconf , K1

obs, and K2
obs the set of constraints imposed

by the set of conflicting events (condition (2)), the equality constraint required by the
observation of the label lobs1 (condition (3)), and respectively the set of constraints
that require that the time configuration is complete w.r.t. the time θobs1 (none of the
concurrent parts of the process are left behind in time).
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Consider a constraint κe on the time interval Ĩ(e) = [L̃(e), Ũ(e)] of an event
e ∈ EC where:

κe :=
{
I ′(e) = [L′(e), U ′(e)] | L′(e) > L̃(e) or U ′(e) < Ũ(e)

}

The set of solutions of K̃Cθ that satisfy κe, denoted Sol(K̃Cθ ∧ κe), is obtained
propagating the constraint κe forward to its successors and backwards to its predeces-
sors:

− forward propagation: for all eυ ∈ e••:

L′(eυ) = max(L̃(e) + Lseυ , L̃(eυ)) and U ′(eυ) = min(Ũ(e) + Useυ , Ũ(eυ))

− backward propagation:

i) for all eυ ∈ ••e: U ′(eυ) = min(Ũ(e)− Lse, Ũ(eυ))

ii) for each eυ ∈ ••e s.t. L̃(e)− Use > Ũ(eυ) consider a different case ν ∈ V ′:

ii.1) L′
ν(eυ) = L̃(e)− Use

ii.2) for all eι ∈ ••e, eι 6= eυ : L′
ν(eι) = L̃(eι).

The backward propagation of a constraint κe may require to split an | EC |-
hyperbox considering different cases. Notice that the number of cases is not bigger
than the number of concurrent predecessor events of the event e to whom the con-
straint κe is applied. For each hyperbox Iν′ , ν′ ∈ V ′ the set of constraints is updated
since in general it may be that new constraints appear while some of the previous con-
straints are satisfied. If a constraint cannot be imposed the case is aborted while if
the set of constraints is empty the algorithm returns an hyperbox that circumscribes a
subset of solutions of KCθ .

The constraint propagation algorithm works as follows:

1) first step is to impose the constraints of kind K1
obs and K2

obs (required by the
received observation)

2) the second step is to impose for each | EC |-hyperbox that results after step 1,
the set of constraints Kconf . E.g. for Iν consider that ∃ ĕ ∈ EC s.t. condition 2 in
Proposition 3 is not satisfied. Then for each e ∈ EC s.t. e♯1ĕ consider a different
case and impose a constraint κe := {L′

ν′(e) = Lν′(ĕ)} if Lν′(ĕ) ≤ Lν′(e) or κĕ =
{U ′

ν′(ĕ) = Uν(e)} if Uν′(ĕ) ≤ Uν′(e).

3) an arbitrary constraint κe or κĕ is selected and then it is imposed backwards. If
new constraints appear on the time intervals of the predecessor events of e or ĕ then
one of these constraints is selected and it is imposed further backwards until a deci-
sion is achieved. Then constraints are propagated forward for the | EC |-hyperboxes
that are not aborted. The maximum number of different cases that result propagat-
ing recursively a constraint backwards is smaller than the size of the maximum set of
concurrent events in the configuration
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4) a decision is achieved for each case in finite time since the corner points of
each | EC |-hyperbox are rational numbers and each constraint that is applied either
reduces one edge of the | EC |-hyperbox or returns success/abort.

Example 5. Consider the TPN displayed in Fig. 2 and the part of the unfolding
developed up to the discarding time θ̂ = 17 ( Fig. 3).

Consider the configuration displayed in Fig. 7 where the dotted part indicates
the conflicting events e1, e6, e12. Notice that e1, e12 are passive, thus they are not
considered.

To deactivate e6 we have that either e3 or e9 happens before the time e6 is forced
to fire. The interval when e6 is forced to fire is [3, 7]. First case is e3 is executed
before e6 is forced to fire. This condition is satisfied if e3 is executed in the interval
[4, 7] (instead of [4, 9]) and e6 is forced to fire also in [4, 7] (instead of [3,7]). This is
achieved if e5 is executed in the interval [2, 5] or e8 is executed in the interval [2, 4].
The second case requires that e9 fires before e6 is forced to fire. Thus e9 should be
executed in the interval [3, 7].

e

7b

[1,4]
8

b8

[2,7]
6e e9

[3,8]

b9

e10
[5,17]

b’7 b’10

b’10

[9,14]

e12

11b

[2,5]
11e

b10
b1

2e
[2,4]

e1
[10,13]

b’1

b2

[4,9]
3e

b3

e4
[5,17]

4b’bb1

6b

5b

[1,5]

e5

4b

Figure 7. A configuration of the unfolding displayed in Fig. 3.

Consider that e4 is observed at time 13. This constraint is imposed obtaining the
following four hyperboxes that provide four legal time interval configurations:

1) I1(e2) = [2, 4]; I1(e3) = [5, 7]; I1(e4) = 13; I1(e5) = [1, 5]; I1(e8) = [3, 4];
I1(e9) = [4, 8]; I1(e11) = [2, 5];

2) I2(e2) = [2, 4]; I2(e3) = [5, 7]; I2(e4) = 13; I2(e5) = [3, 5]; I2(e8) = [1, 4];
I2(e9) = [4, 8]; I2(e11) = [2, 5];

3) I3(e2) = [2, 4]; I3(e3) = [5, 9]; I3(e4) = 13; I3(e5) = [1, 5]; I3(e8) = [2, 4];
I3(e9) = [4, 7]; I3(e11) = [2, 5];

4) I4(e2) = [2, 4]; I4(e3) = [5, 9]; I4(e4) = 13; I4(e5) = [2, 5]; I4(e8) = [1, 4];
I4(e9) = [4, 7]; I4(e11) = [2, 5];
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7. The on-line diagnosis

In the previous sections we have presented the plant diagnosis up to the first ob-
servation or in absence of any observation up to the first discarding time. Then the
on-line diagnosis is performed calculating the plant behavior up to a new discarding
time.

Notice that we can easily extend the time interval configurations since the | EC |-
points ΘLν

and ΘUν
that correspond to the lower limits of the execution times ΘLν

=
(Lν(e1) . . . , Lν(e|EC |)) respectively to the upper limits of the execution times ΘUν

=
(Uν(e1) . . . , Uν(e|EC |)) are solutions of the characteristic system.

Theorem 2. Given a TPN model 〈N θ,Mθ
0 〉 we have that:

1) when an observable event is executed:

DRN θ (Oθ
n) = {F} ⇔ DRpo

N θ (O
θ
n) = {F}

2) for θ̂ the first discarding time after the time when the nth observed event is
reported:

DRN θ (Oθ

n,θ̂
) = {F} ⇔ DRpo

N θ (O
θ

n,θ̂
) = {F}

3) and in absence of any observation, the diagnosis result w.r.t. the detection of the
faults that for sure happened calculated any time in between the last observed event
and the discarding time is constant, i.e. ∀ξ ∈ [θobsn , θ̂):

DRN θ (Oθ
n,ξ) = {F} ⇔ DRpo

N θ (O
θ
n) = {F}

Proof. The proof is similar to the proof of Theorem 1.

8. Conclusions

In this paper we have proposed on-line algorithms for the diagnosis of TPN mod-
els. We have presented three solutions for implementation. First solution is appropri-
ated for a plant known to have a cyclic behavior and requires to calculate in advance
the plant behavior during an operation cycle and then to take the observation generated
by the plant into account.

The second solution that we have presented is to update the calculations only at
the time a new observation is generated by the plant. This method is suitable for a
plant that generates observations with a high frequency.

The third solution that we have proposed is to derive the plant behavior up to a
discarding time, i.e. up to a time when in absence of any observation one can discard
untimed support traces because they are not consistent with the plant behavior.
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The analysis is based on partial orders and it requires to derive for each configura-
tion the solution set of a system of (max,+)-linear inequalities called the character-
istic system a configuration.

We have presented two methods for obtaining the solution set of the characteristic
system of a configuration: first method derives exactly the entire solution set and is
based on the ELCP and the second method is based on constraint propagation and
computes a set of hyperboxes such that the subset of solutions of the characteristic
system that are circumscribed by the hyperboxes provide a cover of the solution set.
Both algorithms are NP-hard problems. Beside the number of events, the number of
conflicting events, and the maximum number of predecessors respectively successors
of a node in a configuration, the computational complexity of both methods strongly
depends on the structure of the system.

However there are a few reasons that allow us to claim that the two methods are
computationally more efficient than the ones ([AUR 97], [GHA 05]) presented in the
literature. Comparing with the method based on the state class graph computation
[GHA 05] our methods have the advantage that not all the interleaving of the concur-
rent events are considered. Moreover the computational complexity depends in our
case on the size of the largest subnet that contains unobservable transitions whereas
the computation complexity in [GHA 05] depends on the size of the entire net. The
algorithm in [AUR 97] solves a system of (max,+)-inequalities enumerating all the
cases for each max-term. This combinatorial approach is known in the literature to be
computational less efficient than the ELCP.

Finally notice that for the characteristic system of the configuration considered in
Example 5 the ELCP provides 8 subsets while constraint satisfaction only finds 4 sub-
sets. The reason is that each face of a polyhedron that satisfies a cross-complementarity
condition provides a legal time interval configuration but the converse is not true. The
subset of solutions that is circumscribed by a hyperbox of a legal time interval con-
figuration may be obtained as a union of faces of a polyhedron that satisfy a cross-
complementarity condition.

However the set of hyperboxes obtained running the algorithm based on constraint
propagation does not allow one to calculate the minimum and maximum time separa-
tion between the execution of two events unless a further refinement of the calculations
is performed.

We plan to extend the methodology for a distributed setting where the strong as-
sumptions considered in [JIR 06a] to be relaxed.
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