
Delft University of Technology
Delft Center for Systems and Control

Technical report 07-003

Efficient implementation of serial
multi-agent model predictive control by

parallelization∗

R.R. Negenborn, B. De Schutter, and J. Hellendoorn

If you want to cite this report, please use the following reference instead:
R.R. Negenborn, B. De Schutter, and J. Hellendoorn, “Efficient implementation of
serial multi-agent model predictive control by parallelization,” Proceedings of the
2007 IEEE International Conference on Networking, Sensing and Control (ICNSC
’07), London, UK, pp. 175–180, Apr. 2007.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/07_003.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/07_003.html

Efficient implementation of serial multi-agent model predictive control

by parallelization

R.R. Negenborn, B. De Schutter, J. Hellendoorn

Abstract— We discuss an extension of a scheme recently
proposed for multi-agent control of large-scale networks, like
power networks, road traffic networks, water networks, etc. The
original scheme uses serial sequences of agent interactions that
under some assumptions make agents locally choose actions that
are globally optimal. However, some weaknesses of the approach
appear when applied to large-scale networks. We identify these
weaknesses and propose, for problems with a tree-structured
problem topology, an improvement based on parallelization of
the serial scheme. With an example we illustrate and compare
the schemes.

I. INTRODUCTION

A. Transportation networks

Our modern society crucially relies on the efficient oper-

ation of several types of large-scale transportation networks,

like power networks, road traffic networks, water networks,

etc. Due to, e.g., high computational requirements, commu-

nication delays, or unwillingness to share information, these

networks cannot be controlled by a single agent that has

access to all actuators and sensors. Instead, a multi-agent or

distributed control approach has to be employed, in which

the overall network is divided into a number of subnetworks

and a control agent is assigned to each subnetwork. Each

control agent has to locally determine actions to the actuators

in its own subnetwork that give the best overall network

performance, using information from sensors in its own

subnetwork and communication with other agents [1], [2],

[3]. We assume that agents are at least semi-cooperative, in

the sense that the agents may have information that they do

not want to share with other agents, but that in order to reach

desired performance the agents realize that they will have to

share some information and be involved in negotiations.

B. Multi-agent model predictive control

Recently, model predictive control (MPC) [4] has been

introduced as a strategy for agents to determine their actions

in a single-layer multi-agent setting [5]. In an MPC strat-

egy, at each control cycle, an agent solves an optimization

problem that finds the best local actions to apply to its

local subnetwork over a certain prediction horizon under a

set of constraints. The agent performs its optimization by

making predictions on the evolution of the subnetwork under

different sequences of actions and given an initial subnetwork

state and constraints on inputs, states, and outputs. The

The authors are with the Delft Center for Systems and Control,
Delft University of Technology, Mekelweg 2, 2628CD Delft, The
Netherlands, {r.r.negenborn,j.hellendoorn}@tudelft.nl,
b@deschutter.info. Bart De Schutter is also with the Marine and
Transport Technology department of Delft University of Technology.

sequence of actions that gives the best performance according

to an objective function is determined. The first action of this

sequence is implemented, after which the subnetwork evolves

to a new state and the next control cycle is started.

For making the predictions within a certain control cycle,

each agent uses a model of its subnetwork. Since the physical

subnetworks together form the overall network, e.g., due to

flows going from one subnetwork to another, the models of

the local subnetworks depend on the models of other sub-

networks. Interconnecting variables are used for modeling

these interconnections. A main challenge is how to make

individual agents determine values for the interconnecting

variables that result in local actions that are globally optimal.

Without consistency on the values that the agents assume for

the interconnecting variables, the predictions made of the

dynamics of a local subnetwork over the prediction horizon

will not be accurate, reducing the quality of the control.

C. Parallel versus serial schemes

This challenge can be tackled by having agents per-

form iterations of information exchange between each other,

without the intervention of a supervisor, on the values of

interconnecting variables [5], [6]. An iteration consists of

each agent performing one step, involving local computations

only. After each agent has performed its step in an iteration,

information is exchanged, and the next iteration can be

started. One approach for such a scheme is based on a

decomposition of an augmented Lagrange formulation of the

overall control problem [7]. A typical approach to perform

this decomposition is by using an auxiliary problem principle

[5], [6]. The resulting scheme is a parallel scheme: agents

perform local computations simultaneously. An alternative

approach to decompose the augmented Lagrange formulation

uses a block coordinate descent [7]. This approach has been

used before for the unit commitment problem in power sys-

tems [8], and has recently been introduced in the context of

multi-agent MPC [9]. The block coordinate descent results in

a serial scheme: one agent at a time performs computations.

For small networks, the serial approach has shown preferable

properties compared to the parallel approach in terms of

decision-making speed and accuracy [9]. In the following we

consider extension of this serial approach to larger networks.

D. Parallelized serial schemes

For the scheme that we consider, the local solutions of

agents converge over a number of iterations to the overall

optimal network solution under a convexity assumption on

the overall control problem [7], [9]. Although the local

solutions converge to the global optimum, a disadvantage

of this serial approach is that with an increasing number

of agents, the number of steps required to complete one

single iteration, and thus the total time required for decision

making, increases as well. In this paper we examine a method

for improving the running time of the serial approach for

overall convex problems with a certain tree structure by

parallelizing the serial scheme. Instead of having one group

of agents within which computations are done serially, there

may be multiple groups within which computations are done

serially simultaneously. We propose to increase the serial

decision-making speed by:

• solving fewer local steps by having agents know when

their current solution is within some distance from the

optimal solution, and by not changing it anymore after

this;

• reducing communication between agents by having mul-

tiple instances of the serial scheme work simultaneously

in smaller groups of agents.

In our approach the agents detect on-line, while solving

their subproblems, when the group of agents can be split

into smaller groups in which the serial algorithm is per-

formed. This will in particular be beneficial when, e.g.,

disturbances have only local consequences and not all agents

have to be involved in solving these consequences. In these

cases, iterations only have to be done by a small number

of agents, thus reducing computation and communication

requirements, therewith increasing decision-making speed.

No off-line, a-priori, ordering of agents to determine the

order in which they should perform their computations is

necessary. Furthermore, under the given assumptions, the

approach ensures that the solutions of the individual agents

converge to local actions that are globally optimal up to a

user-defined accuracy.

E. Comparison with distributed constraint optimization

At a first glance, the approach we propose may seem

similar to approaches from the field of distributed constraint

optimization (DCOP), e.g., the recently proposed ADOPT

algorithm [10]. Indeed, as we will see, our approach relies

on forming a tree-shaped communication structure between

agents and passing of desired values for variables from

parents to children, and information about optimality from

children to parents, as also is the case in ADOPT. However,

our approach considers a significantly different problem class

than techniques used in the field of DCOP. In particular:

• DCOP addresses distributed solution of problems in-

volving discrete variables and constraints between these,

whereas our approach addresses problems involving

continuous variables and constraints between these.

• DCOP approaches are typically based on ideas from

the field of integer and discrete programming, e.g.,

branch-and-bound methods. The approach we propose is

based on Lagrange theory, is developed for continuous

programming problems, and includes well-established

results for convergence to optimal solutions.

• DCOP approaches consider constraints between discrete

variables, of which the domain of possible values of a

particular variable is independent of the values of other

variables. In our approach, the values that the variables

controlled by the agents can take on are constrained by

local dynamics of an agent’s subnetwork and indirectly

by the values of variables of neighboring agents.

F. Outline

The remainder of this paper is outlined as follows. In

Section II we introduce a model for structuring large-scale

control problems and decision-making schemes. In Section

III we discuss the original serial approach in terms of this

model and point out some of its drawbacks. In Section IV

we propose the parallelized version, and in Section V we

give an example illustrating and comparing the performance

of the two approaches based on a simulation study.

II. MODELS FOR DECISION MAKING

For n subproblems we define the set of nodes N =
{1,2, . . . ,n} and the set of edges E = {(i, j) ∈ N 2|i 6=
j,subproblems i and j depend on each other}. We consider

problems for which the overall control problem at control

cycle k defined over a prediction horizon of N cycles can be

written in an MPC fashion as [4]:

min
x̃1, x̃2, . . . , x̃n

ũ1, ũ2, . . . , ũn

n

∑
i=1

J̃i(x̃i, ũi) (1)

subject to g̃i(x̃i, ũi, w̃in, j1,i, . . . , w̃in, jm,i,i) = 0 (2)

h̃i(x̃i, ũi)≤ 0 (3)

w̃in, j,i = w̃out,i, j (4)

w̃out, j,i = C̃ j,i[(x̃i)
T (ũi)

T]T (5)

for j ∈N , i ∈N ,(j, i)∈ E , j1, . . . , jmi
are the indices of the

elements of { j|(j, i) ∈ E }, and where for subnetwork i, J̃i is

the local objective function, x̃i = [(xi,k+1)
T
, . . . ,(xi,k+N)

T]T

are the subnetwork states, ũi = [(ui,k)
T
, . . . ,(ui,k+N−1)

T]T

are local inputs, and g̃i = [gi,k, . . . ,gi,k+N−1]
T and h̃i =

[hi,k, . . . ,hi,k+N−1]
T are local equality and inequality con-

straints, respectively. In a similar way, we define variables

w̃in, j,i as interconnecting inputs and w̃out, j,i as interconnecting

outputs. These variables are used to define the interconnect-

ing constraints (4) between subnetworks i and j. Matrix

C̃ j,i is an interconnecting output selection matrix that selects

which local variables of subnetwork i are interconnecting

outputs with respect to subnetwork j. The equality con-

straints (2) include the predictions of the subnetwork dynam-

ics, e.g., equations of the form xk+1,i = fi(xi,k,ui,k,win,i,k),
where fi is the prediction model for subnetwork i, while h̃i

mainly contains domain constraints on the local states and

inputs. Note furthermore that the overall objective function

defined in (1) consists of the combination of the local

objective functions of each agent. So, each agent has only

local goals, like minimizing local flows and inputs.

A. Problem topology

To make the structure of an overall control problem more

clear and see how parallelization can be used, we introduce

the concept of a problem topology. Given the decomposition

of the overall control problem into subproblems (e.g., based

on geographical areas), a problem topology is the unique

undirected graph representing the dependencies of subprob-

lems on one another. Each node represents a subproblem,

while an edge between two nodes indicates that the two

subproblems represented by the nodes depend on each other.

Since any subproblem depends on itself, self-dependence

edges are not considered. For a given decomposition of the

overall problem, the associated problem topology is simply

found by placing edges between any two nodes representing

subproblems that depend on each other.

There are different types of problem topologies, differing

in additional assumptions made on the set of edges E .

Throughout the paper, we assume:

Assumption 2.1: The problem topology under considera-

tion is a tree topology, i.e., a connected topologies without

any cycles.

Although this assumption is somewhat restrictive, before

being able to determine how to parallelize general topologies,

we first have to understand how to do this for tree topologies.

Once this is understood, the approach used may be extended

to deal with cycles and therefore general topologies. Also, in

practice it may be possible to construct a tree topology from

a general topology by grouping the subproblems causing the

non-tree structure, i.e., cycles, into one subproblem.

B. Decision-making schemes

As mentioned in Section I, the decision-making schemes

that we consider operate by performing at each control

cycle a number of iterations. The iterations terminate when

a stopping criterion is satisfied, after which actions are

implemented and the next cycle is started. We consider as

overall stopping condition

‖v‖∞ ≤ ε , (6)

where ε is a small positive number, v ∈ R
m
,m =

∑
n
i=1 mi characterizes the interconnecting constraints of

all subnetworks, i.e., v = [w̃in, j1,1 − w̃out,1, j1 , . . . , w̃in, jmi
,1 −

w̃out,1, jm1
, . . . , w̃in, j1,n−w̃out,n, j1 , . . . , w̃in, jmi

,n−w̃out,i, jmn
]T , and

‖·‖∞ =maxi |vi| denotes the infinity norm, where vi is the ith

element of v. The stopping criterion is thus an upper bound

condition on the difference between values that different

agents want to assign to interconnecting variables, e.g., on

how much flow should go from one subnetwork into another.

The condition is more accurate with ε approaching zero.

By varying ε a trade-off is made between the accuracy of

the solution and the number of iterations required before

termination.

Each iteration can be split into two phases:

• Phase 1 is an optimization phase in which the agents

solve their local subproblems.

• Phase 2 is a stopping detection phase in which the

agents determine whether the iterations should stop.

When all agents have determined that they should stop,

the agents implement their actions. The agents use a set

of attributes to store information, and tokens and flags to

determine what to do.

1) Attributes: Agent i solving the subproblem of node i

has access to the following attributes of node i:

• The neighbors attribute Ni is the set of nodes to which

node i has an edge, i.e., Ni = { j|(i, j) ∈ E }. This set

is initialized at the beginning of the first control cycle

and stays fixed over further control cycles. A grouping

of the neighbors is made using two attributes:

The parent attribute Pi refers to the node j ∈ Ni that

had its subproblem solved right before the node i’s

subproblem was considered. The children attribute Ci

is the set of all nodes except the parent node, i.e.,

Ci = Ni \ {Pi}. The parent and children attribute are

set when an agent performs its first computation in the

first iteration of the first control cycle, after which they

stay constant over all further iterations and cycles.

• The local optimality attribute LOi indicates whether or

not the agent of node i has made its decision on the local

variables and interconnecting variables. This attribute is

updated at the end of Phase 2 of each iteration. The local

stopping criterion for agent i is given by max‖v(i)‖∞ ≤
ε , where v(i) is a vector with the evaluations of the

interconnecting constraints in which variables of agent

i are involved.

• The subgroup optimality attribute SGOi indicates

whether or not the agent of node i has local optimality

and all its children have the subgroup optimality at-

tribute positively set, i.e., SGOi = LOi∧
(

∧

j∈Ci
SGO j

)

,

with
∧

j∈ /0 SGO j = true. This attribute is updated after

the local optimality attribute has been updated.

2) Tokens and flags: To indicate which agents are solving

their subproblems, we introduce the concept of a compu-

tation token. The computation token allows the agent that

has a token to perform computations related to solving its

subproblem, i.e., Phase 1.

To determine whether an agent should stop, i.e., whether

Phase 2 can start, an agent waits until it has received all

relevant information from the agents that it requires infor-

mation from. The stop-determination flag indicates whether

an agent has all necessary information.

3) Local optimality determination: When the stop-

determination flag is positively set for an agent, the agent

has to determine whether or not its local solution satisfies

the stopping condition. For this to be possible, we have the

following.

Lemma 2.2: The agents can in a distributed way deter-

mine whether the overall stopping condition is satisfied using

local stopping conditions.

Proof: The infinity norm involved in the overall stop-

ping condition (6) can be written as

‖v‖∞ = max
i

|vi|= max(|v1|, . . . , |vm1
|, . . . , |vn−mn |, . . . , |vn|)

= max(max(|v1|, . . . , |vm1
|), . . . ,max(|vn−mn |, . . . , |vn|))

= max(‖v(1)‖∞, . . . ,‖v(n)‖∞).

where v(i) are the variables of subnetwork i, e.g., v(1) =
[v1, . . . ,vm1

]T . Thus, the overall stopping condition is satisfied

when
max(‖v(1)‖∞, . . . ,‖v(n)‖∞)≤ ε , (7)

which is true if and only if
(

‖v(1)‖∞ ≤ ε

)

∧ . . . ∧
(

‖v(n)‖∞ ≤ ε

)

. Local optimality LOi for subnetwork i is

concluded when the local stopping criterion ‖v(i)‖∞ ≤ ε is

satisfied. If all agents have concluded local optimality, then

‖v(i)‖∞ ≤ ε for each subnetwork and therefore (7) holds, and

thus the overall stopping criterion (6) holds.

4) Global optimality determination: To determine when

all agents have solved their subproblems and the agents can

implement the determined actions, we have the following:

Proposition 2.3: For a tree topology of an overall convex

control problem, if for a node i ∈ N each of its neighbors

j ∈ Ni has the subgroup optimality flag positively set, i.e.,

SGO j = true, and if its local optimality flag is set, i.e.,

LOi = true, then the solution of the overall problem has been

reached within the specified accuracy.

Proof: Since all neighbors of node i have the subgroup

optimality flag positively set, the children of these neighbors

and children of children, and so on, also have the subgroup

optimality flag positively set. Since the subgroup optimality

flag of a node can only be positively set if the node has local

optimality, all children and children of children, etc. have

solved their local subproblems. Thus, together with local

optimality of node i, all nodes will have local optimality.

Furthermore, due to the convexity of the overall control

problem, the overall solution has been reached.

The optimization problem defined by (1)–(5) is convex, when

the functions Ji and hi are convex and the functions gi are

affine. A typical situation like this occurs when quadratic

local objective functions are taken (e.g., obtained as second-

order approximation of a nonlinear objective function) with

linear prediction models for the subnetwork dynamics (e.g.,

obtained as linearization of a nonlinear model of the dynam-

ics), defined over variables that take on their values from

closed convex sets of real numbers.

III. ORIGINAL SERIAL APPROACH

In the original serial approach, i.e., the approach of [9],

one agent at a time performs computations. Thus, per itera-

tion there is exactly one computation token. The following

example illustrates the workings of the scheme.

Example 3.1 Consider the problem topology in Figure 1a.

Agent i has to solve the subproblem of node i. Agent 1

starts the iterations by receiving the computation token.

To determine subgroup optimality, it solves its subproblem,

sends the determined desired values for the interconnecting

variables to its neighbors, i.e., agents 2 and 4, and gives the

computation token to one of its children from which it has

not received subgroup optimality information in this iteration

yet, e.g., agent 2. Agent 2 receives the token. It solves its

5

7
8

6

9

4

6

1

10
4

1

2

2

3

35

(a) Serial

5 4

6

3 2 3

4

1

1

2

1

4

2

3

2

3

(b) Parallelized

Fig. 1: Example of the order in which tokens can go. Solid arrows
indicate computation tokens; dotted arrows indicate subgroup opti-
mality information. The edges are labeled with the step within the
iteration at which the information is sent.

subproblem, sends the information found to its neighbors, 1

and 3, and sends the computation token to 3 from which it

has not received subgroup optimality in this iteration yet.

Agent 3 receives the token, solves its local problem, sends

the information found to its neighbors. Since it has no child

from which it has not received the subgroup optimality

information yet, it has all up-to-date information from its

neighbors, plus its own up-to-date information and therefore

it can evaluate its local stopping criterion. Then, it determines

its subgroup optimality and sends the subgroup optimality

information to its parent, agent 2.

Agent 2 has no other child from which it has not received

subgroup optimality information. The stop-determination flag

for node 2 is thus true and agent 2 subsequently has to

evaluate the local stopping criterion and determine subgroup

optimality. It passes the subgroup optimality information to

its parent, agent 1.

Agent 1 has not yet received the subgroup optimality

information from agent 4, so it sends the computation token

to 4. Agent 4 receives the token and takes actions to obtain

the required information from its children. Ultimately, 1

receives from 4 the subgroup optimality information. Agent 1

then has received updated subgroup optimality information

from all its children and evaluates its own local stopping

criterion and subgroup optimality.

The iterations continue until all agents have the local

stopping criterion satisfied. Using Proposition 2.3 agent 1

determines whether a next iteration has to be started, or

whether the agents can implement their determined actions.⋄

The serial scheme just illustrated has some drawbacks:

• only one agent is computing at a time, making iterations

take a long time when there are many agents;

• even when an agent has local optimality, it will keep on

performing its local optimization, even though its solu-

tion already satisfies the stopping condition, therewith

increasing running time;

• iterations are always done over the whole group of

agents, even though parts of the group may already have

reached local or even subgroup optimality.

In the next section we propose an extension of the original

scheme that addresses these drawbacks.

IV. PARALLELIZATION OF THE SERIAL SCHEME

We propose an extension of the serial approach based on

parallelization. With parallelization instead of having one

agent at a time solving its subproblem, there are multiple

agents at the same time working on different subproblems.

Instead of having one group of agents over which the serial

scheme iterates, there are several groups in which the serial

scheme iterates in parallel.

Problems can be solved in parallel when they are indepen-

dent of each other. By Assumption 2.1 the problem topology

is connected, which means that indirectly all subproblems

in the problem topology depend on each other. However,

while the agents are performing their iterations to find a

solution to the overall problem, the subproblems do become

independent as information from locally solved problems

becomes available, since within an iteration agents determine

the values of their local variables once, after which they keep

these values fixed throughout the current iteration. Moreover,

after an agent decides on local optimality, it will keep its

variables fixed, also over future iterations of the current

cycle. Thus, the independency holds either only within the

current iteration or also over all future iterations of the

current cycle. We have:

Proposition 4.1: For a tree topology, after an agent has

solved its local subproblem, its children can solve their

subproblems in parallel within the current iteration.

Proof: When agent i has solved its local subproblem,

the values it has determined for its variables, including the

interconnecting variables, are fixed for the current iteration.

Thus given these fixed values the subproblem of each child

j ∈ Ci will be independent of the subproblem of agent

i. Furthermore, due to the tree topology assumption, all

subproblems of the descendants of child j are independent of

the descendants of each other child k ∈ Ci \{ j}. Therefore,

the children of agent i can solve their problems in parallel.

However, the group of agents representing the subproblems

in the branches leaving the current node cannot be separated

completely, since at the next iteration the values of the

current agent may change again.

Proposition 4.2: For a tree topology, if a node has the

local optimality flag set positively, then the branches leaving

from this node can be solved in parallel within the current

iteration and within all future iterations of the current cycle.

Proof: By Lemma 2.2, for a node i ∈ N that is

locally optimal the values of its variables, including those

of interconnecting variables, satisfy the stopping condition.

Furthermore, although the values of the variables may change

due to arrival of new information, the local stopping criterion

will still be met. Due to the tree topology assumption,

the branches leaving from node i are not connected to

each other and therefore represent independent subproblems

(given the fixed variables of the node i). Therefore each of

the subproblems of the children of node i can be solved

in parallel, in the current iteration and for future iterations

of the current cycle. So, the group of agents solving the

subproblems in the branches of node i can be grouped, and

within this group the serial scheme can be performed.

Example 3.1 revisited We reconsider Example 3.1, now

using the parallelized serial approach. Figure 1b shows

the schematics of the order in which agents work. Agent

1 starts by receiving the computation token. It solves its

subproblem and sends the results of this to agents 2 and

4. To determine subgroup optimality agent 1 has to receive

subgroup optimality from these agents. By Proposition 4.1 it

sends a computation token to each of its two children. Thus,

2 and 4 each receive a computation token. They solve their

local problems and send the obtained information to their

neighbors, i.e., agent 3, and agents 3 and 5, respectively. To

determine subgroup optimality they have to obtain subgroup

optimality from their children. Agent 2 has no children.

Therefore, agent 2 determines subgroup optimality and re-

turns this information to 1. However, agent 4 has children,

so by Proposition 4.1 it sends computation tokens to these.

In the meantime, agent 1 has received the subgroup opti-

mality information of 2. However, since 1 has not received

this information of 4 yet, its stop-determination flag is still

false. It cannot yet proceed to determine on its own subgroup

optimality and decide whether or not to start a new iteration.

When agent 4 has received the subgroup optimality infor-

mation of 5 and 6, it determines its own subgroup optimality

and sends the result to its parent, 1. Agent 1 has then a

positive stop-determination flag; thus, it decides on whether

or not to start a new iteration. Since no agent has concluded

local optimality, 1 starts a new iteration.

Suppose that after some iterations agent 4 reaches local

optimality. The values of its interconnecting variables will

stay fixed over the following iterations. It notifies this to

all its neighbors, therewith indicating that these neighbors

should also not update their interconnecting variables with

respect to agent 4 anymore. The only task remaining for 4

is to inform its parent of subgroup optimality, such that at

some point the stop-determination flag of its parent will be

true, therewith allowing its parent to also determine subgroup

optimality. By Proposition 4.2 the children of 4 can solve

their problems in parallel over all future iterations. As long

as 4 does not receive positive subgroup optimality flags from

its children, it will not send anything to its parent, 1.

In the meantime, when the parent of agent 4 has received

the subgroup optimality flags of the children that have not

yet indicated local optimality, i.e., 2, the parent assumes

negative subgroup optimality for the children that do have

local optimality, but that do not have not reported positive

subgroup optimality yet.

Each of the agents solving the subproblems of the children

of 4 will get similar roles as agent 1. They know that their

parent, 4, has local optimality, and that it will therefore not

change the values of its interconnecting variables and not

send them further updates. The agents of the children of

4 continue solving the subproblems of their branches and

report to 4 when they have reached subgroup optimality.

When agent 4 receives this information, it sends this to its

parent, ultimately leading to stopping of the iterations. ⋄

56

2

3

4

7 8

9

1

10

Fig. 2: Problem topology for 10 subnetwork problem with

disturbances in subnetwork 1 and 9.

agent 1 2 3 4 5 6 7 8 9 10

serial 23 23 23 23 23 23 23 23 23 23
parallelized 21 22 25 25 1 1 20 18 18 10

TABLE I: Number of steps per agent. In total 230 steps are

performed using the serial approach, whereas 161 steps are

performed using the parallelized serial approach.

central 19.00
serial 19.01
parallelized 19.05

TABLE II: Costs of the control (per unit).

V. COMPARISON

We illustrate the performance of the schemes using the

problem topology depicted in Figure 2, representing a load-

frequency control problem from the domain of power net-

work control [11], [12]. Load-frequency control involves

keeping power consumption and generation equal. In this

study, the agents of 10 subnetworks control the adjustment

of generation after a load change in subnetwork 2 and 9.

Since the subnetworks are connected to each other, in order

to predict the evolution of their local subnetwork, the agents

have to agree with each other on the flows of power between

the subnetworks. Agent 5 initiates the first iteration. More

details on the models used can be found in [9]. The overall

problem satisfies the assumptions made in previous sections.

Table I shows the number of steps before the agents finish

their computations for the serial and parallelized schemes

when ε = 0.001 is taken. For the serial scheme 23 steps are

required for each agent, yielding in total 230 computation

steps performed serially. In the parallelized scheme agents 5

and 4 already after one step determine local optimality. Thus,

the subproblems of their neighbors are solved in parallel,

speeding up the total decision making time. Table II shows

the costs of the actions determined by each scheme and the

costs of actions that a centralized agent would determine,

i.e., the ideal case. The performance of the serial scheme is

almost as good as the centralized control. The parallelized

scheme has slightly higher costs than the serial scheme, since

in the parallelized scheme an individual agent stops updating

its variables at the moment that its local stopping criterion

is satisfied, whereas in the serial approach an agent will also

after this keep updating its variables, until all agents stop.

VI. CONCLUSIONS & FUTURE RESEARCH

In this paper we have considered a scheme for multi-agent

control of, e.g., large-scale networks. We have introduced

problem topologies and decision-making schemes, explained

how a recently introduced scheme based on iterations of

serial computations by multiple agents fits into this point of

view, and pointed out some flaws in the serial scheme that

make decision making slow down when applied to large-

scale networks. For tree-structured problem topologies with

convex overall problems as solution to this we have proposed

parallelization of the serial scheme. We have illustrated our

approach with an example, that showed the speed up of the

parallelized approach in a simulation study.

Topics for future research are extending the approach to

deal with general problem topologies and comparing the

resulting approach with parallel approaches based on the

auxiliary problem principle. Moreover, we will consider an

approach in which initially each agent operates solely by

itself and will involve other agents only when it finds this

necessary, contrarily to first involving all agents and then

reducing to smaller groups. Our future research will also

consider a hybrid approach for controlling systems with

both continuous and discrete elements. This approach will

combine the current scheme for dealing with continuous vari-

ables with a scheme from the field of distributed constraint

optimization to deal with discrete variables [10].

ACKNOWLEDGMENTS

Research supported by the project “Multi-agent control of large-scale
hybrid systems” (DWV.6188) of the Dutch Technology Foundation STW,
the European 6th Framework Network of Excellence “HYCON” (FP6-IST-
511368), BSIK project “Next Generation Infrastructures (NGI)”, an NWO
Van Gogh grant (VGP79-99), and the Transport Research Centre Delft.

REFERENCES

[1] G. Weiss, Multiagent Systems: A Modern Approach to Distributed

Artificial Intelligence. USA: MIT Press, 2000.
[2] K. P. Sycara, “Multiagent systems,” AI Magazine, vol. 2, no. 19, pp.

79–92, 1998.
[3] D. D. Siljak, Decentralized Control of Complex Systems, ser. Mathe-

matics in Science and Engineering. Boston, Massachusetts: Academic
Press, Inc., Jan. 1991, vol. 184.

[4] J. M. Maciejowski, Predictive Control with Constraints. Harlow,
England: Prentice Hall, 2002.

[5] E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar, “Distributed
model predictive control,” IEEE Control Systems Magazine, vol. 1, pp.
44–52, Feb. 2002.

[6] P. Hines, L. Huaiwei, D. Jia, and S. Talukdar, “Autonomous agents
and cooperation for the control of cascading failures in electric
grids,” in Proceedings of the 2005 IEEE International Conference on

Networking, Sensing and Control, Tucson, Arizona, Mar. 2005, pp.
273–278.

[7] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Com-

putation: Numerical Methods. Nashua, New Hampshire: Athena
Scientific, 1997.

[8] C. B. Royo, “Generalized unit commitment by the radar multi-
plier method,” Ph.D. dissertation, Technical University of Catalonia,
Barcelona, Spain, May 2001.

[9] R. R. Negenborn, B. De Schutter, and J. Hellendoorn, “Multi-agent
model predictive control for transportation networks: Serial versus
parallel schemes,” in Proceedings of the 12th IFAC Symposium on In-

formation Control Problems in Manufacturing (INCOM 2006), Saint-
Etienne, France, May 2006, pp. 339–344.

[10] P. J. Modi, W. M. Shen, M. Tambe, and M. Yokoo, “ADOPT:
Asynchronous Distributed Constraint Optimization with quality guar-
antees,” Artificial Intelligence, vol. 161, no. 1-2, pp. 149–180, Jan.
2005.

[11] P. Kundur, Power System Stability and Control. New York: McGraw
Hill, 1994.

[12] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability.
London, UK: Prentice-Hall, 1998.

