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Traffic Modelling Validation of Advanced Driver Assistance Systems

Robin van Tongeren, Olaf Gietelink∗, Bart De Schutter and Michel Verhaegen

Abstract— This paper presents a microscopic traffic model
for the validation of advanced driver assistance systems. This
model describes single-lane traffic and is calibrated with data
from a field operational test. To illustrate the use of the
model, a Monte Carlo simulation of single-lane traffic scenarios
is executed with application to cooperative adaptive cruise
control system. The model is then validated by comparing the
simulation results with data gathered from test drives.

I. INTRODUCTION

The increasing demand for vehicle safety has stimu-

lated the development of advanced driver assistance systems

(ADASs). An ADAS is a control system that uses environ-

ment sensors to improve comfort and safety by assisting the

driver. An example is adaptive cruise control (ACC), which

maintains a pre-defined velocity set-point, unless a slower

vehicle is detected ahead. The ACC then controls the vehicle

to follow the slower vehicle at a safe distance (Fig. 1).

The demand for safety naturally increases with increasing

automation of the driving task, since the driver must fully

rely on a flawless operation of the ADAS. The ADAS should

therefore be validated for a wide set of operating conditions.

An iterative process of simulations and test drives is often

used for validation. Test drives give realistic results, but can

never cover the entire set of operating conditions. Results

are also difficult to analyse and not reproducible [1]. On the

other hand, simulations have their limitations as well. For

a realistic nonlinear model and multiple traffic disturbances,

the validation problem will become difficult to solve, and

eventually become intractable [2]. To make the simulation

phase more efficient, a controller can be validated with a

grid search over the operating range of all parameters [3].

However, an exhaustive grid search requires an intractably

large number of experiments. Another possibility is a Monte

Carlo strategy, where the system is simulated for a repre-

sentative, but still very large, set of operating conditions,
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Fig. 1. Schematic representation of an ACC system.

based on the probability that these conditions occur. In [4] we

have introduced an efficient Monte Carlo simulation strategy.

The method was illustrated with a case study consisting of

an ACC controller, subjected to a one-dimensional traffic

disturbance (the acceleration of only one preceding vehicle).

It is the objective of this paper to develop a single-lane

traffic model with multiple vehicles that include a multi-

dimensional traffic disturbance. The model is applied to

evaluate the performance of an algorithm for cooperative

adaptive cruise control (CACC).

This paper is organised as follows. Section II presents the

CACC algorithm, followed by the single-lane traffic model

in Section III. Section IV presents the simulation framework

and Section V the results. Section VI concludes the paper.

II. COOPERATIVE ADAPTIVE CRUISE CONTROL

Since the available literature on ACC systems is vast, the

interested reader is referred to [5] for further details. Some

drawbacks of ACC are mentioned though:

• ACC systems have a maximum range of about 200 m,

which is insufficient for warning about an oncoming

traffic jam or other potential danger further ahead.

• False and missed alarms can be caused when driving in

curves or when other vehicles or road infrastructure are

blocking the line-of-sight of the sensor.

• In addition, the environment sensor signals can be

unreliable and inaccurate, due to multi-path reflections,

weather conditions, and sensor noise.

• ACC only reacts to directly preceding vehicles, sensed

by the environment sensors. The ACC will therefore

not directly respond to other preceding vehicles further

ahead, e.g. when approaching a traffic jam.

Therefore, ACC could be greatly enhanced when the

field of view is extended to include reliable information

from other preceding vehicles. This can be achieved by

implementation of vehicle-to-vehicle communication (VVC).

Current research is therefore extending ACC systems to

cooperative adaptive cruise control (CACC) systems [6],

where the inter-vehicle distance is accurately estimated using
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Fig. 2. Top view of the CACC principle, vehicle 1 contains the CACC.

VVC and environment sensors. The basic CACC concept is

shown in Fig. 2. The advantage of CACC is that it can use a

smaller distance headway and that it has an increased control

bandwidth and reliability with respect to ACC.

The major improvement of CACC over ACC, is that

the added communication element offers a better situation

awareness, for example in detecting a traffic jam further

ahead. ACC becomes aware of a traffic jam only when

the directly preceding vehicle decelerates, which most likely

results in severe deceleration of the ACC-equipped vehicle.

On the other hand, CACC can receive an advance warning

through VVC, and initiate deceleration much sooner than

ACC, resulting in less severe deceleration levels.

The existing ACC longitudinal control problem is shown

in Fig. 1. In distance control mode the desired acceleration

ad for vehicle i is provided by a feedback control law that

consists of the distance separation error ex = xr−xd and its

derivative ėv = vr − vd, with xr and vr the relative distance

and relative velocity, and xd and vd the safe following

distance and safe relative velocity, respectively. The distance

control law is then given by

ad = k2ev + k1ex, k1, k2 > 0. (1)

A control law for CACC can be similar to Eq. (1).

However, the main advantage of CACC is that there is

more information available, such as the acceleration of the

preceding vehicle. Using VVC, the acceleration of the lead

vehicle (which is difficult to estimate with only a environ-

ment sensor) can be communicated to the following vehicle.

With information on lead vehicle acceleration ai−1, as well

as more reliable estimates for the range and range rate, the

ACC control law Eq. (1) can be modified to

ad = k3ai−1 + k2ev + k1ex, k1, k2, k3 > 0. (2)

Secondly, the CACC algorithm of Eq. (2) can be extended

to multiple preceding vehicles. The idea behind this exten-

sion is that the CACC vehicle in Fig. 2 should not only

keep a safe headway xd to the first preceding vehicle, but

it should also keep a headway of 2xd + lv to the second

preceding vehicle, where lv is the vehicle’s effective length.

Based on this idea the CACC algorithm computes a desired
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Fig. 3. Definition of a single-lane traffic scenario.

acceleration ad for each preceding vehicle according to Eq.

(2). The final desired acceleration ad is chosen by taking the

minimum value for all n vehicles:

ad = min(ad,i−1, . . . , ad,i−n) (3)

In order to check the performance of this CACC algorithm,

it will be evaluated using traffic simulations. A model for

single-lane traffic is therefore presented in the next section.

III. SINGLE-LANE TRAFFIC

A. Single-lane Traffic Modelling

Traffic simulations are usually based on macroscopic

traffic models [7], consisting of several hundreds of vehicles,

which do not allow the inclusion of individual vehicle models

with complex control systems. Since we are concerned

with the performance on microscopic level, we concentrate

on the development of a modelling environment for mi-

croscopic traffic scenarios that allows to validate ADASs

for a representative set of traffic scenarios. Therefore, the

macroscopic traffic is divided into distinctive subscenarios

that are representative of the scenarios that a longitudinal

control algorithm should handle.

Since a human driver looks only several vehicles ahead,

and a longitudinal control system only considers target

vehicles that are in (or entering into) the host vehicle’s lane,

we focus the identification of single-lane scenarios. This type

of scenario is defined as: a particular setting of maximal

three vehicles and their behaviour in a single-lane over a

predetermined period of time, as illustrated by Fig. 3.

B. Driver Modelling

In each scenario the host vehicle (i) is denoted as the

subject vehicle (SV). An (optional) preceding vehicle, i.e.

closest vehicle in front of the host in the longitudinal sense,

though not necessarily in the same lane, is denoted as

the primary other vehicle (POV). In case of n preceding

vehicles, additional (optional) preceding vehicles are denoted

by POV2, . . . , POVn, where the order depends on how close

the target vehicle is to the host in longitudinal direction.

The SV in a single-lane scenario requires no modelling, as

its driving behaviour is controlled by the CACC. However the

driving behaviour of the POV and POV2 should be modelled

to provide a realistic traffic environment. Driver modelling is

an intense research topic, and various types of driver models

are available for traffic simulation [7]. An often used class



of driver models is the class of safety distance models, the

most famous of which is the Gipps driver model [8], which

is relatively simple, but applied in this paper for reasons

of transparency. The first part of the Gipps model tries to

maintain a desired velocity assuming there is no preceding

vehicle, the so-called free-flow mode. The second part tries

to maintain a safe following distance, i.e. the car-following

mode. Both parts calculate the velocity of the vehicle after

a reaction time τ of the driver, and the resulting velocity is

the minimum of the two:

v1(t+ τ) = min

{

f(v1(t)|amax, λv)
f(v1(t), v2(t), xr(t)|amax, λv)

, (4)

where amax is the maximum allowable acceleration and λv

the ratio between the desired velocity and the initial velocity:

λv =
vd

v(0)
. (5)

The parameters amax and λv are the parameters by which the

Gipps model can be calibrated and are different for various

driver types.

C. Subscenarios in Single-lane Traffic

Usually ADAS control analysis distinguishes between free

driving and car-following. However, we would like to obtain

a complete overview of the scenarios that an ADAS should

handle. The single-lane traffic scenario is therefore divided

into several subscenarios, which are recurrent behaviour

patterns of vehicles. In single-lane traffic six subscenarios

can be identified:

• Free-flow: The SV, POV, or POV2 has no preceding

vehicle.

• Car-following: Either the SV or the POV is following

the POV or POV2, respectively, with a steady velocity.

• Cut-in: The POV or the POV2 moves in front of the SV

or the POV from a different lane.

• Cut-out: The POV or the POV2 moves out of the SV’s

or the POV’s lane.

• Lane change: The SV, POV or POV2 changes lane.

• Approach: The SV or the POV drives towards the POV

or the POV2 in the same lane.

• Separate: The POV or POV2 drives away from the SV

or POV in the same lane.

Fig. 4 shows a top view of the subscenarios together with two

graphs of parameters, which contain the vehicle’s velocity

profiles (left) and the relative distance (right) during the

subscenarios.

Since a relevant microscopic scenario may include up to

two preceding vehicles, we introduce the following sub-

scenario configurations in case of zero, one, or two pre-

ceding vehicles. The most basic configuration for a single-

lane scenario is in case of a single vehicle. The only

two possible subscenarios for single-lane scenario with one

vehicle are free-flow and lane change. For the single-lane

scenarios, consisting of two vehicles (SV and POV), five

configurations are possible: car-following, cut-in, cut-out,

lane change, and approach. However the configurations for

111

v
e
lo

c
it
y

re
la

ti
v
e

d
is

ta
n
c
e

time time

sub-scenario topview sub-scenario plots of velocity and
relative distance

undefined

111 111

v
e
lo

c
it
y

re
la

ti
v
e

d
is

ta
n
c
e

time time

111

111 v
e
lo

c
it
y

re
la

ti
v
e

d
is

ta
n
c
e

time time

111 111

v
e
lo

c
it
y

re
la

ti
v
e

d
is

ta
n
c
e

time time

111 111

v
e
lo

c
it
y

re
la

ti
v
e

d
is

ta
n
c
e

time time
111 111111 111

v
e
lo

c
it
y

re
la

ti
v
e

d
is

ta
n
c
e

timetime

start

end 111 111

111 111

111 111

111 111 v
e
lo

c
it
y

re
la

ti
v
e

d
is

ta
n
c
e

timetime

start

end

fr
e
e
-f

lo
w

c
a
r-

fo
llo

w
in

g
c
u
t-

in
c
u
t-

o
u
t

la
n
e
 c

h
a
n
g
e

a
p
p
ro

a
c
h

s
e
p
a
ra

te

Fig. 4. The subscenarios in single-lane traffic. On the right the velocity
profiles of the leading vehicle (solid line) and following vehicle (dotted
line), as well as the inter-vehicle spacing, during the scenario are shown.

single-lane scenarios, consisting of three vehicles (SV, POV,

and POV2) are slightly more complex. Therefore the 3-

vehicle configurations are described in two steps. First, the

possible subscenarios between the SV and POV are car-

following, approach and lane change. Secondly, there are

five possible subscenarios between POV2 and POV2: car-

following, cut-in, cut-out, lane change, and approach. The

result is a total of 15 configurations for single-lane scenarios

with three vehicles.

The initial conditions for the single-lane scenario are

formed by the vehicle velocities vi(0), the relative velocity

vr(0), and the distance xr(0).

Other relevant parameters are the occurrence rate and

duration of the subscenario configuration. The configuration

duration is determined by the duration of the subscenario

that applies to the host vehicle of the configuration. The con-

figuration occurrence rate on the other hand, is determined

by the union of the occurrence rates of the subscenarios in

the configuration. The determination of both configuration

parameters is illustrated in Fig. 5.

D. Scenario Parameters for Single-lane Traffic

In order to derive the probabilistic performance measures,

the above mentioned scenario parameters are modelled by

PDFs. In case a parameter is uncorrelated, the PDF of a

normal, log normal or Laplace distribution will be used. The
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normal distribution is given by

P (x) =
1

σ
√
2π

e
−(x−µ)2

2σ2 , (6)

where, x is a data value, µ is the mean, and σ is the standard

deviation. The log normal distribution is given by

P (x) =
1

S
√
2πx

e
−(ln(x)−M)2

2S2 , (7)

where, x is a data value, M is a location parameter, and S

is the scale parameter. The Laplace distribution is given by

P (x) =
1

2b
e

−|x−µ|
b , (8)

where, x is a data value, µ is a location parameter, and b is

the scale parameter.

In case of correlated parameters, the two-dimensional

multivariate normal PDF is

P (x1, x2) =
1

2π

√

|Rx1,x2 |

e

1
2

([

x1

x2

]

−

[

µx1

µx2

])T

(Rx1,x2)
−1

([

x1

x2

]

−

[

µx1

µx2

])

,

(9)

where x1 and x2 are the modelled parameters, Rx1,x2
is the

covariance matrix for x1 and x2, µx1
is the mean of x1, and

µx2
is the mean of x2.

E. Traffic Model Structure

Now that the single-lane scenario is modelled, a single-

lane traffic model can be constructed as a collection of single-

lane scenarios, as shown in Fig. 6. From the desired duration

of the Monte Carlo simulation, the total number of single-

lane scenarios is calculated. The next step is to implement

this model structure into a simulation environment.

IV. MODEL IMPLEMENTATION

A. Parameter Model Calibration

In a next step these parameter models must be calibrated in

order to form a representative set. Several traffic databases

are available, each containing a considerable amount use-

ful for traffic modelling. The focus of these databases

ranges from crash data analysis to general driving behaviour

analysis. Examples are the CAMP database [9] and the

SAVME database [10]. Unfortunately these databases do

not distinguish between different types of scenarios, do not

Single lane validation model structure
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Fig. 6. The structure of the single-lane scenario simulation.
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contain information on the occurrence rate of each of the

subscenarios, and do not provide information on the initial

conditions of each subscenario.

We therefore use raw data obtained from an instrumented

vehicle. This data contains measurements of relevant vehicle

states, such as position, velocity, acceleration, steering angle,

throttle angle, and brake use. Surrounding traffic is monitored

by radar to record the distance xr and relative velocity vr to

leading vehicles. Furthermore, video recordings of the driver

and the forward scene allow to categorise the scenarios and

assess driver behaviour.

Unfortunately, the large amount of raw data requires post-

processing before it can be used for validation of ADASs

in single-lane scenario simulations. For calibration of the

parameter models two algorithms are used. Maximum likeli-

hood (ML) estimation for calibration of uncorrelated param-

eters and expectation maximisation (EM) for calibration of

correlated parameters. Both algorithms attempt to maximise

the resemblance between a given PDF and a data distribution

as shown in Fig. 7.
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B. Implementation of the Single-lane Traffic Model

With the realistic PDFs of the model parameters, a use-

ful model of single-lane traffic can be implemented on a

software platform. The implementation of the model is per-

formed in combination with the simulation tool PRESCAN

[11]. PRESCAN is developed for microscopic traffic simu-

lation, and can be considered as a simulator in which three

different worlds are integrated and controlled:

• one or more sensor worlds;

• a visualisation world; and

• a combined controller/dynamics world represented by a

PRESCAN controlled Matlab/Simulink session.

The compilation and simulation of traffic scenarios is

controlled by the PRESCAN simulation engine. The com-

plete structure of the single-lane traffic model together with

PRESCAN is shown in Fig. 8.

V. SIMULATION RESULTS AND TEST DRIVES

The simulation results are first illustrated using two exam-

ples of single-lane scenarios. Then the results of the Monte

Carlo simulation are presented.

A. Example 1: Lane Change Scenario

The first scenario simulation is a 3 vehicle configuration,

where the middle vehicle (POV) performs a lane change.

As a result the following vehicle (SV) has to follow the

lead vehicle (POV2). The results are shown in Fig. 9, where

it can be seen that the CACC starts following the POV2

after the POV has made a lane change. This is according

to expectations. Another observation shows that the velocity

profile of the SV with the CACC system is not damped

well in this configuration. The poor velocity damping can be

explained from the fact that the CACC first has to decelerate

considerably for the POV. However when the POV cuts-out,
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the SV has to start following the POV2, which is at a larger

distance and therefore requires less deceleration.

B. Example 2: Cut-in Scenario

Another simulation is shown in Fig. 10, where a vehicle

makes a cut-in in front of the SV with a much lower velocity.

The SV decelerates rapidly when it detects the POV cutting

in. The results show the same poor velocity damping as the

first example. For this scenario the poor damping is due to

the close cut-in of the POV combined with the lower velocity

of the POV. These conditions cause the CACC to decelerate

considerably at the start of the experiment. Because the same

severe deceleration was required in Example 1, it can be

concluded that the CACC velocity damping in case of severe

deceleration is poor.

C. Monte Carlo Simulation Results

The experimental goal is to execute a Monte Carlo sim-

ulation of single-lane traffic. To illustrate this simulation

strategy, 1 hour of single-lane traffic (equivalent to 280

simulated single-lane scenarios) is simulated and the per-



Fig. 11. The three demonstrator vehicles. From left to right: INCA,
Smart12, Smart09.
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formance of the CACC evaluated. The following parameters

were checked:

• The number of potential collisions.

• The acceleration level.

• Inter-vehicle spacing between SV and POV/POV2.

• Damping of oscillations in velocity.

In 1 hour of simulated single-lane traffic, the CACC-

equipped vehicle collided 9 times. In 7 cases the collisions

occurred because of unrealistic environment settings. The re-

maining 2 collisions occurred, because required deceleration

of the vehicle was beyond the capability of the CACC.

The acceleration levels were comfortable for 95 % of the

time. Only in safety-critical single-lane scenarios (e.g. emer-

gency braking) the acceleration levels tended more toward

noticeable and uncomfortable levels.

The spacing was assumed to be safe for 85 % of the time.

Finally, the velocity damping of the CACC is acceptable,

except when severe deceleration of the vehicle is required.

A more proper tuning of the CACC could solve this damping

problem for severe accelerations.

D. Validation of Simulation Results with Test Drives

Finally, the simulation results are compared with data from

test drives. For the test drive two CACC-equipped Smarts

(designated Smart09 and Smart12) and one Volkswagen

(INCA) were used, as shown in Fig. 11, all equipped with

VVC [12]. In one of the tests the Volkswagen is at standstill

and the two Smarts approach as shown in Fig. 12.

The velocity profiles of both Smarts during the test drive

are compared to those during a simulation with equal initial

conditions. Fig. 13 shows that the POV model resembles

the real-life behaviour of Smart 12 in single-lane traffic.

The CACC-equipped SV model however, decelerates earlier

than during the test drive (Smart09). This is caused by the

fact that during the test drive the environment sensors and

VVC are perturbed by environmental disturbances. As a

result the standing vehicle is detected earlier in the simulated

environment than during the test drive.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper the validation process of ADASs was illus-

trated with a CACC system, implemented in a vehicle model.

In a Monte Carlo simulation of single-lane traffic, the CACC

was subjected to several hundred single-lane traffic scenarios.

The results are promising and the CACC performance proved

to be satisfying.

Future research focusses on creating more realistic traffic

simulations, by extending the model to multi-lane scenarios

with more vehicles and more advanced driver models.
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