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ABSTRACT

The design of a look-ahead traffic-adaptive control system is as well a science as an art.

Along the way compromises have to be made to end up with a workable system that is

not only able to come up with good signal timings, but also to deliver them on time. We

propose a taxonomy of look-ahead traffic-adaptive control algorithms based both on their

underlying principles and the compromises that were made to come up with a workable,

albeit less optimal system. A new hybrid algorithm is subsequently defined that combines

the strengths of all current approaches and incorporates constraint programming techniques.

INTRODUCTION

A common function of a traffic controller is to seek to minimize the delay experienced by

vehicles through manipulation of the traffic signal timings. There are various levels of sophis-

tication in traffic signal control system applications. With recent advances in communication

network, computer, and sensor technologies, there is increasing interest in the development of

look-ahead traffic-adaptive signal control systems. Numerous systems have been proposed in-

cluding PRODYN ([9], [1], [8]), UTOPIA-SPOT ([10]), OPAC ([7], [5], [6]), RHODES ([16],

[11]), SPPORT ([2], [3]) and ALLONS-D [13], [14], [15]. This overview is based on these

references and the references contained therein.

The design of a look-ahead traffic-adaptive control system is as well a science as an art. Along

the way compromises have to be made in order to end up with a workable system that is not

only able to come up with good signal timings, but is also able to deliver them on time. Each

system mentioned above has a different approach in dealing with the computational complexity

of determining the best set of signal timings.

All systems therefore have their own specific strengths and weaknesses that make that system

more - or - less suited for particular networks and traffic demand patterns. In this paper we
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propose a taxonomy of the various look-ahead traffic-adaptive systems based both on their un-

derlying principles and the compromises that were made to come up with a workable, albeit

less optimal system.

A TAXONOMY OF APPROACHES

Traffic signal control essentially comes down to making the right decisions at the right time.

As such the traffic signal control problem solved by all look-ahead traffic-adaptive systems can

be formulated in the form of a general decision problem. This decision problem in turn can be

represented as a simple decision tree. The root of a decision tree represents the current state

si,si ∈ S, where i is the current time index and S is the set of all states. The cost involved in

order to transition to the subsequent state, si+1 when deciding for an action ui is denoted by ci.

In general, the nodes of a search tree represent choices. These choices are mutually exclusive

and therefore partition the search space into two or more simpler sub-problems. At each time

step, the controller observes the system’s current state si, and selects a control action, u ∈Ui,

where u is the action and Ui is the finite set of actions available to a controller in state si. When

the controller chooses an action u ∈Ui, the cost incurred by taking that action and subsequently

transition to state s j with probability pi, j(u), is denoted by c(i). The objective of a look-ahead

traffic-adaptive system is to find an optimal sequence of actions.

Looking at the various look-ahead traffic-adaptive systems we can discern the following features

on which they differ:

• the optimization method. Is the optimal sequence of actions found by searching the deci-

sion tree using a rule-based method, or an approach based on dynamic programming or

branch-and-bound?

• the possible actions (ui) considered in the optimization. Is the order in which phases can

be given green to predetermined or can this be determined (and optimized) on-line?

• the length and resolution of the planning horizon over which an optimal sequence of

actions is sought (i.e., the depth of the decision tree). Is the length of the horizon fixed

(e.g., 2 minutes) or dependent on current traffic conditions? Is the resolution static (e.g., is

the horizon divided into 5 seconds intervals) or is it dynamic (e.g., dependent on projected

arrival times)?

• the update frequency. How often can the optimization be done (i.e every 0.5 seconds or

every 5 seconds)?

• the delay model. How is the performance (ci) of each evaluated action (ui) evaluated?

How accurate is the model used in optimizing the signal timings? Is a fast vertical queuing

model used instead of a slow but possibly more accurate simulation model?

The following sections elaborate on each of these features and how each system differs in how

these features are filled in.

OPTIMIZATION METHOD

The objective of the system is to operate such that the total cost over the entire planning hori-

zon is minimized. Thus, the task of the controller is to obtain a sequence of control actions

[u0,u1, . . .uT ], also referred to as a policy or control trajectory, such that the expected cost is
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minimized. In the case of an infinite planning horizon, a discount factor, γ < 1, is typically ap-

plied to future costs to obtain a finite estimate of the cost-to-go from the current state i, denoted

by f (i). The optimal cost-to-go value, denoted by f ∗(i), is a function of the immediate cost

of applying the control plus the expected cost-to-go from the subsequent state, a relationship

encapsulated in the following recursive expression (also known as Bellman’s Equation [4]):

f ∗(i) = min
u∈U(i)

{

ci(u)+ γ ∑
j∈S

pi, j(u) f ∗( j)

}

(1)

As the decision space has a tree-like structure, the search for the optimal sequence of decisions

corresponds to building the tree. An exhaustive search of the entire decision space results in a

full tree being built. Since search space size grows exponentially with problem size, it is not

possible to explore all assignments except for the smallest problems. The only way out is to not

look at the whole search space. Efficiency in searching the decision space is considered by the

degree to which the entire tree will not have to be built to find an optimal path. In [17] several

well-known algorithms are assessed based on computational speed and on the quality of the

results (in terms of delay).

Dynamic programming and branch-and-bound (and combinations thereof) are the techniques

that are predominantly used in look-ahead traffic-adaptive systems.

Dynamic Programming

The applicability of the approach depends on the opportunities for state aggregation within the

decision tree. The strength of dynamic programming is that it can prevent that optimal solutions

to subproblems it has already solved are recomputed. In order to do this, the solutions to already

solved problems are saved. This approach is called memoization (not memorization, although

this term also fits). It is however only possible to reuse a previous solution when states and

thus the corresponding subproblems can be considered equal. RHODES, PRODYN, OPAC and

SPPORT all employ dynamic programming as their method of optimization.

Branch-and-Bound

Branch-and-bound is a general method for finding optimal solutions of various optimization

problems, especially in discrete and combinatorial optimization. It belongs to the class of im-

plicit enumeration methods. One way to do this is by proving that certain areas of the space

contain no solutions. The core of the approach is the simple observation that (for a minimiza-

tion task) if the lower bound for a sub-problem A from the search tree is greater than the upper

bound for any other (previously examined) sub-problem B, then A may be safely discarded

from the search. This is the bounding-part of the branch-and-bound approach. Of the systems

reviewed only ALLONS-D and SPOT employ the branch-and-bound method in its pure form.

RHODES employs a hybrid system in which branch-and-bound techniques are applied within

a dynamic programming framework.

In order to obtain a tight upper bound an initial path must be established through the search

tree for which it is most likely to obtain a good solution. This involves that initially parts of

the search space that are unlikely to contain good solutions are ignored. This is done by us-

ing heuristics. Heuristics are used to explore promising areas of the search tree first. This can
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be done by using problem specific knowledge (often borrowed from current practices in tun-

ing traffic responsive and vehicle-actuated controllers) or by reusing information gained from

previous optimizations.

ACTION SPACE

The width of the tree to be searched is dependent on the number of decisions that can be made

at each point in time. In its simplest form the choice available is that between extending the

current phase or switching to the next phase. This is the approach taken in OPAC, ALLONS-D,

PRODYN and SPPORT. Although this approach significantly reduces the number of options to

consider, it does not allow arbitrary phase sequencing. In its most elaborate form the choice

available is that between phases. This approach allows the arbitrary sequencing of phases but

comes at a cost in the width of the search tree. This is the approach chosen by UTOPIA-SPOT.

A compromise between these two extremes is found in allowing phase skipping. When the

skipping of phases is allowed any phase sequence can be attained. This is the approach taken

in the COP-system. The downside of this approach is that when the initial phase sequence is

chosen wrong the gain in width is counteracted with an increase in tree depth. This is not strictly

necessary however. It is in principle possible to choose the next phase dynamically.

PLANNING HORIZON

Look-ahead traffic-adaptive systems employ a traffic model to evaluate alternative traffic signal

timings over a planning horizon. The length of the planning horizon as well as how the horizon

is split up into successive intervals differs between each system. Typically however the horizon

has a fixed length (of typically 1 to 2 minutes) and is subdivided into fixed intervals. From their

descriptions we can deduce that OPAC, PRODYN, SPPORT, and ALLONS-D all use or have

used 5-second time-steps.

If the horizon is chosen too short and the optimization algorithm is faced with the choice

whether to a) completely serve a phase discharging at a slow rate, or b) preempt that phase

in order to switch to a phase with a higher discharge rate, it would chose for the latter as this

brings about the biggest benefits in the short term. This is why many of the systems that employ

shorter horizons have introduced terminal costs in order to penalize residual queues at the end

of the horizon [12], [17].

The ALLONS-D algorithm takes a different approach wherein the length of the horizon depends

on the current traffic situation. The ALLONS-D algorithms enlarges the horizon until it finds a

solution in which all projected arrivals are cleared. Although the idea of a horizon that shrinks

or grows dependent on the traffic situation sounds attractive, it might not turn out this way in the

case of the ALLONS-D algorithm. In saturated conditions - with many projected arrivals - the

length of the horizon might become so large that the optimization method used by ALLONS-D

might be unable to come up with an answer in time.

The approach where both the length of the planning horizon and the length of the time intervals

in which it is subdivided are variable is not applied by any of the algorithms reviewed.
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UPDATE FREQUENCY

Look-ahead traffic-adaptive systems rely on predicted arrivals. As the distance over which these

arrivals are predicted increases the reliability of these predictions often decreases. This is why

a rolling horizon is often applied. The concept of a rolling horizon originated in operations

research and is used to determine a short term policy based on a longer term analysis. All

systems reviewed that depend on arrival predictions employ the concept of a rolling horizon.

These algorithms implement only the first (few) action(s) of the control plan after which a new

optimization is performed.

The amount of time that passes between each subsequent optimization (the roll - or - commit-

ment period) is, for all systems reviewed, equal to the length of the intervals which subdivide

the planning horizon. For most systems reviewed the length of the interval is typically equal to

5 seconds. Waiting 5 seconds between each optimization can however have a significant impact

on delay. Note that, as all systems choose their commitment period equal to the length of the

interval in which the planning horizon is subdivided, switching from a 5-second to a 1-second

decision resolution increases the number of time-steps in the planning horizon by a multiple of

5. This imposes too much of an increase in computational effort for many algorithms to solve

in real-time. Thus, the typical trade-off is to also decrease the duration of the planning horizon.

DELAY MODEL

All systems reviewed consider individual vehicles in determining the control delay brought

about by a chosen control plan. In that respect all models can be considered to use a meso- to

microscopic model. However, because the delay model is applied many times when exploring

the search tree, all models have to make some sacrifices with respect to the level of detail on the

employed model.

Known, commercially available, microscopic simulation models like Paramics, VISSIM, and

AIMSUN are unfit for use in real-time optimization. This is why simple event-based and cel-

lular automaton models are predominantly used within these systems. At first these systems

employed vertical queuing models, but many systems have since switched to using horizontal

queuing models so that queue spillbacks to upstream intersections can explicitly be considered

in the optimization.

A NEW HYBRID ALGORITHM

At the basis of our new hybrid algorithm we use a modified version of the dynamic programming

approach as defined by [16]. In the analysis performed in [17] of the various traffic control

algorithms this algorithm proved to be one of the best performing algorithms. The algorithm

uses a dynamic programming approach in which each stage represents a phase as opposed to a

approach in which each stage represents an interval of time. The exact number of stages used

in the DP is a by-product of the computations. For the delay model we use a modified version

of the delay model as defined in [14]. This delay-model considers the weighted time delay for

each vehicle as opposed to other approaches which use the number of vehicles in the queue

multiplied by the interval of time in which the vehicles were queued. In the following a ’signal

group’ denotes the signals that are specific for a traffic stream that has its own queue, whereas

the term ’phase’ is used to denote the set of signal groups which can be served at the same time.
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The term ’stage’ is exclusively used to denote a stage in the algorithm; it is thus not used as a

synonym for ’phase’.

THE OPTIMIZATION METHOD

Notation. We introduce the following notation

j ≡ Index for stages of the DP.

t ≡ Variable denoting the total number of allocated time-steps.

T ≡ Total number of discrete time-steps. Each period of length ∆ is indexed by

t ∈ [0,T ].
P ≡ Set of phases. The cardinality of this set will be denoted by |P|.
ρ ≡ Index for phases in P.

Ω ≡ Set of signal groups. The cardinality of this set will be denoted by |Ω|.
ω ≡ Index for signal groups in Ω.

f ω
saturation ≡ The saturation flow for a signal group.

γω ≡ The minimum green time for a signal group

κω ≡ The maximum green time for a signal group

rω ≡ The effective all-red interval for a signal group (integer number of time-

steps)

r(ω j−1,ω j) ≡ The effective all-red interval for a signal group (integer number of time-

steps) when switching from signal group ωi to ω j

U j(t) ≡ Set of feasible control decisions, given t.

u j(t) ≡ Control variable denoting the amount of time allocated to stage j

u∗j(t) ≡ Optimal value for the control variable

c j(t,u j) ≡ Cost of control u j when applied at time t in stage j

f j ≡ Value function (cumulative value of prior optimal costs) at time t in stage j

Aω(a,b) ≡ A function of scalars (a,b) denoting the arrivals in the time interval [a,b〉
and requesting signal group ω . If a = b, we put Aφ (a,b) = 0.

L j,t,ω ≡ Queued arrivals at time t in stage j resulting from applying control variable

u j(t)
L∗j,t,ω ≡ Queued arrivals at time t in stage j resulting from applying the optimal

control variable u∗j(t)

i ≡ Index for vehicles arriving at the intersection for signal group ω .

lω
i ≡ Predicted arrival time of vehicle i.

In general the values control variable u j(t) can assume is bounded by a minimum and maximum.

These can be calculated from the minimum and maximum green times per signal group and the

red time needed for vehicles so safely clear the intersection:

umin
j = max{r(ω j−1,ω j)+ γω

j |ω j−1 ∈ ρ j−1∧ω j ∈ ρ j}

umax
j = min{κω

j |ω j ∈ ρ j}

Given a value for the state variable t j, the control variable u j can assume values from the fol-

lowing discrete set:

U j =

{

{0} if t j < umin
j

{0,umin
j , . . . ,umax

j } otherwise.
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We shall assume that the performance index has the following form

c1(t1,u1)◦ c2(t2,u2) . . .◦ . . .

where the operator ◦ can be the +-operator when minimizing delay or number of stops or the

max-operator when minimizing queue length

The forward recursion of the DP-algorithm is presented in algorithm 1. To initialize, the value

function f0(0)← 0. The DP algorithm starts with stage j = 0, and proceeds recursively to j =
1,2, . . .. At each stage, the method calculates the best control decision u∗j(t) for each possible

value of the state variable t. This process is summarized in algorithm 1.

Algorithm 1 Forward recursion

1: j← 0

2: f j(0)← 0

3: while ¬ stop do

4: for t j ∈ T do

5: f ∗j (t)← ∞
6: for ∀u j ∈U j(t) do

7: f j(t j)← c j(t j,u j)◦ f j−1(t j−u j)
8: if f j(t j)< f ∗j (t j) then

9: f ∗j (t j)← f j(t j)
10: u∗j(t j)← u j

11: L∗j,t,ω(t j)← L j,t,ω

12: end if

13: end for

14: end for

15: j← j+1

16: end while

The optimization procedure is stopped when it can be determined that there is nothing to be

gained by adding an extra phase to the signal plan. This is the case when the values of the value

function f j is equal to that of the previous |P|−1 phases.

Algorithm 2 Stopping criterion

1: if ( j ≥ |P|)∧ (∀ρ ∈ {1, . . . , |P|−1}( f j−ρ(T ) = f j(T ))) then

2: return TRUE

3: else

4: return FALSE

5: end if

The procedure to retrieve the optimal trajectory is provided in algorithm 3.

THE DELAY MODEL

In general for stage j, we assume that the quantities L j−1,t j−1,ω are available for all values of

t j−1. We now discuss how we calculate the cost and the queues that result when a control action

is applied for any given value of t j. The resulting queues L j,t,ω are recorded as permanent

queues L∗j,t,ω if a new u∗j is identified.
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Algorithm 3 Retrieval of optimal policy

1: t∗j ← T

2: for j = j to 0 do

3: if j > 1 then

4: t∗j−1← t∗j −u∗j(t
∗
j ))

5: end if

6: end for

The vehicles affected for the chosen control u j can be determined as follows:

L j,t,ω = L j−1,t j−1,ω ∪A(t j−1, t j)

Each of the vehicles in L j,t,ω can contribute to delay when the signal is red, green, or yellow.

A vehicle stopped at a red light contributes an amount of delay equal to the duration of the

red light. In addition, delay can be accumulated by vehicles at a green light. For instance, for

long (standing) queues, only a small portion in the front of the queue will clear the intersection

when the light turns green. Even for the vehicles that are close enough to the intersection to

pass through, there will still be some delay incurred. The latter type of delay accounts for the

minimum amount of time required for the vehicle immediately in front to respond and move

through the intersection. This minimum time required for each car to depart will be referred

to as the headway constraint. It is calculated using the saturation flow for a signal group. The

maximum number of vehicles that can leave an intersection during time period, is dependent

on the saturation flow and the length of the interval of green light. The saturation flow is signal

group specific.

Notation. We introduce the following variables:

oω
i ≡ Time at which the ith vehicle waiting at signal group ω is able to enter the

intersection

kω ≡ Number of vehicles waiting at signal group ω that are able to enter the

intersection

which

are initialized as follows:

oω
i = t− (u− rω)+

i

∑
0

hω , where hω =
1

f ω
saturation

kω = f ω
saturation · ((u− rω))

Four indicator variables are subsequently calculated that can be used to determine whether a

vehicle is:

• queued up at the start of the green light:

qω
i =

{

true, lω
i ≤ t− (u− rω)

false, else

• able to depart during the green period:

dω
i =

{

true, i≤ kω((u− rω))

false, else

• partially constrained by the headway of vehicles in front:

cω
i =

{

true, lω
i ≤ oω

i

false, else
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• constrained by the headway of vehicles in front of it and prohibited from leaving during

the green period:

pω
i =

{

1, t ≤ oω
i

0, else

Delay is subsequently calculated as follows when a vehicle can be determined to

1. wait at a red light f ω
i = min

{

u, t− lω
i

}

,

2. be queued at a light that turns green but that cannot leave during the green period due to

vehicles ahead of it (qω
i ∧¬dω

i ), i.e., f ω
i = (u− rω)+min

{

rω , t− (u− rω)− lω
i )

}

,

3. be queued at a light that turns green and can leave but only after waiting for the vehicles

ahead of it to depart (qω
i ∧dω

i ): f ω
i = (i−1)∗h+min

{

rω , t− (u− rω)− lω
i )

}

,

4. arrive during a green period and cannot leave due to vehicles ahead of it (¬qω
i ∧ pω

i ), and

f ω
i = t− lω

i ,

5. arrive during a green period and can leave but only after waiting for the vehicles ahead of

it to depart (¬qω
i ∧ cω

i ∧¬pω
i ): f ω

i = oω
i − lω

i

The cost of the control action is determined by summing the cost for all vehicles:

c = ∑
∀ω∈Ω

∑
∀lω

i ∈Lω

f ω
i

The queues that remain L j,t,ω after the application of the control u j is easily determined by

removing vehicles that were able to depart during the control-interval: Lω = Lω \{lω
i |d

ω
i = 1}.

The strategy is as follows:

• Given t j calculate based on the existing queues L j−1,t j−1,ω and pending arrivals A(t j−1, t j)
the performance index c j,t j,u j

. The queues that remain L j,t,ω after the application of the

control u j are calculated as a side-effect

• The queues L j,t,ω are recorded as permanent queues L∗j,t,ω if a new u∗j is identified.

ANALYSIS

In order to test the performance of the developed algorithm we used the traffic management

test-bed described in [18]. This test-bed enabled us to interface the control algorithm above

with the Paramics simulation model developed by Quadstone Ltd.

SCENARIO

The simulations were performed for a 4-arm intersection with a separate, single, approach lane

for each turn. There are 12 signal groups in total (one for each turn). Depending on the simu-

lation the intersection operated under either 4- or 8-phase traffic control. The phases are shown

in 1. For simplicity, the right turns are omitted and assumed to proceed with the through move-

ments.

The total demand for the intersection is set to 4400 vehicles per hour, which is distributed over

the signal groups in proportion to the saturation flow rate of each signal group. Maximum green

times for each phase were subsequently determined according to Webster’s method.
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Figure 1: The phases used in the optimization of the intersection

RESULTS

The results have been obtained from a number of one-hour simulations each with a different

random seed. The figures show the average delay per vehicle as it evolves over a one hour

period. As each simulation starts with an empty network some time is needed before vehicles

start to arrive at the intersection and the intersection becomes fully stressed. This is the warm-

up period of a simulation. We can be sure the warm-up period has ended when the plot of the

average vehicle delay stabilizes into a line that is more-or-less horizontal.

In Figure 1 the average delay of a vehicle is shown when the intersection is operating under a)

traffic-actuated control and b) look-ahead traffic-adaptive control. The average delay encoun-

tered by a vehicle in the traffic-actuated controlled case can (in Figure 2(a)) be seen to stabilize

at about 25 seconds per vehicle whereas the average delay in the traffic-adaptive controlled case

can (in Figure 2(b)) be seen to stabilize at about 18 seconds per vehicle. This proves that there

is certainly something to be gained by planning for future arrivals.

 0

 5

 10

 15

 20

 25

 30

 0  500  1000  1500  2000  2500  3000  3500

D
e

la
y
 (

in
 s

e
c
o

n
d

s
)

Time (in seconds)

Vehicle delay

Average
Standard deviation

(a) Vehicle actuated control

 0
 0

 5

 10

 15

 20

 30

 25

D
e

la
y
 (

in
 s

e
c
o

n
d

s
)

Vehicle delay

Standard deviation
Average

 500

Time (in seconds)

 2000 1500 1000  2500  3000  3500

(b) Look-ahead traffic-adaptive control

Figure 2: Performance for an intersection with 4 phases

In Figure 2(b) the average delay encountered by a vehicle was plotted for a 4-phase traffic-

adaptive controller. When the number of phases is extended to 8 (i.e., the number of signal

group configurations supported by a typical 2-ring NEMA traffic-actuated controller) the av-

erage delay can (in Figure 3(a)) be seen to have reduced even further to about 16 seconds per

vehicle. When computational complexity demands a longer update-interval (e.g., 5 seconds)

the average delay per vehicle can (in Figure 3(b)) be seen to rise again to about 18 seconds

per vehicle. This clearly shows the impact of the trade-off made regarding the choice of the
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action space, planning horizon, update frequency and delay model. The better the optimization

method employed is, the less comprises have to be made.
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(a) 1-second update interval
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Figure 3: Performance for an intersection with 8-phase traffic-adaptive control

CONCLUSIONS AND FURTHER WORK

The previous has shown that there are many different ways to configure a traffic-adaptive sys-

tem. They differ with respect to the search algorithm applied, the length and resolution of the

planning horizon, the update frequency and the delay model used. Unfortunately computational

boundaries still prevent the configuration of a traffic-adaptive system in which no compromises

have to be made in order to end up with a workable system that is a) able to come up with good

signal timings and b) is able to deliver them on time.

In order to gain the full advantage of traffic-adaptive control, the system should be carefully

tuned. Computationally complexity, geometry of an intersection, and demand patterns should

be carefully considered. This is why it is so difficult to judge the merits of an algorithm based

on the benchmark studies. More often than not comparisons are made between algorithms that

have been tuned recently and those that have not been tuned for some time. We are currently

trying to find a site which allows us to make a fair comparison.
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