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Model Predictive Control for Intelligent Speed Adaptation in Intelligent

Vehicle Highway Systems

Lakshmi Dhevi Baskar, Bart De Schutter, and Hans Hellendoorn

Abstract— Intelligent Vehicle Highway Systems (IVHS) con-
sist of automated highway systems in combination with intelli-
gent vehicles and roadside controllers. The intelligent vehicles
can communicate with each other and with the roadside
infrastructure. The vehicles are organized in platoons with short
intraplatoon distances, and larger distances between platoons.
Moreover, all vehicles are assumed to be automated, i.e.,
throttle, braking, and steering commands are determined by an
automated on-board controller. In this paper we first propose
a model predictive control (MPC) approach to determine
appropriate speeds for the platoons. Next, we discuss which
prediction models are suited to be used as an on-line traffic
prediction model in MPC for IVHS. The proposed approach is
then applied to a simple simulation example in which the aim
is to minimize the total time all vehicles spend in the network
by optimally assigning speeds to the platoons.

I. INTRODUCTION

Due to the growing traffic demand and the growing

need for mobility and transportation, traffic jams are still

increasing in frequency, duration, and impact all around

the world. Often traffic congestion problems can to some

extent be solved by building new roads; however, this option

is often not feasible due to lack of space, financial costs,

or environmental constraints. An alternative, usually more

feasible option is to use the existing infrastructure in a

more efficient way through traffic management and traffic

control. This approach combines advanced control methods

with various control measures (such as traffic signals, ramp

metering installations, dynamic speed limits, etc.) to reduce

the impact of traffic jams.

As a next step in this direction, advanced technologies

from the field of control theory, communication, and infor-

mation technology are currently being combined with the ex-

isting transportation infrastructure and equipment. This will

result in integrated traffic management and control systems,

called Intelligent Vehicle Highway Systems (IVHS), that

incorporate intelligence in both the roadside infrastructure

and in the vehicles. Though this step is considered to be

a long-term solution, this approach is capable of offering

increased performance of the traffic system [1]–[3].

In order to diminish or even to eliminate the impact of

driver reaction times and driver errors, complete control of

driving tasks is preferred in IVHS-based traffic management

systems. So in IVHS all vehicles are assumed to be fully
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automated with throttle, braking, and steering commands

being determined by an automated on-board controller. Such

complete automation of the driving tasks allows to organize

the traffic in platoons, i.e., a closely spaced group of vehicles

traveling together with short intervehicle distances [4], [5].

In a platoon, the first vehicle is called the platoon leader

and the other ones are said to be followers. Platoons travel

at high speeds and to avoid collisions between platoons

at these high speeds, a safe interplatoon distance of about

20–60 m should be maintained. Also, the vehicles in each

platoon travel with small intraplatoon distances of about 2–

5 m, which are maintained by the automated on-board speed

and distance controllers. By traveling at high speeds, by

substantially eradicating human delays, and by maintaining

short intraplatoon distances, the platoon approach allows

more vehicles to travel on the network, which improves the

traffic throughput [6], [7].

In this paper we will combine the intelligence of both

roadside infrastructure and automated vehicles. More specif-

ically, in the proposed approach, the roadside infrastructure

will use traffic control and management methods that support

platoons of intelligent vehicles. The control approach will

also be embedded in the hierarchical traffic management and

control framework for IVHS we have presented in [8]. In this

paper, we will in particular concentrate on how the roadside

controller can determine optimal speeds set-points for the

platoons using model predictive control (MPC).

The paper is organized as follows. In Section II we present

a short overview of intelligent vehicles (IVs) and IV-based

control measures, with a particular focus on intelligent speed

adaptation. Next, we discuss in Section III how MPC can

be used to determine optimal speeds for the platoon leaders

in IVHS. Section IV presents an overview of appropriate

prediction models for use in IVHS-MPC. In Section V

we apply the proposed approach to a case study based on

simulations and we highlight the potential effects of IVHS-

MPC on the performance of the traffic system.

II. INTELLIGENT VEHICLE HIGHWAY SYSTEMS (IVHS)

A. Intelligent vehicles and IV-based traffic control measures

Intelligent Vehicles (IVs) are equipped with control sys-

tems that can sense the environment around the vehicle and

that result in a more efficient vehicle operation by assisting

the driver or by taking partial or complete control of the

vehicle [9]. The platoon-based approach used in this paper

assumes that all IVs are fully autonomous, i.e., complete

control is taken of the vehicle operation.
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Fig. 1. IV-based framework of [8]. The focus of this paper is indicated by
the dashed box.

There are several IV technologies that support and im-

prove the platooning concept by allowing vehicle-vehicle and

vehicle-roadside coordination [9], [10]:

• Intelligent Speed Adaptation (ISA),

• Adaptive Cruise Control (ACC),

• dynamic route planning and guidance.

In this paper we will focus on ISA and ACC.

ISA is based on a speed limiter incorporated within each

vehicle that can take into account speed limit restrictions,

that can adjust the maximum driving speed to the speed limit

specified by the roadside infrastructure, and that can provide

feedback to the driver or take autonomous action when that

speed limit is exceeded. ISA systems could use fixed or

dynamic speed limits. In the fixed case, the driver is informed

about the speed limit, which could be obtained from a static

database. Dynamic speed limits take into account the current

road conditions such as bad weather, slippery roads, or major

incidents before prescribing the speed limit.

An ACC system is a radar-based system that extends

conventional cruise control and that is designed to monitor

the immediate predecessor vehicle in the same lane, and to

automatically adjust the speed of the equipped vehicle to

match the speed of the preceding vehicle and to maintain

a safe intervehicle distance [11]. Cooperative ACC is a

further enhancement of ACC systems that uses wireless

communication technologies to obtain real-time information

about the speed, acceleration, etc. of the preceding vehicle.

Vehicles equipped with cooperative ACC can exchange the

information much quicker and allow to set the safe mini-

mum time headway as small as 0.5 s. Hence, with reduced

headways between vehicles, the maximal traffic flow can be

augmented even further.

B. Hierarchical framework for IV-based traffic management

In this section, we briefly present the hierarchical control

framework for IVHS we have proposed in [8]. This frame-

work distributes the intelligence between roadside infrastruc-

ture and vehicles, and uses IV-based control measures to

prevent congestion and/or to improve the performance of the

traffic network.

The control architecture of [8] is based on the platoon

concept and consists of a multi-level control structure with

local controllers at the lowest level and one or more higher

supervisory control levels as shown in Figure 1. The layers

of the framework can be characterized as follows:

• The higher-level controllers (such as area, regional, and

supraregional controllers) provide network-wide coor-

dination of the lower-level and middle-level controllers.

The activities of a group of roadside controllers could

be supervised by an area controller. In turn, a group

of area controllers could be supervised or controlled by

regional controllers, and so on.

• The roadside controllers use IV-based control measures

to improve the traffic flow. A roadside controller may

control a part of a highway, an entire highway, or a

collection of highways. Each platoon in the highway

network is considered as a one single entity to the road-

side controller. This significantly reduces the complexity

of the control problem compared to the case where each

individual vehicle would be controlled by the roadside

controller. As a consequence, the whole traffic network

can be managed more efficiently.

The main tasks of the roadside controllers are to assign

desired speeds for each platoon, safe distances to avoid

collisions between platoons, desired platoon sizes de-

pending on the traffic conditions, to provide dynamic

route guidance for the platoons, ramp metering values

at the on-ramps, and also to instruct for merges, splits,

and lane changes of platoons.

• The platoon controllers receive commands from the

roadside controllers and are responsible for control

and coordination of each vehicle inside the platoon.

The platoon controllers are mainly concerned with ac-

tually executing the interplatoon maneuvers (such as

merges with other platoons, splits, and lane changes)

and intraplatoon activities (such as maintaining safe

intervehicle distances).

• The vehicle controllers present in each vehicle receive

commands from the platoon controllers (e.g., set-points

or reference trajectories for speeds (ISA), headways

(ACC), and paths) and they translate these commands

into control signals for the vehicle actuators such as

throttle, braking, and steering actions.

In the remainder of the paper we will focus on the roadside

controller and in particular on how optimal speed limits can

be determined for the platoons.

III. MODEL PREDICTIVE CONTROL FOR INTELLIGENT

SPEED ADAPTATION IN IVHS

A. MPC for ISA

Model Predictive Control (MPC) [12], [13] has originated

in the process industry and it has already been successfully

implemented for many industrial applications. MPC is based

on (on-line) optimization and uses an explicit prediction

model to determine the optimal values for the control mea-

sures (see Figure 2). The optimal control inputs are then

applied to the system in a receding horizon approach. The

receding horizon approach introduces a feedback mechanism,
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which allows to reduce the effects of possible disturbances

and mismatch errors.

We now explain how MPC can be applied for speed con-

trol in IVHS. MPC makes use of discrete-time models. Let

Tctrl be the control sampling interval, i.e., the (constant) time

interval between two updates of the control signal settings.

At each time step k (corresponding to the time instant t =
kTctrl), the roadside controller first measures or determines

the current state x(k) of the system. Recall that the roadside

control works with platoons as basic entities. So in our case

the state of the system includes the positions and speeds of

the platoon leaders and the lengths of the platoons. Next,

the controller uses an optimization algorithm in combination

with a model of the system to determine the control inputs

u(k), . . . ,u(k+Np −1) that optimize a performance criterion

J(k) over a time interval [kTctrl,(k +Np)Tctrl], where Np is

called the prediction horizon. In our case the control signal

u will consist of the speed limits for the platoon leaders.

There exists a wide range of traffic models [14]. An

important factor that determines the choice of the model

to be used in MPC is the trade-off between accuracy and

computational complexity since at each time step k the model

will be simulated repeatedly within the on-line optimization

algorithm. As a consequence, very detailed microscopic

traffic simulation models are usually not suited as MPC pre-

diction model. Instead, simplified or more aggregate models

are usually applied. In Section IV we will present some

models that are especially suited for use in MPC for IVHS.

Note however that MPC is a modular approach so that in

case a given prediction model does not perform well, it can

easily be replaced by another prediction model.

Possible performance criteria J(k) are the total time spent

in a traffic network, the total throughput, the total fuel

consumption, safety, or a combination of these. In this paper

we will in particular consider the total time spent (TTS) by

all the vehicles in the network:

JTTS(k) =
Np

∑
j=0

nveh(k+ j)Tctrl , (1)

where nveh(k+ j) is the number of vehicles that are present

in the network at time t = (k + j)Tctrl. Moreover, in order

to prevent oscillations and frequent shifting in the control

signals, one often adds a penalty on variations in the control

signal u, which results in the total performance function

Jtot(k) = J(k)+α
Np

∑
j=0

‖u(k+ j)−u(k+ j−1)‖2 , (2)

where α > 0 is a weighting factor.

The MPC controller also explicitly takes into account

operational constraints such as minimum separation between

the platoons, minimum and maximum speeds, minimum

headways, etc. To reduce the computational complexity of

the problem, one often introduces a constraint of the form

u(k+ j)= u(k+ j−1) for j = Nc, . . . ,Np−1, where Nc (<Np)

is called the control horizon.

In MPC the control actions are applied in a receding hori-

zon fashion. This is done by applying only the first control

sample u(k) of the optimal control sequence to the system.

Next, the prediction horizon is shifted one step forward, and

the prediction and optimization procedure over the shifted

horizon are repeated using new system measurements.

B. Optimization methods

Solving the MPC optimization problem (i.e., computing

the optimal control actions) is the most demanding operation

in the MPC approach. In our case the MPC approach gives

rise to nonlinear nonconvex optimization problems that have

to be solved on-line. So a proper choice of optimization

techniques that suit the nature of the problem has to be

made. In our case global or multi-start local optimization

methods are required such as multi-start sequential quadratic

programming [15], pattern search [16], genetic algorithms

[17], or simulated annealing [18].

IV. VEHICLE AND TRAFFIC MODELING

Now we describe simplified traffic models for vehicles and

for platoons that can be used as (part of the) prediction model

within the MPC-based roadside controller.

A. Traffic flow modeling

In this paper, we deal with the longitudinal aspects of the

driver tasks, which can be classified as follows:

• free-flow behavior,

• car-following behavior,

• stop-and-go behavior.

In free-flow behavior, the vehicles can travel at their desired

speed (corresponding to the speed limit, e.g., 120 km/h). As

the traffic demand increases, the vehicles start to follow their

predecessors at closer distances and at reduced speeds (50–

80 km/h). Once the capacity of the highway is being utilized

at its maximum, then the vehicles move with stop-and-go

movements (0–40 km/h).

B. Vehicle models

We use general kinematics motion equations to describe

the dynamics of the vehicles, which, after discretization leads

to:

xi(ℓ) = xi(ℓ−1)+ vi(ℓ−1)Tsim +0.5ai(ℓ−1)T 2
sim (3)

vi(ℓ) = vi(ℓ−1)+ai(ℓ−1)Tsim (4)

where ℓ is the simulation step counter, Tsim the simulation

time step, xi the longitudinal position of vehicle i, vi the

speed of vehicle i, and ai the acceleration of vehicle i. The

acceleration used in (3)–(4) is calculated according to the



current driving situation as will be explained below. Also,

the acceleration is limited between a maximum acceleration

and a maximum (in absolute value) comfortable deceleration.

We first consider models for human drivers. Next, we dis-

cuss models for the intelligent vehicles and for the platoons.

We conclude with a description of a phenomenon called

capacity drop.

C. Longitudinal models for human drivers

The time headway Thead of a vehicle is defined as the

time difference between the passing of the rear ends of

the vehicle’s predecessor and the vehicle itself at a certain

location. When there is no predecessor or when the time

headway to the predecessor is larger than the critical time

headway (e.g., 10 s), then the vehicle is said to be in free-flow

mode. Once the vehicle travels with a smaller time headway

than the critical time headway to its predecessor, then the

vehicle is said to be in car-following mode.

1) Free-flow model: The acceleration for free-flow driving

conditions is determined by the delayed difference between

the current speed and the reference speed:

ai(ℓ) = K(vref,i(ℓ−σ)− vi(ℓ−σ)) (5)

where K is the proportional constant, vref,i is the reference

speed, and σ is the reaction delay1. The reference speed

can either be issued by roadside infrastructure or it can be

driver’s desired maximum speed.

2) Car-following model: As described in [19] there exist

various types of car-following models such as stimulus

response models [20], collision avoidance models [21], psy-

chophysical models [22], and cellular automata models [23].

We will use a stimulus response model to describe the be-

havior of human drivers as this model is most often used and

also easy to implement. Stimulus response models are based

on the hypothesis that each vehicle accelerates or decelerates

as a function of the relative speed and distance between the

vehicle and its predecessor. In particular, the Gazis-Herman-

Rothery (GHR) model [24] states that after a reaction delay,

the follower vehicle i accelerates or decelerates in proportion

to the speed of the vehicle itself, to the relative speed with

respect to its predecessor (vehicle i+1), and to the inverse of

distance headway between them. The reference acceleration

is thus given by

ai(ℓ) =Cv
β
i (ℓ)

(vi+1(ℓ−d)− vi(ℓ−d))

(xi+1(ℓ−d)− xi(ℓ−d))γ
(6)

where C, β , and γ are the model parameters (possibly with

different values depending on whether the vehicle is in a

congested and uncongested driving situation), and d is the

driver delay2.

1We assume here that the reaction time Treact, which typically has a value
of 1–1.2 s, is an integer multiple of the simulation time step Tsim. So, Treact =
σTsim with σ an integer.

2Here we assume again that Tdelay, which typically has a value of 1–1.2 s,
is an integer multiple of Tsim. So, Tdelay = dTsim with d an integer.

D. Longitudinal models for intelligent vehicles

In our approach, intelligent vehicles will use ACC and ISA

measures and are arranged in platoons. We now discuss how

the accelerations for the platoon leaders and for the follower

vehicles within a platoon are calculated.

1) Platoon leader model: Platoon leaders have an

enforced-ISA system and the calculation of the acceleration

for the platoon leader is based on a simple proportional

controller:

ai(ℓ) = K1(vISA(ℓ)− vi(ℓ)) (7)

where K1 is the proportional constant, and vISA is the

reference ISA speed provided by the roadside controller.

2) Follower vehicle model: The follower vehicles will use

their on-board ACC system to maintain short intraplatoon

distances. The ACC algorithm consists of a combined speed

and distance controller:

ai(ℓ) = K2(href,i(ℓ)− (xi+1(ℓ)− xi(ℓ)))+K3(vi+1(ℓ)− vi(ℓ))
(8)

where K2 and K3 are constants, and href,i is the reference

distance headway for vehicle i. Note that the speed controller

is based on the same principle as the one used in the platoon

leader model, but with the platoon leader’s speed as the

reference speed. The distance controller calculates the safe

distance headway as follows:

href,i(ℓ) = S0 + vi(ℓ)Thead,i +Li (9)

where S0 is the minimum safe distance that is to be main-

tained at zero speed, Thead,i is the time headway for vehicle

i, and Li is the length of vehicle i.

E. Platoon-based prediction model

On a more aggregate level, we can also consider a platoon

of vehicles as a single entity without taking the detailed

interactions among the individual vehicles within a platoon

into account. So essentially we consider a platoon as one

“big vehicle” with a length that is a function of the speed

of the platoon (due to the dependence of the intervehicle

spacing managed by the ACC on the speed (cf. (9))), and of

the number and lengths of the vehicles in the platoon. The

dynamics equations for the speed and position of the platoon

are the same as those of a platoon leader presented above.

Consider platoon p and assume for the sake of simplicity that

the vehicles in the platoon are numbered 1 (last vehicle), 2

(one but last vehicle), . . . , np (platoon leader). The speed

dependent length Lplat,p(ℓ) of platoon p is then given by

Lplat,p = (np −1)(S0 +S1vnp(ℓ))+
np

∑
i=1

Li , (10)

where S0+S1vnp(ℓ) is the speed-dependent intervehicle spac-

ing between the vehicles in the platoon, with S0 the minimum

safe distance that is to be maintained at zero speed, S1 a

model constant, vnp the speed of the platoon (leader), and Li

the length of vehicle i.



10 km

Travel direction

0.5 km

15 km  stretch

4.5 km

Fig. 3. Set-up of the case study.

F. Capacity drop

In general, traffic congestion occurs when the available

network resources are not sufficient to handle the traffic

demand (recurrent congestion), or due to irregular occur-

rences, such as traffic incidents (non-recurrent congestion).

In practice, traffic jams or congestion result in capacity

drop [25]. This phenomenon causes the expected maximum

outflow from the jammed traffic to be less than in the case

of free-flow traffic. This is mainly caused by the delay

in reaction time and increased intervehicle distance (time

headway) when vehicles start to exit from a traffic jam. For

human drivers the capacity drop is typically of the order of

2–7 %. With fully automated vehicles the capacity drop can

be reduced to almost 0 %.

V. CASE STUDY

In this section, we present a simple case study in which

the MPC control strategy described in Section III is used by

the roadside controller layer.

A. Set-up

As a test-bed for illustrating the proposed IVHS-MPC

approach we use a basic set-up consisting of a 15 km single-

lane highway stretch with one origin and one destination and

without any intermediate on-ramps or off-ramps (see Figure

3). We will compare three different situations:

• uncontrolled traffic (with human drivers),

• controlled traffic with human drivers and autonomous

ISA as control measure,

• IV-based traffic control with platoons.

For the sake of simplicity all vehicles are assumed to be of

the same length (Li = 4 m). For the situation with human

drivers and ISA we assume that ISA limits the speed in a

hard way and that human drivers cannot surpass the imposed

speed limit. In the IV-based case with platoons we assume

that all the vehicles are fully automated IVs equipped with

advanced communication and detection technologies such as

in-vehicle computers and sensors, and with on-board ACC

and ISA controllers.

B. Scenario

We simulate a period of 30 min starting at time tstart =
7 h 20 min and ending at time tend = 7 h 50 min. The total

demand of vehicles is 1600 veh/h. In the proposed scenario

an incident occurs at position x = 10 km over a length of

0.5 km, and it exists for a time interval of 15 min, starting

at time t1 = tstart = 7 h 20 min and ending at time t2 = 7 h

35 min. During this interval, the maximum outflow from the

incident position x is less when compared to free-flow traffic

due to the capacity drop. The value of this capacity drop

in our case is around 7 % for human drivers (both in the

controlled and the uncontrolled case) and around 0 % for

platoons (due to the full automation). After time t2, the traffic

flow at position x returns slowly to its regular value.

C. Models

As indicated above we are interested in comparing the

simulation results obtained for the same scenario using

human driving (both without and with control) and using

our platoon-based hierarchical approach. For this purpose,

we have developed simulation models in Matlab for human

driving and platoon driving. For the sake of simplicity and

to avoid calibration, we have used the same models for both

simulation and prediction purposes in this simulation study.

For the vehicle models we have used (3)–(4) with the

reference accelerations given by respectively (5)–(6) for

uncontrolled human drivers, (5)–(6) with vref,i(ℓ) equal to

the ISA speed limit for human drivers with ISA, and (7)–(9)

for platoons of intelligent vehicles. If we express distances

in m, times in s, and speeds in m/s, the values of the various

parameters in these models have the following values. For the

car-following model (6) we have3 C = 1.55, β = 1.08, and

γ = 1.65 for uncongested driving, and C = 2.55, β =−1.67,

and γ =−0.89 for congested driving. Furthermore, we have

selected σ = 1, d = 1, and K = K1 = 1
60

. For the follower

vehicle model (8)–(9) we have K2 = 1.58, K3 = 1.8, and

S0 = 2 for all vehicles.

The time step Tsim for the simulations is set to 1 s.

D. Control problem

The goal of our traffic controller is to improve the traffic

performance. The objective that we consider is minimization

of the total time spent (TTS) by all the vehicles in the

network (see (1)) using dynamic speed limits as the control

handle. So the control signal u for the MPC problem of time

step k includes speed limits for all platoons that are in the

network at time step k. We have also included a penalty term

(cf. (2)) with α = 0.02. We consider a maximum speed of

120 km/h for both the human drivers and the platoon leaders.

As we focus on dynamic speed limits for each platoon, the

platoon size is not yet considered to be a control variable,

but it is kept fixed at 5 for all platoons.

The control sampling time Tc is set at 1 min. For the

prediction horizon Np we have taken a value that corresponds

to 15 min, and for the control horizon Nc we have selected

a value that corresponds to 3 min so as to limit the number

of optimization variables.

For solving the MPC optimization problems we have used

the patternsearch command incorporated in the Genetic

Algorithm and Direct Search Toolbox of Matlab.

E. Results and analysis

For the scenario discussed above, a closed-loop MPC

simulation has been carried out. The total time spent by

3These values are the same as the ones used in MITSIM [26].



Case TTS (veh.h) Relative improvement

uncontrolled case 141.11 0 %

controlled (human drivers) 118.86 15.77 %

controlled (platoons) 93.83 33.25 %

TABLE I

RESULTS OF THE THREE APPROACHES. THE TTS IS THE TOTAL TIME

SPENT BY ALL VEHICLES IN THE NETWORK DURING THE ENTIRE

SIMULATION PERIOD.

all the vehicles in the network during the period [tstart, tend]
(nearly 465 vehicles are generated during this period) is

calculated for human driving with ISA control and without

control, and for IV-based platoons with speed limit control.

The results are reported in Table I.

The relative improvement is computed with respect to the

uncontrolled case. Clearly, the IV-based traffic with platoons

results in the best performance with an improvement of about

33 % with respect to the uncontrolled case. The results can

be explained as follows.

In the uncontrolled case with human drivers, when there

are no vehicles in front of the driver or if there is enough

space between two drivers, the drivers maintain their desired

speed. But when a driver is confronted with an incident, he

has to decelerate in order to avoid a collision and he has to

wait until the incident gets cleared. This results in a large

time spent in the network for that vehicle, and thus also in

a higher value of the TTS for the entire simulation period.

For the same scenario but with the human driver and ISA

control, the MPC approach can predict the presence of the

incident and prevent it or diminish its negative impacts by

slowing down the vehicles before they reach the incident.

For the platoon-based approach there is an additional perfor-

mance improvement caused by the full automation, which

allows to maintain small intervehicle distances (so that more

cars are allowed to traverse the network more quickly) and

which results in an almost 0 % capacity drop.

VI. CONCLUSIONS AND FUTURE RESEARCH

We have presented how model predictive control (MPC)

can be used to determine optimal speeds for platoons in an

intelligent vehicle highway system. The proposed approach

has been illustrated using a case study based on simulations.

The results of the case study highlight the potential benefits

and improvements that can be obtained by using MPC

for intelligent speed adaptation in IVHS. Future research

topics include: additional and more extensive case studies,

inclusion of additional control measures apart from speed

limits, explicit consideration of the other levels in the IVHS

control hierarchy of [8], and extension to larger networks.
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