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Travel time control of destination coded vehicles

in baggage handling systems

Alina Tarău, Bart De Schutter, and Hans Hellendoorn

Abstract— The process of handling baggage in an airport
is time critical. Currently, the fastest way to transport the
luggage is to use destination coded vehicles (DCVs). These
vehicles transport the bags at high speed on a “mini” railway
network. The typical issues of the baggage handling system
are coordination and synchronization of the processing units,
minimization of the baggage travel time, avoidance of collisions
between vehicles, prevention of buffer overflows, and minimiza-
tion of the transportation costs. In this paper we determine an
event-based model of the baggage handling system using DCVs
and we investigate the use of centralized control for this system.
The proposed control methods are optimal control and model
predictive control. This way the optimal route and the optimal
speed profile of each vehicle are determined. The considered
control methods are compared for several scenarios. Results
indicate that optimal control becomes intractable when a large
stream of bags has to be handled, while model predictive control
can still be used to suboptimally solve the problem.

I. INTRODUCTION

The baggage handling system of an airport plays a decisive

role in the airport’s efficiency and comfort, which are among

the most important factors that determine the airport’s ability

to attract new airlines or to stay a major airline hub.

The baggage handling system is successful if all the bags

are transported to the corresponding lateral (a lateral is the

place where the bags are lined up, waiting to be loaded

in containers) before the plane has to be loaded. Hence,

the process is time critical. The faster the transportation is

performed, the more efficient the baggage handling system

is.

In order to transport the bags in an automated way, a

baggage handling system could incorporate technology such

as scanners that scan the labels on each piece of luggage,

baggage screen equipment for security scanning, networks

of conveyors equipped with junctions that route the bags

through the system, and destination coded vehicles (DCVs).

The DCVs are carts propelled by linear induction motors,

and these carts are mounted on tracks. They transport the

bags at high speed on a “mini” railway network.

Briefly, the main control problems of a baggage handling

system are coordination and synchronization of the process-

ing units, route assignment of each bag (and implicitly the

switch control of each junction), velocity control of each

DCV, line balancing, and prevention of buffer overflows.
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Synchronization and coordination are required when load-

ing the bags onto the system in order to avoid damaging the

bags and blocking the system, or when unloading them to

the corresponding lateral.

When using DCVs, the route and the velocity profile

of each vehicle have to be determined in order to assure

the system optimum. In the literature, the route assignment

problem has been discussed in e.g. [1], [2], [3], [4].

The loading conveyor belt can only advance when there

is an empty cart onto which the bag on the conveyor belt

can be placed. But, since the number of DCVs is limited,

empty carts will arrive only after they have delivered their

previous loads. Hence, the availability of individual carts is

critical for the performance of the entire system. The key in

controlling the available capacity of the system consists in

fact in assuring a balanced transport service. This problem

has been named in [5] the “line balancing” problem.

The buffer overflow problem appears when the capacity

of the conveyor belt or any other buffer is exceeded due to

e.g. improper line balancing or congestion.

Our goal is to investigate the use of centralized control

of the baggage handling system. In this paper we implement

advanced control methods such as optimal control and model

predictive control to determine the optimal route and velocity

for each DCV in the network. We do not consider yet line

balancing and prevention of the buffer overflows.

The paper is organized as follows. In Section II, the

baggage handling process using DCVs is described, and

afterwards, the continuous-time event-driven model of the

system is presented. In Section III, several control approaches

are proposed for computing the optimal route and optimal

velocity of each DCV transporting a bag. The analysis of the

simulation results and the comparison of the proposed control

methods are elaborated in Section V. Finally, in Section VI,

conclusions are drawn and the future directions are presented.

II. EVENT-DRIVEN MODEL

A. Operation of the system

The baggage handling process begins after the bags have

passed the check-in. Then they enter the conveyor network,

being routed to loading conveyors towards loading stations.

Depending on the availability of empty DCVs, at each

loading station a queue of bags may be formed. In this paper

we focus on the transporting-using-DCVs part of the process.

Therefore, one may consider that each loading station has a

buffer of bags waiting to be handled as sketched in Figure

1. The baggage handling system operates as follows: given a

finite sequence of bags (identified by their unique code) and



a buffer of empty DCVs for each loading station, together

with the network of tracks, the optimal route and the optimal

velocity profile of each DCV have to be computed subject

to operational and safety constraints such that the system

optimum is assured.

track network

buffers of bags

(black box)

loading stations

laterals

buffer of
DCVs

unloading stations

loading conveyors

L1 L2 LL

U1 U2 UU

Fig. 1. Baggage handling system using DCVs.

We consider a baggage handling system with L loading

stations and U unloading stations as depicted in Figure 1.

Accordingly, we have L FIFO (First In First Out) buffers of

bags waiting to enter the system.

B. Modeling assumptions

Later on we will use the model for on-line model-based

control. So, in order to balance between a detailed model

that requires large computation time and a fast simulation

we make the following assumptions:

1) a sufficient number of DCVs are present in the system.

2) the capacity of the network is large enough so that no

overflow will occur.

3) each loading station has a finite buffer of bags waiting

to be handled.

4) all buffers have the same maximum capacity bmax.

5) assume there are X bags with random destinations to be

handled. They are numbered 1,2, · · · ,X . When using

a baggage handling system with L loading stations,

we split this stream b = [1 2 · · · X ]T with X ≤ Lbmax,

in L new streams b1 = [1 2 · · · l]T, b2 = [l + 1 l +
2 · · · 2l]T, · · · , bL = [(L− 1)l + 1 (L− 1)l + 2 · · · X ]T

with l =
⌊

X
L

⌋

, where ⌊x⌋ denotes the largest integer

less than or equal to x.

6) the “mini” railway network has single-direction tracks.

7) a route switch at a junction can be performed in a

negligible time span.

8) the speed of a DCV is piecewise constant.

9) the laterals have infinite capacity.

10) the destinations to which the bags have to be trans-

ported are allocated to the laterals when the process

starts.

Since we consider the line balancing problem solved, these

assumptions are reasonable and give a good approximation

of the real baggage handling system.

C. Model

There are four types of events that can occur:

• loading a new bag into the system.

• unloading a bag that meets the corresponding lateral.

• updating the route switches at the junction that the DCV

has to pass.

• updating the speed of a DCV.

The model of the baggage handling system is an event-

driven one consisting of a continuous part describing the

movement of the individual vehicles transporting the bags

through the network, and of the discrete events listed above.

Define Ni as the number of junctions that a DCV has

to pass in order to reach its destination. A track segment

is the portion of the track on which a DCV is running

either between a loading station and a junction, or between

two junctions, or between a junction and an unloading

station. Let DCVi be the DCV that transports the ith bag

that entered the system. The following situation has been

assumed: given the velocity sequence of the DCVi say

vi = [vi(0) vi(1) · · · vi(Ni)]
T and the sequence of segment

lengths li = [li(0) li(1) · · · li(Ni)]
T, on each segment j of

length li( j) the velocity of DCVi equals vi( j) as illustrated

in Figure 2. The velocity of the DCVi that passed segment j,

j = 0,1, · · · ,Ni−1 is updated at time instant t j+1 = t j +
li( j)
vi( j)

with t0 the initial time.

vi

vi(0)

vi(1)
vi(2) vi(Ni)

li(0) li(1) li(2) li(Ni)
distance
traveled

Fig. 2. Speed evolution of the DCVi.

The model of the baggage handling system is given by the

algorithm below, where the loading stations are denoted by

L1, L2, · · · , LL, and the unloading stations are denoted by

U1, U2, · · · , UU . We also define S as the number of junctions

of the track network and Xcurrent(t) as the number of bags

that entered the baggage handling system up to the current

time instant t.

Algorithm 1. Baggage handling

1: t← t0
2: while there are bags to be handled do

3: for ℓ= 1 to L do

4: tload(ℓ)← time that will pass until the next

loading event from Lℓ’s point of view

5: end for

6: for ℓ= 1 to U do

7: tunload(ℓ)← time that will pass until the next

unloading event from Uℓ’s point of view

8: end for

9: for s = 1 to S do

10: tswitch(s)← time that will pass until the next

route switch event from the junction s’s

point of view

11: end for

12: for i = 1 to Xcurrent(t) do



13: if bag i is not at a lateral then

14: tspeed update(i)← time that will pass until the

next speed-update event from the point

of view of the DCVi

15: end if

16: end for

17: tmin←min( min
ℓ=1,··· ,L

tload(ℓ), min
ℓ=1,··· ,U

tunload(ℓ),

min
s=1,··· ,S

tswitch(s), min
i=1,··· ,Xcurrent(t)

tspeed update(i))

18: t← t + tmin

19: update the state of the system

20: if tmin = min
i=1,··· ,Xcurrent(t)

tspeed update(i) then

21: update the speed of the DCVi

22: end if

23: end while

If multiple events occur at the same time, then we take

all these events into account when updating the state of the

system at step 19.

D. Operational constraints

The operational constraints derived from the mechanical

and design limitations of the system are the following:

• the velocity of each DCV is bounded between 0 and

vmax.

• a bag can be loaded onto a DCV only if there is an

empty DCV under the loading station.

• a DCV can transport only one bag.

• collisions between DCVs have to be avoided on each

track segment and at each intersection.

III. CONTROL APPROACHES

In this paper we consider several centralized control ap-

proaches that determine the route and the speed of each DCV

such as finite-horizon optimal control and model predictive

control.

A. Optimal control with variable speed profile

Several methods for solving dynamic optimization prob-

lems have been developed. The optimal control problem con-

sists of finding the time-varying control law u(·) for a given

system such that a performance index J(u(·)) is optimized

while satisfying the operational constraints imposed by the

model, see e.g. [6].

In this paper the function J is being defined as follows:

J =
X

∑
i=1

tdwell(i) (1)

where X is the number of bags and tdwell(i) is the time that

bag i spends in the baggage handling system.

The performance index J is influenced by the route that

each bag takes and by the velocity profile of each DCV.

Assuming that there are R possible routes named 1, 2, · · · ,
R, the route of DCVi is r(i), i = 1,2, · · · ,X . Then the route

sequence is defined as r = [r(1)r(2) · · · r(X)]T.

First, we consider the case where Assumption 8 does not

hold. One could denote by Vt(·) the time-varying speed

vector of the DCVs transporting bags, defined as Vt(·) =

[vt,1(·) vt,2(·) · · · vt,X (·)]
T where the function vt,i : [t0, tend]→

[0,vmax] : t 7→ vt,i(t) with vt,i(t) the speed of the DCVi at

time t and tend the time instant when all X bags have been

sorted. Then the optimal control problem would be defined

as follows:

P1: min
r,Vt

J(r,Vt(·))

subject to

the system dynamics

operational constraints

But, continually adjusting the velocity of each DCV

transporting bags through the system so as to minimize the

performance index J requires extremely high computational

effort. In practice, the problem P1 becomes intractable when

the number of possible routes and the number of bags to

be transported are large. The computational effort can be

reduced when considering e.g. the piecewise constant speed

profile of each DCV. Therefore, Assumption 8 is necessary.

B. Optimal control with piecewise constant speed profile

One way to simplify P1 is to consider that the speed of a

DCV remains constant while it is running along one segment.

The piecewise constant speed profile of the DCVi

is defined as vi : {0,1, · · · ,Ni} → (0,vmax]. Then we

have to determine the route control sequence r =
[r(1)r(2) · · · r(X)]T and the tuple V = (v1,v2, · · · ,vX ) with

vi = [vi(0) vi(1) · · · vi(Ni)]
T for i = 1,2, · · · ,X that minimize

the performance index J defined in (1) subject to the dynam-

ics of the system and the operational constraints:

P2: min
r,v

J(r,V )

subject to

the system dynamics

operational constraints

The computational effort of solving the optimal control

problem P2 increases with the number of junctions in the

network and with the number of bags to be handled.

C. Optimal control with constant speed profile

The simplest optimal control problem to solve would be to

determine the route and the constant velocity of each DCV

transporting bags so as to minimize the performance index

J previously defined:

P3: min
r,vct

J(r,vct)

subject to

the system dynamics

operational constraints

where r = [r(1) r(2) · · · r(X)]T is the route sequence, vct =
[vct(1) vct(2) · · · vct(X)]T is the velocity sequence and vct(i)∈
(0,vmax] for i = 1,2, · · · ,X is the constant speed of DCVi.

Solving P3 gives the smallest computational effort, but at

the cost of suboptimal results.

D. Model predictive control

In order to make a trade-off between the optimality and the

time required to compute the optimal velocity profile of each

DCV transporting bags, model predictive control (MPC) is

introduced.



Model predictive control is an on-line control design

method that uses the receding-horizon principle, see e.g. [7].

In the basic MPC approach, given a prediction horizon

Np and a control horizon Nc with Nc ≤ Np, at time step

k, the future control sequence u(k|k), · · · ,u(k+Nc− 1|k) is

computed by solving a discrete-time optimization problem

over a given time step period [k,k + Np] so that the cost

criterion J is optimized subject to constraints on the inputs

and outputs. The input signal is typically assumed to become

constant beyond the control horizon i.e. u(k+ j|k) = u(k+
Nc− 1|k) for j ≥ Nc. After computing the optimal control

sequence, only the first control sample is implemented, and

subsequently the horizon is shifted. Next, the new state of

the system is measured or estimated, and a new optimization

problem at time step k+1 is solved using this new informa-

tion. In this way, a feedback mechanism is introduced.

In our case, k is not time index, but bag index. Also,

computing the control u(k|k) consists of determining the

route and the piecewise constant speed profile of a DCV.

In this variant of MPC the prediction horizon corresponds

to the number of bags that we let to enter the baggage

handling system. The control horizon is equal to the pre-

diction horizon (Np = Nc = N) since, in this case, the control

horizon constraint cannot be applied. This happens due to

the fact that the DCVs transporting the bags do not have

the same route and implicitly the number of segments they

have to pass is different. At step k, where k is the number

of bags in the system, the controls u( j|k) = (r(k+ j),vk+ j)
for j = 1,2, · · · ,N are computed such that the total dwell

time of the next N bags that enter the system is minimized.

The MPC optimization problem at bag step k is defined as

follows:

P4: min
r(k),V (k)

JN(r(k),V (k))

subject to

the system dynamics

operational constraints

where r(k) = [r(k + 1) r(k + 2) · · · r(k + N)]T is the fu-

ture route sequence and V (k) = (vk+1,vk+2, · · · ,vk+N) with

vk+i = [vk+i(0) vk+i(1) · · · vk+i(Ni)]
T for i = 1,2, · · · ,N is

the future velocity profile for the next N bags entering the

baggage handling system.

Only the control (r(k+1),vk+1) will be applied. Given the

state of the system after applying the MPC control, a new

optimization will be solved over the prediction horizon.

The main advantage of MPC consists in a smaller com-

putation time than the one needed when using optimal

control with piecewise constant speed profile. Even more, the

velocity of each DCV may be computed on-line. However,

this happens at the cost of a suboptimal performance of the

baggage handling system.

IV. OPTIMIZATION METHODS

In order to solve the optimization problems presented in

the previous section, the route for each DCV and its speed

profile have to be determined. The route can be represented

by an integer value, while the velocity of each DCV at

any time instant is a real value. Therefore, to solve any

of the optimization problems P2, P3, or P4, one might use

mixed-integer algorithms such as branch and bound methods,

genetic algorithms, or simulated annealing algorithms, see

e.g. [8], [9], [10].

Another way to solve the optimization problems is to

determine, in an outer loop, the route for each DCV using

e.g. genetic algorithms and, in an inner loop, the optimal

velocity profile using e.g. multi-start pattern search or a

sequential quadratic programming algorithm, see [11], [12].

Finally, one could apply a greedy two step approach, split

the mixed-integer problem and determine first the optimal

route (considering e.g. that each DCV can run with the

maximal speed, and neglecting the possible collisions); af-

terwards, only the problem of computing the velocity profile

of each DCV remains to be solved.

V. CASE STUDY

In this section we compare the proposed control methods

and the optimization techniques that could be used to solve

the optimal and MPC control problems. The comparison will

be made based on simulation examples.

A. Set-up

We consider the network of tracks depicted in Figure 3

with two loading stations L1 and L2, two unloading stations

U1 and U2, and two junctions I1 and I2. The route of any

bag entering the system can be either “direct” or “indirect”,

depending on whether, in its way to the corresponding

lateral, the bag passes one or two junctions respectively. We

have considered this network because on the one hand it is

simple, allowing an intuitive understanding of and insight in

the operation of the system and the results of the control

approaches, and because on the other hand, it also contains

all the relevant elements of a real set-up.

700m

500m

1400m

500m

700m

100m

1400m

L1 L2

U1 U2

S1 S2

Fig. 3. Network of tracks as a directed graph.

We assume that the velocity of each DCV varies between

0 m/s and 20 m/s. The lengths of the track segments are

indicated in Figure 3.

In order to faster assess the efficiency of our control

method we assume that we do not start with an empty

network but with a network populated by autonomous DCVs

that transport bags in such a way that no collisions occur.

Starting at the time instant t0, the bags that enter the

system will be transported by DCVs that have their velocities

determined by one of the controllers developed in this paper.



B. Scenarios

We have defined twenty-five scenarios where the stream

of bags that will enter the system after t0 has the length

1,2, · · · ,25, the destination of each bag being randomly

assigned. All these scenarios start from the same initial state

of the system.

C. Control problem

Note that since for the network of Figure 3 there is only

one correct route between a loading station and a lateral, we

only control the velocity of the DCVs.

First we compare several optimization methods that may

solve the optimal control problem with constant speed pro-

file. Afterwards, we select the optimization technique that

gives a good trade-off between performance and compu-

tational effort, and we compare the proposed control ap-

proaches.

As optimization techniques we have considered the Matlab

functions pattern search, genetic algorithm, and simulated

annealing incorporated in the Genetic Algorithm and Direct

Search Toolbox, and the glcFast solver of the mixed-integer

nonlinear problems incorporated in the Matlab/Tomlab Op-

timization Environment.

The performance index J is the total dwell time of the

bags that enter the system starting at the time instant t0.

D. Results

Using the same scenarios for each of the optimization

methods, we illustrate in Figure 4 the evolution of the total

dwell time, of the computation time1 required to determine

the optimal velocities, and of the number of evaluations

with collision result, with respect to the number of bags

to be handled. For the multi-start functions pattern search

and simulated annealing we have used both structured and

random starting points. A structured starting point is a

feasible initial guess chosen based on a priori knowledge. In

our case this starting solution consists of all non-autonomous

DCVs being assigned the same low velocity i.e. the smallest

velocity of the autonomous DCVs. This choice has been

considered because (due to Assumption 7) using the same

very low velocity for all the non-autonomous DCVs usually

yields a local solution.

If there is a collision or if a bag does not reach its

corresponding lateral before the plane has to be loaded,

the total dwell time is set to a very high value, say 108 s.

In order to make a fair comparison, we have imposed the

same number of function evaluations (104) for each of

the considered optimization methods. The evaluation of a

possible sequence of speed profiles ends either when all

the bags have been transported, or when a collision occurs.

Therefore, the more the number of evaluations with collision

result increases, the more the computation time decreases.

These results show that the glcFast solver of the mixed-

integer nonlinear problems finds a local solution only for up

to 8 bags to be handled. Also, the more the number of bags

1The simulations were performed on a 3.0 GHz P4 with 1 GB RAM.
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Fig. 4. Comparison of the proposed optimization methods when using
optimal control with constant velocity profile.

to be handled increases, the more the number of evaluations

with collision result increases and implicitly the computation

time decreases, but the obtained results are less optimal.

The pattern search algorithm gives the best performance

while the computational effort required to compute a local

optimum starting from a feasible initial guess is the smallest.

Therefore, it will be further used in comparing the proposed

control methods.

We first consider improving the performance and after-

wards, the computational effort is taken into account. Usually

Assumption 7 does not hold. Therefore, one may only con-

sider random starting points and repeat the search for a local



optimum until a solution is found. Then the computation

time required to find a solution using e.g. the optimal

control with constant speed profile method when handling

12 bags reached 5 · 105 s. So, the optimal control method

becomes intractable when the number of bags to be handled

is large. Therefore, a trade-off has to be made between the

performance and the computation time. In this context MPC

provides a balanced trade-off due to the receding-horizon

principle that the approach uses, each optimization being

solved for a relative small stream of bags. As a consequence,

MPC assures the speed control of each DCV even for a large

number of bags.
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Fig. 5. Comparison of the proposed control approaches.

For all of the proposed control approaches, we have

illustrated in Figure 5 the performance index J i.e. the

total dwell time and the computation time with respect

to the number of bags to be handled. To faster solve the

optimization problems, we have used the same structured

starting point.

Simulations confirm that applying optimal control with

piecewise constant speed profile yields better performance

than applying optimal control with constant speed profile.

Also, MPC gives results that are very close to the ones

obtained when using optimal control with piecewise constant

speed profile.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have considered the baggage handling

process in large airports using destination coded vehicles

(DCVs) running at high speed on a “mini” railway network,

together with the main control problems of the baggage han-

dling systems. A fast event-driven model of the continuous-

time baggage handling process has been determined. We

have investigated the use of centralized control of the bag-

gage handling systems using DCVs. The considered control

methods are optimal control and model predictive control.

Results confirm that optimal control can be used for deter-

mining the optimal piecewise constant or constant velocity

profile of each DCV. However, this is only possible for a

limited number of bags to be handled. Therefore, receding-

horizon approaches are needed so as to efficiently transport

a large number of bags. Simulations show that MPC can

be successfully used to suboptimally solve the baggage

handling problem due to the receding-horizon principle that

the approach uses.

In future work other (receding-horizon) control methods

will be considered such as fast heuristic approaches, fuzzy

control, case-based control, distributed control, etc. We will

also include more complex dynamics of the system than the

ones considered in this paper.
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