Delft University of Technology

Delft Center for Systems and Control

Technical report 08-014

Movement-based look-ahead
traffic-adaptive intersection control*

R.T. van Katwijk, B. De Schutter, and J. Hellendoorn

If you want to cite this report, please use the following reference instead:

R.T. van Katwijk, B. De Schutter, and J. Hellendoorn, “Movement-based look-ahead
traffic-adaptive intersection control,” Proceedings of the UKACC International Con-
ference on Control 2008, London, UK, 6 pp., Sept. 2008. Paper Th09.01.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft

The Netherlands

phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

* This report can also be downloaded via https://pub.bartdeschutter.org/abs/08_014.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/08_014.html

Movement-Based Look-Ahead
Traffic-Adaptive Intersection Control *

R.T. van Katwijk* B. De Schutter ** J. Hellendoorn ***

* Netherlands Organization for Applied Scientific Research, TNO,
Delft, The Netherlands (e-mail: ronald.vankatwijk@tno.nl).

** Delft Center For Systems and Control & Marine and Transport
Technology department, Delft University of Technology, Delft, The
Netherlands (e-mail: b@deschutter.info)

** Delft Center For Systems and Control, Delft University of
Technology, Delft, The Netherlands, (e-mail: j.hellendoorn@tudelft.nl)

Abstract: There exist several control approaches for traffic signal control such as fixed-time,
vehicle-actuated, or look-ahead traffic-adaptive control. We argue that in order to flexibly deal
with varying demand levels movement-based control (which is already common in vehicle-
actuated intersection control) is required instead of stage-based control (which is still employed
in the state-of-the-art in look-ahead traffic-adaptive control). The movement-based approach
is more flexible than the stage-based approach as it allows green for signals in different stages
to start sooner if the demand for all conflicting movements in the current stage has cleared.
Therefore, we propose a new movement-based method for look-ahead traffic-adaptive control.
The method uses dynamic programming and branch-and-bound algorithms to determine the
optimal traffic signal settings. We illustrate via a simulation example that the new approach can
significantly outperform vehicle-actuated and stage-based look-ahead traffic-adaptive control.

Keywords: Traffic Control, Predictive control, Road Traffic, Dynamic Programming,

Optimization-Based Control

1. INTRODUCTION

The state-of-the-art in traffic signal control is currently
formed by traffic-adaptive systems. However, in practice,
the majority of the controlled intersections in most coun-
tries are still controlled by vehicle-actuated controllers
(e.g., in The Netherlands about 85%). Vehicle-actuated
controllers decide to either extend the active green phase
or to switch to the next phase based on whether or not
vehicles are still present on the approaches of the active
green phase. A vehicle-actuated controller can therefore
be considered to suffer from tunnel vision as it does not
consider traffic on the other approaches.

Traffic-adaptive control differs from vehicle-actuated con-
trol because it can evaluate a set of feasible control de-
cisions and make a decision that is optimal with respect
to its control objective. A look-ahead traffic-adaptive con-
troller additionally is capable of determining the optimal
control decision on the basis of a longer-term analysis,
which often incorporates information from further up-
stream. This allows the look-ahead traffic-adaptive con-
troller to make better decisions in the long run. “Regular”
traffic-adaptive control can be considered to be short-
sighted compared to look-ahead traffic-adaptive control.

* Research funded by the BSIK project “Transition to Sustainable
Mobility (TRANSUMO)”, the STW VIDI project “Multi-Agent
Control of Large-Scale Hybrid Systems” (DWV.6188), the Trans-
port Research Centre Delft, and the Delft Research Center Next
Generation Infrastructures.

Current approaches to look-ahead traffic-adaptive control,
such as PRODYN (Henry et al., 1983), OPAC (Gartner,
1983), UTOPIA-SPOT (Mauro and Di Taranto, 1989),
RHODES (Head et al., 1992), and ALLONS-D (Porche
et al., 1996), are hampered by the fact that they use
a stage-based approach to traffic control as opposed to
the movement-based approach employed by the state-of-
the-art in vehicle-actuated control. The movement-based
approach is more flexible than the stage-based approach
as it allows green for signals in different stages to start
sooner if the demand for all conflicting movements in the
current stage has cleared.

In this paper a new algorithm for look-ahead traffic-
adaptive control will be proposed. The algorithm employs
a movement-based approach to traffic control, which al-
lows for a significant speed-up of the optimization pro-
cess since — compared to a stage-based approach —
the movement-based approach allows the algorithm to
explore a larger search space in the same amount of time.
Furthermore, the algorithm integrates the currently best
known dynamic programming optimization approach to
look-ahead traffic-adaptive control (Sen and Head, 1997)
with a branch-and-bound type optimization.

This paper is organized as follows. Section 2 describes the
differences between the movement-based approach and the
stage-based approach. Next, the new algorithm is proposed
in Section 3. In Section 4 we illustrate via a simulation
example that the new approach can significantly outper-

form vehicle-actuated control and stage-based look-ahead
traffic-adaptive control.

2. MOVEMENT-BASED VERSUS STAGE-BASED
TRAFFIC CONTROL

Consider the intersection depicted in Figure 1. A move-
ment corresponds to a stream of vehicles that could get
green or red!, such as, e.g., movement 11 in Figure 1
which represents the vehicles on the upper arm of the
intersection that can drive straight ahead or turn left.
Given the set of movements for an intersection, a stage
is then a (fixed) assignment of red or green indications to
each of the movements over a period of time.

<+— 02

»— 03
—
Fig. 1. Intersection with indication of some possible move-
ments.

08

Although a look-ahead traffic-adaptive control algorithm
is able to determine the stage-sequence on-line it is still im-
portant to provide the look-ahead traffic-adaptive control
algorithm with a control structure (i.e., the composition
and the sequence of the stages — see Figure 2 for an
example) to work with as it is not possible to evaluate
all possibilities on-line in real-time. The critical conflict
group is the conflict group that, despite being sequenced
efficiently, demands the longest cycle time. As the capacity
of an intersection is determined by the critical conflict
group, the choice of the control structure is often based on
the critical conflict group only. Depending on the sequence
of realization, the internal lost times will be longer or
shorter. This enables the minimization of internal lost
times by choosing a sequence of stages with minimum
clearance times. Each structure has its own clearance times
and so its own minimum cycle times.

As the complexity of an intersection’s geometry increases
so does the complexity of the control structure. Table 1
shows, e.g., the size of the search space to be evaluated to
determine a truly optimal decision for different intersection
geometries with increasing complexity for an N-seconds
planning horizon. In the table a difference is made between
“regular” stages (corresponding to a collection of non-
conflicting movements that get green simultaneously) and
“maximal” stages (corresponding to a maximal collection
of non-conflicting movements that get green simultane-
ously). This difference is important to make, as the state-

1 For the sake of simplicity of the exposition, we do not explicitly
consider the yellow phase or the all-red phase, but for the time being
we work with green and red only (see also Section 3.2 and (van
Katwijk, 2008) for a more detailed explanation).

Move- Regular Maximal
ments stages stages
Geometry # # Search # | Search
space space
cars 12 111 111V 17 17N
+ pedestrians 20 2186 2186N | 112 112N
+ bicycles 28 | 23362 | 23362 | 352 | 352N
+ public 40 | 105722 | 105722N | 834 834N
transport

Table 1. Number of possible stages and the
resulting search space for different intersection
geometries.

<+ 02 26

’_'oa-;» "

Fig. 2. Control structure for the intersection of Figure 1.

R]

BLOCKS

MOVEMENTS

STAGES

Fig. 3. Number of blocks versus the number of stages for
the intersection of Figure 1.

of-the-art in vehicle-actuated controllers uses a movement-
based approach whereas look-ahead adaptive control still
uses a stage-based approach. In order to gain the same
level of flexibility with a stage-based approach as with a
movement-based approach, non-maximal stages have to be
incorporated, which greatly increases the search space.

We consider an approach based on blocks that consist
of several movements. In contrast to the stage-based
approach where a given movements gets green (or red) for
the entire duration of the stage, we allow a movement to
switch, e.g., from green to red within a block, at which time
another non-conflicting movement can get green. This is
illustrated in Figure 3. This figure shows a possible timing
of green and red intervals for the movements given the
structure of Figure 2. Time in the figure progresses from
left to right across the page. The period of time in which
a movement gets green or red is denoted by a bar that is
colored accordingly. The interval of time in which a block
is active is depicted at the top side of the picture. The
figure shows that as soon as green for movement 08 of
block I has terminated, movement 03 of block II is allowed
to get green. This is allowed since movement 03 has no
conflict with the movements of block I that still get green
(in this case, this is movement 02). Similarly, movement
10 of block III is allowed to advance to green as soon as
the green phase for movement 26 has ended. By adopting
this block/movement-based approach (or movement-based
approach for short) the size of the search space can be
reduced significantly.

In Figure 3 the advantage is illustrated of employing
a movement-based strategy over a stage-based strategy

Fig. 4. Decision tree.

for the intersection of Figure 1. As the movement-based
strategy allows movements to switch to green as soon as all
conflicting movements have cleared, the number of green
combinations possible with just three blocks would have
required six distinct (non-maximal) stages if instead an
equivalent stage-based approach had been applied. These
six stages are depicted on the bottom of the picture.
Optimizing over the horizon using blocks instead of stages
significantly reduces the branching factor of the tree and
thus significantly reduces the search space without making
sacrifices with regard to the quality of the solution.

3. A MOVEMENT-BASED LOOK-AHEAD
TRAFFIC-ADAPTIVE ALGORITHM

We use a moving-horizon approach in which at each step
ko an optimal control sequence has to be determined over a
given horizon [kg, ko + K). Control decisions at each step
then involve whether or not to end or to initiate green
for movements. This essentially results in an optimization
problem involving a decision tree. In Section 3.1 we present
the search algorithm we propose to use, and in Section 3.2
we then explain how one can determine when a movement
can end, and which of the non-conflicting movements can
subsequently start.

3.1 Search algorithm

As the decision space has a discrete structure, the
search for the optimal sequence of decisions u* =
Up,s- -5 Up 4 i1 corresponds to building a decision tree.
To illustrate the approach consider the decision tree de-
picted in Figure 4. The tree is rooted by the current state
ko, labeled “now”. Four branches lead away from this
state, each corresponding to the result of a control decision
ug that can be taken at this state. The control decision
made results in a new state from which again four control
decisions can be made. Each decision takes us further into
the future and deeper into the tree formed by the states
resulting from each possible decision.

Since the search space size grows exponentially with prob-
lem size, it is not possible to explore all assignments except
for the smallest problems. The only way out is not to look
at the whole search space. Efficiency in searching the deci-
sion space is considered by the degree to which the entire

tree will not have to be built to find an optimal path. In
(Shelby, 2004) several well-known algorithms are assessed
based on computational speed and on the quality of the
results (in terms of vehicle delay). The search algorithm we
present is based on a dynamic programming formulation
similar to the one found in (Sen and Head, 1997). However,
the algorithm described below uses movements instead
of stages, creating a much more efficient approach. To
improve further upon the performance of the algorithm
it is extended with techniques from the branch-and-bound
algorithm. The algorithm is described below.

Dynamic programming (Dreyfus and Law, 1977; Bert-
sekas, 2005) is a method for solving problems exhibiting
the properties of overlapping subproblems and optimal
substructure. A problem is said to have overlapping sub-
problems if the problem can be broken down into subprob-
lems that can be reused several times whereas a problem is
said to have an optimal substructure if its optimal solution
can be constructed efficiently from optimal solutions to its
subproblems.

In our formulation the problem is to determine the optimal
sequence and duration of the blocks over an optimization
horizon. In our formulation each decision stage represents
the total time allocated to a block. Each decision stage is
divided into states. A state encompasses the information
required to go from one decision stage to the next. In our
formulation the state denotes the total time allocated to
the blocks up to and including the current decision stage.
Starting with an initial block, the algorithm treats each
block as a decision stage, and optimizes over as many
cycles as necessary to obtain an optimum.

The following notation is introduced. The cardinality of a
set B will be denoted by |B|. We also define
B : set of blocks: B = {By, Bs,..., B|p}; individual
blocks are indexed by i
By : currently active block
j @ index for the decision stage of the dynamic pro-
gram
k : state variable containing the total number of
allocated time steps
K :length of the optimization horizon in discrete
time steps
u : control variable denoting the number of time
steps allocated to the block
i 1+ set of feasible control decisions for decision stage
7 and state k

F; 1 : performance of control u for decision stage j and
state k

v,k : cumulative performance for decision stage j and
state k.

Let kj+1 denote the successor state of k; following the
implementation of control u;. For the sake of simplicity
we assume without loss of generality that ky = 0. The
first decision stage in our formulation concerns the number
of additional time steps to allocate for the block that is
currently active. The first decision stage therefore decides
about the time to allocate to block By, the second decision
stage decides about the time to allocate to block (b + 1)
mod |B|, etc. The exact number of decision stages used is
a by-product of the computations. Given a value for the

state variable k, the control variable u can assume values
from the discrete set Uj , = {O, 1,..., k}

By allowing u to assume a value of 0, blocks can be skipped
and any desired block sequence can thus be generated. The
previous state k;_; can be determined on the basis of the
current state k; and chosen control decision u; as follows:

kj—1=kj —u; (1)

The forward recursion of the algorithm is now presented.
In the following k;_; is calculated as a function of k; and
u; via (1). The algorithm starts with decision stage j = 1,
and proceeds recursively to j = 2,3,... At each decision
stage, the method calculates the best control decision
uy . for each possible value of the state variable k. The

performance function (to be minimized) is assumed to take
the form F1 gy 0y + Fokpup + - - -

The optimal performance, denoted by v, is a function
of the immediate performance Fj ., of implementing the
optimal control decision u*:

Vi = min {Fjr+vj-1k—u}
uEUJ‘,k

The corresponding forward recursion algorithm is provided
in Algorithm 1. The recursion ends if there is nothing to
be gained from evaluating a new decision stage and at
that time the optimal solution can be retrieved. This is
the case if all of the previous | B| stages have not improved
the performance. Since a later decision stage allows more
stage changes for the same value of the state variable,
it follows that v;_1,x > wvj; k. Furthermore, note that
if vj_1,k = vj K, it follows that there is nothing to be
gained by allowing the specific block change associated
with decision stage j. This reasoning is applied to the
|B| — 1 stages preceding decision stage j.

Algorithm 1 Forward recursion
initialize vg,. <= 0, k <1

:for k=0,...,K do

Vjk < Minyer, , {Fjku + Vj-1,k—u}
record u;’ x> an optimal solution to the above prob-
lem

5: end for

6: if (j < |B|) then

7. j < j+1, and repeat from Step 2

8

9

oW e

. else {check whether done}
fori=1,...,|B|—1do

10: if Vj—i K 7é Vi K then

11: j < j+1, break for-loop and repeat from Step
2

12: end if

13: end for

14: end if

The optimal solution can subsequently be retrieved by
determining the optimal trajectory of states and the as-
sociated optimal control decisions. Let J denote the last
decision stage for which the value function has been calcu-
lated in the forward recursion. Then, we may retrieve an
optimal policy by tracing back through the table that has
recorded the optimal control decisions, (O for j = J —
(IB|—1),J —(|B] —2),...,1. Note that since the forward
recursion ends only if v; g = v;_1 x for j = J—|B|,..., J,

*

the controls satisfy u} x =0 for these j, and consequently,
it is sufficient to retrieve control decisions starting with
decision stage j = J — (|B| — 1).

The formulation of the algorithm thus far relies purely on
dynamic programming. To further improve upon the ef-
ficiency elementary mechanisms of the branch-and-bound
algorithm are also included. The key component of the
proposed branch-and-bound algorithm consists in deter-
mining when a movement can end, and which of the non-
conflicting movements of the next block can be started.
Next we explain how this can determined mathematically.

3.2 Scheduling of the movements

The following notation is introduced:
S : set of signals; individual signals are indexed
by s
AStart - oreen start lag for signal s
Aend s green end lag for signal s
ys : yellow time for signal s
rrs ¢ all-red time needed to safely switch from
signal r to signal s
: ordered multi-set of estimated arrival times
for signal s
qS" : ordered multi-set of estimated departure
times for signal s

m

q

a;“] i - ordered multi-set of estimated arrival times
of arrivals that are queued for signal s for
decision stage j and state k

afj‘;t i - ordered multi-set of estimated departure

times for departures of signal s for decision
stage j and state k
: estimated departure time of the last vehicle

-~

out
D55,k qout|

a‘;‘*]tk‘ departing from signal s
Aj ku,s : demand for signal s in the control interval
determined by k and u
]147,“”78 : estimated arrival time of the first vehicle
arriving at signal s for state k and control
decision u
Rj ku,s,m : time after which the m™ vehicle will be able
to depart at signal s for state k and control
decision u
}“ku s 1 (queued) arrivals remaining at signal s after
having implemented control decision u to
reach state k
;"}fug : departures from s after having implemented
control u to reach state k
gjt,jrst : time green can start for signal s for state k
and control decision
g;’f;ﬁdg : time green can end for signal s.

It will be assumed that the following information is avail-
able when calculating the first decision stage: the esti-
mated arrival times for each vehicle approaching a signal
(g™) for all s € S, the time of the last vehicle served by
a signal (agﬁ)t,o,\qguw) for all s € By, and the time green

started for a signal (g5%'s) for all s € By,

The control decision u* that results in the best perfor-
mance determines the information that is retained in the
calculation of the subsequent stages. The demand for a
signal s is determined on the basis of any arrivals remain-

ing (’(i‘i;j_lﬁk_u) after having implemented the optimal
control decision of the previous decision stage j — 1, and
the arrivals during the interval [k — u, k) specified by the
control decision (u):

Ajosus =
a1k Y {alla e qd)
with Gy ; determined as G o = {a|(a € ")

ANa>k—u)A(a<k)},
Afa<0)}.

The state of a signal after the application of a control
decision is determined by this demand (A, .,s) and the
time at which a vehicle is able to depart (R; k,u,s,m):

s = {amlam € Ajus A Rjkusm <k}
The departures for a signal are determined on the basis
of the vehicles that have already left (49" ; ,_,,) and the

vehicles that depart during the control decision:
out ~out

Jyku,s _qs,] 1,k—u U {am‘am € Aj,k,ms /\Rj7k7u,s7m 2 k}
The time at which a vehicle is able to depart depends
on the saturation flow (¢5*') of the signal, and on the time
when the green phase effectively starts (g“art—l—)\“art) or on

if
2)
the green phase for the signal is continued. It is determined
as follows: R i u,s,m =

the time of the last departure for the signal (q

m—1

> .

sat
qs

start +)\start

Giiks if ¢ Byj—2) mod|B|

A jqent) g i S € Blorj-2) mod |B]

The saturation flow ¢ dictates the minimum inter-
departure time between consecutive vehicle departures.
The time of the most recent departure from a signal

Sou

q; k |qout| ensures that the minimum inter-departure time

is respected for a signal that is green in two consecutive
blocks.

To calculate how the state of the intersection is affected af-
ter the application of a chosen control decision it is impor-
tant to know when the green signal for a movement starts.
Green starts for signal s if it has demand (|A4;x u,s| # 0)
and if it is active in the block (s € B(y4j-1) mod |B|)- In
order not to waste the available green time, green starts no
sooner than necessary to allow the first arrlval (A] kous) O
pass without delay. Of course, the green signal is allowed
to start only after any conflicting movements have cleared.
The algorithm used to determine the time green starts is
given in Algorithm 2.

The time green can start for a movement depends on the
time that conflicting movements have cleared. Note that
green can start before the start time of the block it is part
of if the conflicting movements have cleared before that
time. The time conflicting signals have cleared depends on
the time the green phase for the conflicting movement has
ended.

The time green can end for a signal is determined after
having evaluated all u € Ujj. It is determined for the
best performing control decision using Algorithm 3. The
time green ends for a signal depends on: whether it is
active in the block (s € B), whether it served any vehicles
(?107 O b lqont] = g;tgrf) the time it has started (gjt,fri) the
minimum green time (min 4), and the time the last

vehicle was served (g}, Jaout])-

start

Algorithm 2 Compute ;7"
signal s
1. if |A ; u,s| # 0 then {there is demand}

the time green can start for

. start 1 o 3 3 5
2 s Aj,k,u,s {green starts no sooner than neces-
sary }

3: for all 7 € B,4j-2) mod |B| dO {signals that are

green in the previous block}

. start start end
4: gj,k,s « maX{Q]kS’-gj 1,k—u,r + rﬂs} {green

starts no sooner than conﬂlctmg signals have
cleared}

5 end for

6: else {there is no demand}

7 gy < k {as there is no demand, green is skipped}
8: end if

9: return g]Start

Algorithm 3 is used to determine the time green ends.

Algorithm 3 Compute ¢3¢, the time green can end for

jikes?
signal s

out

Require: The departures (qg'}';) that result after having
implemented the optimal control decision have been
determined

1. if g° o f Jaout] = > gjt,jrt then {demand has been served}

2 g5k, ¢ max {g e g8 + s, qs,j’mqgut‘}
{determine end of green phase}

3: else {no demand has been served}

4 gips < k—u {as no demand has been served, the
green phase was skipped}

5: end if

6: return ¢eud

gjks

While optimizing the performance of an intersection cer-
tain constraints should be respected. The algorithm en-
sures that constraints are respected with respect to, e.g.,
minimum and maximum green and red times, protection of
dilemma, option, and comfort zones, prior commitments,
block skipping and termination in the presence of demand,
and maximum allowable queue lengths.

4. EXAMPLE

In order to test the performance of the developed algo-
rithm the traffic management test bed described in (van
Katwijk et al., 2005) is used. This test bed enables us to
interface the adaptive control algorithm of Section 3 with
the microscopic traffic simulation models Paramics and
AIMSUN. The simulations were performed for a 4-arm
intersection. Each of the twelve possible movements on
the intersection has a separate, single, approach lane. The
total demand for the intersection is set to 4400 vehicles
per hour, which is distributed over the movements in
proportion to the saturation flow rate of each movement.
Maximum green times for each stage and block were subse-
quently determined using Webster’s method (Webster and
Cobbe, 1966).

The results have been obtained from a number of one-
hour simulations each with a different random seed and are
displayed in Figure 5. The plots show the average delay per

Vehicle delay
30 T T T

A‘verag e

Standard deviation - - - - -

Delay (in seconds)

MR
A R U

v
0 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500

Time (in seconds)

(a) Vehicle-actuated control
Vehicle delay

30 T T T T
Average
Standard deviation - - - - -

25 - B

Delay (in seconds)

0 500 1000 1500 2000 2500 3000 3500
Time (in seconds)

(b) Stage-based look-ahead traffic-adaptive control
Vehicle delay
30 : : \ \

Averag
Standard deviation - - - - -

25 - B

20 1

Delay (in seconds)

PR - U) - .

o " I | I I I I 1

0 500 1000 1500 2000 2500 3000 3500
Time (in seconds)

(¢) Movement-based look-ahead traffic-adaptive control

Fig. 5. Performance for an intersection with 4 blocks.

vehicle as it evolves over a one-hour period when the in-
tersection is operating under (a) vehicle-actuated control,
(b) stage-based look-ahead traffic-adaptive control, and (c)
movement-based look-ahead traffic-adaptive control.

The average delay encountered by a vehicle in the vehicle-
actuated controlled case stabilizes at about 25 s per vehicle
(see Figure 5(a)) whereas the average delay encountered
by a vehicle in the stage-based traffic-adaptive controlled
case stabilizes at about 18s per vehicle (see Figure 5(b)).
This proves that planning for future arrivals can substan-

tially improve the performance of an intersection. The
movement-based look-ahead traffic-adaptive controller re-
sults in an even lower average delay of about 16 s per vehi-
cle (see Figure 5(c)). Note that this reduction in delay can
be obtained without significantly increasing the number of
computations as the movement-based look-ahead traffic-
adaptive control algorithm developed in this paper allows
to evaluate a larger number of possible signal timings
without increasing the size of the search space.

5. CONCLUSIONS

A new algorithm has been presented for look-ahead traffic-
adaptive intersection control. The algorithm integrates the
currently best known dynamic programming optimization
approach to look-ahead traffic-adaptive control (Sen and
Head, 1997) with a branch-and-bound type optimization,
and it applies the more flexible movement-based approach
to traffic signal control as opposed to the stage-based
approach employed by the current state of the art in
look-ahead adaptive control. This enables the algorithm to
analyze a larger number of possible signal timings without
further increasing the size of the search space.

REFERENCES

D. P. Bertsekas. Dynamic Programming and Optimal
Control — Volume I. Athena Scientific, 3nd edition, 2005.

S.E. Dreyfus and A.M. Law. Art and Theory of Dynamic
Programming. Academic Press, Orlando, FL, USA,
1977.

N.H. Gartner. OPAC: A demand-responsive strategy for
traffic signal control. Transportation Research Record,
906:75-81, 1983.

K.L. Head, P.B. Mirchandani, and D. Sheppard. Hierar-
chical framework for real-time traffic control. Trans-
portation Research Record, 1360:82-88, 1992.

J.J. Henry, J.L. Farges, and J. Tuffal. The PRODYN real
time traffic algorithm. In Proc. 4th IFAC/IFIP/IFORS
Symposium on Control in Transportation Systems,
pages 307-312, Baden-Baden, Germany, April 1983.

V. Mauro and C. Di Taranto. UTOPIA. In Proc. 2nd
IFAC-TFIP-IFORS Symposium on Traffic Control and
Transportation Systems, pages 575-597, 1989.

I. Porche, M. Sampath, R. Sengupta, Y.-L. Chen, and
S. Lafortune. A decentralized scheme for real-time opti-
mization of traffic signals. In Proc. 1996 IEEE Interna-
tional Conference on Control Applications, September
1996.

S. Sen and K.L. Head. Controlled optimization of phases
at an intersection. Transportation Science, 3:5-17, 1997.

S.G. Shelby. Single intersection evaluation of real-time
adaptive traffic signal control algorithms. In Proc. 84rd
Annual Meeting of the Tranportation Research Board
(TRB’04), Januari 2004.

R. T. van Katwijk. Multi-Agent Look-Ahead Traffic Adap-
tive Control. PhD thesis, Delft University of Technology,
Delft, The Netherlands, January 2008.

R.T. van Katwijk, P. van Koningsbruggen, B. De Schutter,
and J. Hellendoorn. Test bed for multiagent control
systems in road traffic management. Transportation
Research Record, 1910:108-115, 2005.

F.V. Webster and B.M. Cobbe. Traffic signals.
Research, 56, 1966.

Road

