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Reduction of Travel Times and Traffic Emissions Using Model

Predictive Control

Solomon Kidane Zegeye, Bart De Schutter, Hans Hellendoorn, and Ewald Breunesse

Abstract— In this paper we present a model-based traffic
flow control approach to improve both traffic flow and
emissions in a traffic network. A model predictive control
(MPC) is implemented using a microscopic car-following
traffic flow model and an average-speed-based emission model.
We consider reduction of total time spent (TTS) and to-
tal emissions (TE) as performance measures of the control
strategy. Moreover, with the help of simulations we illustrate
that a traffic control strategy, particularly an MPC strategy,
aiming at the reduction of the TTS does not necessarily reduce
the level of emissions. In particular, when the traffic flow is
congested, we demonstrate that a traffic control strategy that
addresses TTS (or improvement of the traffic flow) alone can
cause an increment in the level of emissions and vice versa.
Therefore, in this paper we explain how to integrate both
requirements so that a balanced trade-off is obtained.

I. INTRODUCTION

Despite the improvements in transportation systems, the

rise of fuel prices, and the imposition of more stringent

environmental policies for emission levels, the demand

for mobility and transportation is continuously increasing.

Consequently roads are frequently congested, creating eco-

nomical, social, and ecological challenges. Moreover, in

recent epidemiological studies of the effects of combustion-

related (mainly traffic-generated) air pollution, NO2 was

shown to be associated with adverse health effects [23],

[25]. Furthermore, road traffic exhaust emissions account

for 40% of volatile organic compounds, more than 70% of

NOx, and over 90% of CO in most European cities [23],

and about 45% of the pollutants released in the US [20].

Frequent and longer congested traffic conditions make this

even worse.

There are several possible approaches to address these

problems. Large-scale substitution of fossil oil by alternative

fuels is a possible solution, but it is not feasible to realize

this in the short to medium term. A second possible solution

is enhancing vehicle technology. However, vehicle improve-

ments seem to be approaching their limit [17] and they alone

cannot solve the problems. Furthermore, the limitations in

the availability of land, and economical and environmental

constraints often make extending infrastructures infeasible.

An alternative and promising solution is the implementation

of intelligent transportation systems [24], [26]. Different
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traffic flow control measures (such as traffic signal, ramp

metering, speed control, route guidance, etc.) can then be

used to minimize the impact of traffic jams (such as longer

travel times and emissions).

To the best of our knowledge, there are not many papers

in the traffic control literature that explicitly aim at the re-

duction of emissions directly. Many papers either study the

effect of different traffic assignment solutions on emissions

and fuel consumption [1], [8], [9] or deal with traffic control

problems to improve traffic flow [14], [26]. Most traffic

control papers address problems related to the reduction

of congestion, improving safety, reducing total time travel,

and the like. As an example, Hegyi et al. [14] showed that

integration of speed limit control and ramp metering can

be used to reduce the total time spent (TTS). Related work

by Zhang et al. [26] but using microscopic models shows

similar results. But, both studies focus on the improvement

of traffic flow. However, improvement in traffic flow does

not necessarily guarantee reduced emission levels. As will

be shown in this paper, a controller that focuses only on

reduction of the TTS may result in higher emissions than

a controller that also takes emissions into account. This

paper shows how to combine the requirements of reducing

emissions and travel time so that a balanced trade-off is

obtained.

In this paper we use a model-based control approach to

reduce emissions while still improving the traffic flow. In

particular, we implement Model Predictive Control (MPC)

using a car-following model and an average-speed-based

emission model. We use speed limit control to control a

freeway network to improve the TTS and the total emissions

(TE).

The paper starts by discussing both the traffic and the

emission models considered in this study in Section II. In

Section III the MPC control strategy is presented. Section

IV presents a simple case study that illustrates the proposed

approach. Finally, Section V gives the conclusions drawn

from the work and presents some topics for future work.

II. MODELS

A. Traffic flow models

Traffic flow models can be divided into three classes, viz.

macroscopic, microscopic, and mesoscopic [16]. Macro-

scopic traffic models deal with the average traffic variables

(such as average speed, density, and flow). On the other

hand microscopic traffic models describe the behavior of

individual vehicles in the traffic flow. The position, speed,

and acceleration of each vehicle are the states of such



models. Mesoscopic traffic models describe the behavior

of each vehicle (microscopically) using macroscopic vari-

ables (such as link flows and link travel times). In other

words mesoscopic models combine characteristics of both

microscopic and macroscopic traffic flow models. For this

study we use a microscopic traffic model, in particular

a car-following model. Note that in this paper only the

longitudinal kinematic behavior of vehicles and drivers is

considered. However, the proposed approach is generic and

also valid for other more complex models that also include

lane changing behavior.

Vehicle kinematics

The general longitudinal kinematic motion of the vehicles

after discretization is described by:

xi(ℓ+1) = xi(ℓ)+ vi(ℓ)ts +0.5ai(ℓ)t
2
s (1)

vi(ℓ+1) = vi(ℓ)+ai(ℓ)ts (2)

where xi(ℓ), vi(ℓ), and ai(ℓ) are respectively the position,

speed, and acceleration of ith vehicle in the network at

time t = ℓ · ts, where ℓ is the simulation time step counter,

while ts (e.g. ts = 1 s) is the simulation time step of the

discretized model. The acceleration in (1)–(2) is determined

from the driver model described in the sequel. Moreover, the

acceleration is saturated between minimum and maximum

acceptable accelerations amin and amax.

Longitudinal human driver behavior

The speed and nature of the reaction of drivers is dependent

on their headway time (or distance). The time headway

is defined as the time difference between two consecutive

vehicles that pass a certain location. This can be described

as the time needed by the following vehicle to reach the

current position of the leading vehicle with its current speed.

Mathematically this can be expressed as:

th(ℓ) =
xl(ℓ)− xf(ℓ)

vf(ℓ)
(3)

where xl, xf are the positions of the leading and the

following vehicles respectively, and vf is the speed of the

following vehicle.

Depending on the time headway a vehicle can be either

in car-following or free-flow mode. When the time headway

is larger than the threshold time headway ttr (e.g., ttr = 10 s),

then the vehicle is said to be in free-flow mode. Whereas

if the time headway is smaller than the threshold time

headway, then the vehicle is in a car-following mode.

In free-flow driving conditions the acceleration of a ve-

hicle is determined by a constant multiple of the difference

in the delayed reference speed (or speed limit) and delayed

speed of the vehicle. Mathematically, this is described as:

ai(ℓ) = F(vref,i(ℓ−σ)− vi(ℓ−σ)) (4)

where F is a model parameter (typically 0.01–0.4), vref,i

is the speed limit (or reference speed) of the ith vehicle,

σ is the reaction delay1 of the driver. In the car-following

1We assume that the reaction delay is an integer multiple of simulation
time step.

driving mode, where the time headway is smaller than the

threshold time headway ttr, the acceleration of the vehicle is

determined using car-following models. There are various

types of car-following models. A review of various car-

following models can be found in Brackstone & McDonald

[6]. In this paper we use the Gazis-Herman-Rothery (GHR)

[13] stimuli-response car-following model2. In this model

the reaction of the driver (in other words the acceleration

of the vehicle) varies with the variation of its current speed,

and the relative speed and position of the vehicle with

respect to its predecessor vehicle [4], [6], [16]. The model

also takes into account the delay in the reaction of the driver

in the relative speed and position of the vehicle.

af(ℓ) = αv
β
f (ℓ)

(vl(ℓ−d)− vf(ℓ−d))

(xl(ℓ−d)− xf(ℓ−d))γ (5)

where α , β , and γ are model parameters, and d is the

reaction delay of the driver.

B. Traffic emission models

Traffic emission models calculate the emissions pro-

duced by vehicles based on the operating conditions of

the vehicles. Emissions of a vehicle are influenced by the

vehicle technology, vehicle status (such as age, mainte-

nance, etc.), vehicle operating conditions, the characteristics

of the infrastructure, and external environment conditions.

For a given vehicle technology and status of a vehicle,

emission models can be calibrated for every vehicle type,

or homogeneous vehicle categories. The main inputs to the

emission models are the operating conditions of the vehicle

(such as speed, acceleration, engine load) [15]. Emission

models can be either technology-based engineering models

or traffic emission models.

Technology-based emission or fuel consumption models

are very detailed models. These kind of models are devel-

oped for a specific vehicle (or engine) model [15]. Such

models are used for the assessment of new technological

developments, and for regulation purposes [15]. Since these

models are very detailed, they are difficult to use for on-

line prediction or on-line estimation of emissions and fuel

consumption of traffic flow. Therefore, for computational

reasons it is advisable not to use such models for on-line

model-based traffic control purposes.

Traffic emission models are more simple, and they are

developed for diverse collections of vehicles grouped in

homogeneous categories. In general these models are cal-

ibrated based on the operating conditions of the vehicle

in a traffic flow. Traffic emission models can be either

average-speed-based or dynamic. For its simplicity of use,

and for being a long established method [5] we have used

(a dynamic version of) an average-speed-based model for

this study. In principle the input for an average-speed-based

model is the trip-based average speed, i.e. the average speed

of a vehicle for a complete trip is used to compute the

2Other models are also possible (e.g. CTM [10] or METANET [19]).
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Fig. 1. Average speed based emission model of [5].

emission rate of the vehicle. But in practice it is also

common to use local speed inputs [5]. In this approach,

the speed of the vehicle at each time instant can be used to

estimate the emission rate of the vehicle at that time instant.

Clearly, using the local speeds to compute the emission rates

can give more accurate results. This is for the simple reason

that by using local speed inputs, it is possible to capture the

transient behavior of the vehicle in estimating the emission

rates. This approach implicitly includes the acceleration of a

vehicle in estimating the emission rates. Therefore, we also

use the local speed input approach in our emission models.

The emission model considered for this study is obtained

from COPERT III [22]. Fig. 1(a) shows the model used for

CO, NOx, and HC emissions. The mathematical expressions

for this model of each of the emissions are:

ECO(v) = (0.001728v2 −0.245v+9.617) [g/km] (6)

ENOx(v) = 10−4(0.854v2 −85v+5260) [g/km] (7)

EHC(v) = 10−4(0.521v2 −88.8v+4494) [g/km] (8)

where v is the average speed and ECO, ENOx and EHC

denote the emission levels of carbon monoxide (CO), oxides

of nitrogen (NOx), and hydrocarbons (HC) in grams per

kilometer respectively.

As the output of the emission model in (6)-(8) is given

in g/km, we change the expressions into emission functions

that give emissions in g/h. This is done by multiplying the

expressions (6)–(8) by the average speed v. This model

makes computation of emission levels of each vehicle

simpler. The plots of the transformed equations are given in

Fig. 1(b). We can get the emission levels at each simulation

step by multiplying the output of the model with the

simulation time step. This model can then be used to get

second-by-second emissions of a vehicle in a network. The

new expressions of the model have a structure that is similar

to the model of Ahn et al. [2] when the acceleration is zero.

III. MODEL PREDICTIVE CONTROL

A. Philosophy of model predictive control

The basic concept of Model Predictive Control (MPC)

[7], [18] lies in the optimization of control inputs based on

prediction and a moving horizon approaches. MPC uses an

on-line optimization method, based on the measurement of

current and future predicted evolution of the system states.

Using a model of the system and numerical optimization,

it determines a sequence of control inputs that optimize a

performance criterion over a given future time horizon (i.e.

from control step k up to k+Np). However, only the first

control input is applied for the system in a moving horizon

concept. i.e. at each control time step only the first sample of

the optimal control input is applied to the system; afterward

the time axis is shifted one control sample time step. Then,

based on the new states and control inputs of the system,

new sequence of optimal control inputs are generated. Ones

again the first control input is applied. At every time step

the process in repeated. This process is repeated until the

end of the simulation time.

Fig. 2(a) illustrates the interrelationship of the traffic

system and MPC controller, and Fig. 2(b) depicts the

concepts of prediction and control horizons. We consider

both the traffic system and MPC controller in discrete time.

Recall that ts represents the simulation time. We define the

control time step tc (a typically value is tc = 1min). For

the sake of simplicity we assume that tc = Mts, for some

positive integer M. Therefore, at time t = k · tc = ℓ · ts the

controller time step counter k is an integer divisor of the

simulation time counter ℓ. They are related by ℓ(k) = Mk.

A measurement of the traffic states (such as position, speed,

acceleration, etc.) is made every tc time units and the traffic

control measures (such as speed limits, ramp metering rates,

etc.) will be applied for the next tc time units (see Fig. 2(a)).

In other words, after a control signal is applied for M sample

steps of ts time units, a new measurement of the states of

the traffic system is undertaken and the MPC controller

generates and applies new control inputs by predicting the

evolution of the system states from the current time t = k ·tc
up to t = (k+Np) · tc (see Fig. 2(b)).

The main advantage of MPC is its ability to take con-

straints into account and that it can be used for nonlinear

systems. Its main limitation emanates from the computation

time required by the optimization process. To alleviate the



computational problems several methods can be used (e.g.

introducing control horizon). In order to limit the number of

variables to be optimized, thereby to improve computation

speed, a control horizon Nc ≤ Np is defined after which the

control input is kept constant, i.e. u(k+ j) = u(k+ j − 1)
for j = Nc, . . . ,Np −1, where Nc ≤ Np.

Traffic

system

Speed

Speed

limits

limits

MPC controller

Optimization

Model

Position, speed,

and acceleration

Prediction
Objective,
Constraints

(a) Schematic representation

k+Nc −1k+1k k+Np

predicted horizon
control horizon

past future

current traffic

conditions
predicted future traffic

conditions

computed speed limits

(b) Prediction and control horizon

Fig. 2. Conceptual representation of model predictive control.

B. MPC for traffic and emission control

Besides the difference in the effects of traffic speed on

emissions and on total time spent, the minimum of the

traffic emissions are attained at different traffic speeds. This

makes it difficult to decide which speed limits to select to

optimally reduce the level of the emissions. Reducing the

total emissions may have more influence on some gases

than others. In the WHO [25] report it is shown that NOx

has a stronger adverse health effect than the other gases.

However, gases like CO have adverse effect in the long

run. By assigning relative weight (policies) to the different

emissions and the TTS it is possible to use a model-based

traffic control to set the optimal speed limits which will

result in a balanced trade-off of the conflicting requirements.

In this study we use an MPC controller to control the

traffic flow using speed limits. We investigate the impact

of speed limit control on the improvement of the total

time spent (TTS) and the total emissions (TE) in a traffic

network. The model of the optimization accommodates both

a traffic flow model and an emission model. As prediction

model we will use the models presented in Section II.

However, note that the MPC approach is generic and can

also accommodate other, more complex traffic flow and

emission models [2], [19].

At a control time step k, the MPC controller predicts

the evolution of the traffic flow and the emission levels

in the network over the time interval [ktc, (k+Np)tc) and

it optimizes the speed limit control sequence u(k), u(k +
1), . . . ,u(k+Nc −1) in such a way that the objective func-

tion is reduced. After the optimal control input sequence

u∗(k), u∗(k+1), . . . ,u∗(k+Nc −1) has been computed, the

first sample u∗(k) is applied to the system until the next

control step k+1. Subsequently, whole process is repeated

all aver again.

As objective function we could for example consider the

following expression3:

J(k) =
λ1

TTSnominal

MNp

∑
j=1

N (ℓ(k)+ j)ts

+
λ2µ1

TECO,nominal

MNp

∑
j=1

∑
i∈V (ℓ(k)+ j)

ECO(vi(ℓ(k)+ j))vi(ℓ(k)+ j)ts

+
λ2µ2

TENOx,nominal

MNp

∑
j=1

∑
i∈V (ℓ(k)+ j)

ENOx(vi(ℓ(k)+ j))vi(ℓ(k)+ j)ts

+
λ2µ3

TEHC,nominal

MNp

∑
j=1

∑
i∈V (ℓ(k)+ j)

EHC(vi(ℓ(k)+ j))vi(ℓ(k)+ j)ts

+
λ3

T∆unominal

Nc−1

∑
j=0

‖u(k+ j)−u(k+ j−1)‖2
2 (9)

where, λn ≥ 0, and µn ≥ 0 for n = 1,2,3 are weighting

coefficients, N (ℓ) denotes the number of vehicles in the

network (and the queues) at time t = ℓts, and V (ℓ) de-

notes the set of vehicles present in the network at time

t = ℓts. Note that each term in the objective function

contains a normalization factor consisting of a “nominal”

value for respectively the total time spent (TTSnominal), the

total CO emission (TECO,nominal), the total NOx emission

(TENOx,nominal), the total HC emission (TEHC,nominal), and

a measure for the total speed limit difference (T∆unominal)

(see also Section IV-B for an example of how to compute

these normalization factors). Moreover, in practice the val-

ues of the weights λn and µn are obtained by the traffic

management authorities or by the traffic policies.

C. Optimization method

One of the bottlenecks in MPC control approach is

the extensive optimization and the resulting computational

requirements. The MPC optimization problem considered

for this study is nonlinear and nonconvex. Thus a proper

choice of an optimization technique has to be made in

order to obtain feasible optimal control values. Owing to

the nonconvex nature of the objective function, global, or

multi-start local optimization methods are required. Hence,

multi-start sequential quadratic programming [21], pattern

search [3], generic algorithms [11], or simulated annealing

[12] can be used.

3Note however that MPC is generic as regards the choice of the
performance criteria, and so other objective functions could also be
considered instead.
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IV. CASE STUDY

In this section we demonstrate the applicability of the

MPC traffic control strategy mentioned in Section III on a

simple case study. We consider this simulation benchmark

to investigate the effect of the control strategy. The layout of

the freeway, the performance criterion, and the simulation

results are given in the subsequent subsections.

A. Traffic freeway layout

We consider a single-lane one-way 8 km freeway. As

depicted in Fig. 3, the roadway is divided into three sections,

and two speed limit controls are applied in the last two

sections. We consider an experiment that starts at tstart = 0 h,

and ends at tend = 1 h. At the starting time tstart the segment

of the freeway from 3.5 km to 6.5 km is assumed to be

congested. The traffic demand varies over the whole span

of the simulation time (see Fig. 4). We have considered the

same demand for all the different cases considered in this

study. Moreover, the parameters that we have used for the

MPC controllers are tabulated in Table I.

B. Performance criterion

In this case study we have considered the perfor-

mance criterion defined in (9). The normalization factors

TTSnominal and TECO/NOx/HC,nominal were computed by sim-

ulating the traffic system for the 8 km freeway with a speed

limit of 80 km/h and for the scenario given in Section IV-

A. A value for T∆unominal is computed as follows: we

TABLE I

MPC CONTROLLER PARAMETERS

MPC Parameters Values Remarks

Tsim 60 min Simulation time

Np 10 min Prediction horizon

Nc 2 min Control horizon

tc 1 min Control time step

ts 1 s Simulation time step

vmax 120 km/h Maximum speed limit

vmin 40 km/h Minimum speed limit

TABLE II

WEIGHTING CONSTANTS FOR DIFFERENT CASES

Weighting Simulation results

Cases TTS Total emissions

λ1 λ2(µ1, µ2, µ3) λ3 [veh·h] [kg]

case 1 0 0 0 383.1 13.24

case 2 1 0 0.01 210.4 14.92

case 3 0 1(1, 1, 1) 0.01 340.6 8.29

case 4 1 1(1, 1, 1) 0.01 340.2 8.27

consider a simulation where the speed limit changes with

vstep = 10 km/h at every control step. So

T∆unominal =
Nc−1

∑
k=0

v2
step = Ncv2

step (10)

We have considered different weighting values to analyze

the effects of different control policies on emissions and

traffic flow. The combinations considered in this study are

given in Table II.

For solving the MPC optimization problem we have

adopted a multi-start sequential quadratic programming

(SQP) [21] optimization method. More specifically, we have

used the fmincon command of the Matlab optimization

toolbox.

C. Simulation results

Two performance measures are defined to analyze the

simulation results, viz. total time spent (TTS) and total

emissions (TE). The TTS is the sum total of the time

spent by all vehicles in the network. The TE is the sum

total of particular emission type of all vehicles in the

network. The system has been simulated for 1h of real

simulation time. This has been done for uncontrolled and

controlled scenarios. The results of the simulation are shown

in Table II.

As it can be seen from the table, the TTS and the TE

are 383.1 veh ·h and 13.24 kg respectively when the system

is not controlled (case 1). When an MPC controller with

an objective function of reducing TTS (case 2) is used, the

TTS is reduced by 45.1%, while the TE is increased by

12.68%. With the same controller, but with an objective of

reducing emissions (case 3), the TTS is reduced by 11.23%

and the TE is reduced by 37.39%. The TTS in case 3 is

larger than the TTS in case 2. This shows that controlling

the total time spent or the total emissions alone has negative

effects on emissions and traffic flow respectively. Neither

does a reduction in TTS imply reduced emissions nor does

a reduction in total emissions imply a reduced TTS.

In case 4, the weighted sum of TTS and TE is considered

as a cost function of the optimization in the MPC controller.

The change in TTS and TE is insignificant relative to case

3. But case 4 offers significant improvements in regard to

TE as compared to case 1 and case 2. The changes are also

more noticeable when the weighting factors are changed.

Moreover, the controller with an objective of reducing TTS



and TE reduces the TTS by 11.23% (compare case 1 and

case 4) and the TE by 37.53%.

The results indicate that for the given case study the

objective of reducing emissions and TTS are two conflicting

requirements. It is difficult to get lowest emissions without

restricting the traffic flow or vice versa. This indicates

that higher flows (or speeds) do not guarantee reduced

emissions. Thus, MPC can offer a balanced trade-off due

to weights in the MPC cost criterion (see (9)).

V. CONCLUSIONS AND FUTURE WORK

We have proposed a model-based traffic flow control

approach to reduce both total emissions and total time

spent. This control method uses a prediction model and on-

line optimization to determine the optimal traffic control

measures over a given prediction horizon, which are sub-

sequently applied using a receding horizon approach. We

have illustrated the approach using a car-following traffic

flow model and a dynamic version of an average-speed-

based emission model. In addition, we have considered a

case study involving a single-lane one-way traffic freeway to

show how MPC can be applied to provide a balanced trade-

off between conflicting performance measures. The results

of this case study also demonstrate the possible solutions

MPC can offer for mobility and environmental challenges.

We have discussed the possible conflicting requirements

of the demand for transportation and the environmental

constraints. Based on simulation results, we have shown

that the focus on the reduction of total time spent (TTS)

alone cannot meet the requirement of reducing emissions.

The simulation results suggest that both emission reduction

and traffic flow improvement can also be attained by proper

definition of the objective function of the MPC controller.

More specifically, a 37.53% reduction of total emission (TE)

and 11.23% reduction of TTS has been obtained for the

simulation study.

In future work we will consider more complex case

studies, investigate implementation of constraints on the

emission levels, and integration of speed limit control and

ramp metering for the reduction of emissions and of the

total time spent. We will use other more detailed nonlinear

traffic flow models (such as CTM [10] or METANET

[19]). Furthermore, we will compare different traffic control

approaches.
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