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Abstract: In this paper a simplified isolated controlled intersection is introduced. A discrete-
event max-plus model is proposed to formulate the optimization problem for the switching
sequences. The formulated max-plus problem is converted to be solved by linear programming
(LP). In the special case when the criterion is a strictly increasing and linear function of the
queue lengths, the steady-state control problem can be solved analytically. In addition, necessary
condition for the steady-state control is derived.

Keywords: Traffic control, Steady-state control, Discrete-event max-plus model.

1. INTRODUCTION

Different models, methods, and strategies have been pro-
posed and applied for controlling urban isolated signalized
intersections Allsop (1971, 1976); Gartner et al. (1976);
Improta and Cantarella (1984); Kashani and Saridis
(1983); Lim et al. (1981); Little (1966); Roberston (1969);
Talmor and Mahalel (2007). These researches aim to mini-
mize delays or to maximize the intersection capacity. Some
recent research considers the isolated intersection in the
urban traffic network as a hybrid system Di Febbraro et al.
(2004); Di Febbraro and Sacco (2004); Dotoli and Pia Fanti
(2006); Lei and Ozguner (2001) and others propose the
game theory approach Villalobos et al. (2008) to model
signalized intersections.

In De Schutter (2002), the optimal acyclic (or N-stages)
control was dealt with, where the Extended Linear Com-
plementary Problem (ELCP), which is a mathematical
programming problem, was used.

In practice it is difficult to measure delays. Therefore, in
this paper we propose to minimize queue lengths which are
easily measured with available sensors. We give necessary
condition for the existence of a constant cycle length
steady-state solution. The solution is given as an LP-
problem, and the analytic solution has as a simple form.
We also show how to bring initial non-optimal queue
lengths to optimum thus enabling an N-stages control
solution for the transient phase.

The paper is organized as follows. After describing the
problem definition in Section 2, the discrete-event models
of an isolated intersection and the formulation of the
optimal problems are given in Section 3. The cyclic steady-
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state control problem is considered in Section 4. The tran-
sient N-stages control problem is dealt with in Section 5.

2. PROBLEM DEFINITION

In this paper, a typical simplified isolated intersection will
be dealt with. As shown in Fig. 1, there are two movements
(m1 and m2), where each movement has a traffic signal
that can be green or red. There is a traffic conflict in the
intersection area between the two movements, therefore
they cannot travel simultaneously and the traffic signal
will be opposite, i.e. when movement m1 has a green light,
movement m2 has a red light, and vice versa.

A given movement will encounter intertwined green and
red periods. A cycle is defined as a pair of one green and
one red period, whose durations may be time-varying.

m1

m2

Fig. 1. Simplified isolated controlled intersection

The evolution of the queue lengths will be considered for
the two movements m1 and m2. The length of the queue
for movement mi at time t, which is the number of vehicles
stopping behind the stop line in the intersection, is denoted
by qi(t) [veh]. Let farr,i(t) [veh/s], fdep,i(t) [veh/s] be,
respectively, the arrival rate and the departure rate for



queue i at time t. The queue length growth rate αi(t)
[veh/s] for queue i at time t is given by αi(t) = farr,i(t)−
fdep,i(t).

The following assumptions are made:

• A1: The arrival and departure rates in the isolated
intersection are known. The arrival rate is constant
within each cycle, and the departure rate is constant
within each green or red period.

• A2: When the traffic signal is green, the departure
rate is bigger than the arrival rate, i.e. fdep,i(t) >
farr,i(t), and when the traffic signal is red, the depar-
ture rate is equal to zero, fdep,i(t) = 0, and the arrival
rate is non-negative, farr,i(t) ≥ 0.

• A3: The queue lengths [veh] are approximated by real
non-negative numbers.

For the isolated controlled intersection with a constant
traffic arrival and departure rates, we determine the
constant-cycle steady-state traffic signal control solution
that minimizes a given queue length dependent criterion.
We also formulate the necessary condition for the steady-
state control.

3. DISCRETE-EVENT MODELS FOR ISOLATED
CONTROLLED INTERSECTIONS

A variety of models Diakaki et al. (2002); Papageorgiou
et al. (2003) are based on the store-and-forward approach
of modeling traffic networks that was first suggested in
Gazis (1964); Gazis and Potts (1963). This approach
enables the simplification of the mathematical description
of the traffic flow process without the use of switching
variables. In this paper we consider the isolated controlled
intersection as switching systems, as was done in De
Schutter (2000, 2002); De Schutter and De Moor (1998).
Here, the optimization of traffic signal switching sequences
will be performed with a discrete-event max-plus model.

3.1 Basic model

Let k be the index of the cycle. By definition, in a cycle,
each movement (m1 or m2) will have only one green signal.
We want to determine two decision variables: the cycle
time, Tcyc,k [s], and gk ∈ [0, 1] the fraction of the green
time of movement m1 of Tcyc,k.

The evolution of the system begins at time t0. This implies
that the state of the queue length i at time t is given by

qi(t) = qi(t0) +

∫ t

t0

αi(t)dt (1)

There are two switching times for cycle k: t2k+1 and
t2k+2 (see Fig. 2). Without loss of generality, let the
green light for movement m1 start at t2k, which coincides
with the start of cycle k. Hence, t2k+1 is the end of
the green light for movement m1, and the start of the
green light for movement m2, while t2k+2 is the end
of the green light for movement m2, and the start of
the green light for movement m1 in the next cycle. We
note that Tcyc,k = t2k+2 − t2k. By assumption A1 the
arrival rate of queue i in phase 2k (i.e. the time period
between t2k and t2k+1), farr,i(t2k), and the departure
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Fig. 2. Traffic signal switching sequences for movements
m1 and m2

rate of queue i in phase 2k, fdep,i(t2k), are known and
constant. The same holds for phase 2k + 1: the arrival
rate of queue i, farr,i(t2k+1), and the departure rate of
queue i, fdep,i(t2k+1), are known and constant. This means
that the growth rate αi(t2k) = farr,i(t2k) − fdep,i(t2k) is
constant between the two switching times t2k and t2k+1.
The relations between the time sequences are as follows

t2k+1 = t2k + gk · Tcyc,k (2)

t2k+2 = t2k + Tcyc,k (3)

3.2 Formulation of an optimal discrete-event max-plus
problem

The value of the queue length for movement m1 in cycle k
at the switching time instant t2k+1 is given by

q1(t2k+1) = max(q1(t2k) + α1(t2k) · gk · Tcyc,k, 0) (4)

and at the switching time instant t2k+2

q1(t2k+2) = q1(t2k+1) + α1(t2k+1) · (1− gk) · Tcyc,k (5)

Recall that the signal light for movement m2 is opposite
to that of m1; therefore the value of the queue lengths for
movement m2 in cycle k are given by

q2(t2k+1) = q2(t2k) + α2(t2k) · gk · Tcyc,k (6)

q2(t2k+2) = max(q2(t2k+1)+α2(t2k+1)

· (1− gk) · Tcyc,k, 0)
(7)

We now consider the following problem: for a given number
of cycles N and starting time t0, we compute an optimal
switching time sequence t1, t2, . . . , t2N that minimizes a
given performance criterion J . There are a variety of
criteria that can be chosen, e.g. average queue length,
maximal queue length, and delay over all queues De
Schutter (2002).

Two new variables are now defined, T1(k) [s] and T2(k)
[s], where T1(k) = gk · Tcyc,k and T2(k) = (1− gk) · Tcyc,k.
Substituting these variables into (4) - (7) leads to the
following Discrete-event Max-Plus (DMP) problem:

min
T1(0),T2(0),T1(1),T2(1),··· ,T1(N−1),T2(N−1)

J (8)

subject to

q1(t2k+1) = max(q1(t2k) + α1(t2k) · T1(k), 0) (9)

q1(t2k+2) = q1(t2k+1) + α1(t2k+1) · T2(k) (10)

q2(t2k+1) = q2(t2k) + α2(t2k) · T1(k) (11)

q2(t2k+2) = max(q2(t2k+1) + α2(t2k+1) · T2(k), 0) (12)

for k = 0, 1, 2, . . . , N − 1. The optimization problem is
formulated by minimization of the criterion J over N



cycles. Hence, the number of variables to be determined is
2N .

4. STEADY-STATE CONTROL WITH CONSTANT
CYCLE LENGTH

We start by finding a solution to the steady-state control
problem with constant cycle length. It is assumed that
all cycles, and their flow rates are identical, and hence
only one cycle needs to be considered. Hence, the decision
variables are T1 [s] and T2 [s] whereby the cycle duration
Tcyc = T1+T2. Let the start time of the steady-state cycle
be τ0. The switching times are τ1, and τ2, respectively,
whereby T1 = τ1 − τ0, and T2 = τ2 − τ1.

The queue length for movement i at the start of the cycle
will be equal to the queue length at the start of the next
cycle:

q1(τ0) = q1(τ2) (13)

q2(τ0) = q2(τ2) (14)

Let the steady-state queue length vector q be defined as
[q1(τ1), q2(τ1), q1(τ2), q2(τ2)]

T . The criterion function J is
said to be strictly increasing, if, for all queue length vectors
q̂, q̃ with q̂ ≤ q̃ (elementwise) and q̂i < q̃i for at least one
index i, we have J(q̂) < J(q̃).

In the following, we consider the case when the criterion
J is a strictly increasing function of the queue lengths,
such as the average queue length, a positively weighted
sum of queue lengths, or the average travel time. We show
that for such a criterion, the optimal steady-state constant
cycle length switching sequence problem, and its necessary
condition can be formulated using a discrete-event max-
plus model, and solved analytically for a strictly increasing
and linear criterion.

4.1 Formulation of an optimal cyclic discrete-event max-plus
problem

The formulation is based on the DMP problem (8) - (12).
The cyclic queue lengths equations (13) - (14) are added to
the DMP problem and then we optimize it over only one
cycle time (N = 1 and k = 0). Therefore, the number of
decision variables will decrease to two: T1(0) and T2(0).
For simplicity we write T1(0) and T2(0) as T1 and T2,
respectively. We also assume that a lower bound Tmin

(with Tmin > 0) for the sum of T1 and T2 is given, i.e.
T1 + T2 ≥ Tmin.

The Cyclic Discrete-event Max-Plus (CDMP) problem is
then defined as follows:

min
T1,T2

J (15)

subject to

q1(τ1) = max(q1(τ0) + α1(τ0) · T1, 0) (16)

q1(τ2) = q1(τ1) + α1(τ1) · T2 (17)

q2(τ1) = q2(τ0) + α2(τ0) · T1 (18)

q2(τ2) = max(q2(τ1) + α2(τ1) · T2, 0) (19)

T1 + T2 ≥ Tmin (20)

and (13), (14)

Note that for scalars a, b, c ∈ R we have that a = max(b, c)
implies a ≥ b and a ≥ c. In a similar way the CDMP

problem can be rewritten in such a way that the max
equations are “relaxed” to linear inequality equations. But
first, the cyclic queue lengths equations (13) and (14) are
substituted into (16) and (18) respectively:

q1(τ1) = max(q1(τ2) + α1(τ0) · T1, 0) (21)

q2(τ1) = q2(τ2) + α2(τ0) · T1 (22)

The max equations (21) and (19) can then be relaxed into
linear inequality equations as follows:

q1(τ1) ≥ q1(τ2) + α1(τ0) · T1 (23)

q1(τ1) ≥ 0 (24)

q2(τ2) ≥ q2(τ1) + α2(τ1) · T2 (25)

q2(τ2) ≥ 0 (26)

This leads to the “Relaxed” Cyclic Discrete-event Max-
Plus (R-CDMP) problem:

min
T1,T2

J (27)

subject to

(17), (20), (22), (23), (24), (25), (26)

Proposition 1. If the criterion J is a strictly increasing
function of the queue lengths, then any optimal solution
of the R-CDMP problem is also an optimal solution of the
CDMP problem.

Proof. The proof is done by contradiction.

Let q̃ = (q̃1(τ1), q̃1(τ2), q̃2(τ1), q̃2(τ2))
T
and T̃ =

(

T̃1, T̃2

)T

be an optimal solution of the R-CDMP problem such that
(16) is not satisfied, i.e.

q̃1(τ1) > max(q̃1(τ2) + α1(τ0) · T̃1, 0) (28)

or equivalently

q̃1(τ1) > q̃1(τ2) + α1(τ0) · T̃1 (29)

q̃1(τ1) > 0 (30)

and such that q̃2(τ1), q̃2(τ2) satisfy (19) (note that we
consider the case (29) and (30), but the proof for other
cases is similar).
Now we replace q̃1(τ1) and q̃1(τ2) by

q̂1(τ1) = q̃1(τ1)− ε (31)

q̂1(τ2) = q̃1(τ2)− ε (32)

where ε > 0. The other variables stay the same, i.e.
q̂2(τ1), q̂2(τ2), and T̂ are equal to q̃2(τ1), q̃2(τ2), and T̃ ,
respectively.
In the following we verify that (q̂, T̂ ) is also a feasible
solution of the R-CDMP problem as long as q̂1(τ1) ≥ 0
(i.e. (24)) is satisfied. We fill out q̂1(τ1) and q̂1(τ2) into

(29) and obtain q̃1(τ1) − ε > q̃1(τ2) − ε + α1(τ0) · T̃1 for

any ε, which implies q̂1(τ1) ≥ q̂1(τ2) +α1(τ0) · T̂1 (i.e. (23)
holds).

Since the variables q̂2(τ1), q̂2(τ2), and T̂ are assumed to be
unchanged, they imply (20), (22), (25), and (26).

Equation (17) implies q̃1(τ2)− ε = q̃1(τ1)− ε+ α1(τ1) · T̃2

or equivalently q̂1(τ2) = q̂1(τ1) + α1(τ1) · T̂2.

Now we select ε such that q̂1(τ1) = 0. Then (q̂, T̂ ) is a
feasible solution of the R-CDMP problem. Recall that the
criterion J is a strictly increasing function of the queue
lengths. Since q̂ ≤ q̃ and q̂i < q̃i for some i due to
(31) and (32), this implies J(q̂, T̂ ) < J(q̃, T̃ ), which is

in contradiction with the fact that (q̃,T̃ ) is an optimal
solution of the R-CDMP problem.



Hence, the optimal solution of the R-CDMP problem
should satisfy (16) and as a consequence the optimal
solution of the R-CDMP problem is also an optimal
solution of the CDMP problem.

4.2 Necessary condition for the steady-state control

In this section, the necessary condition for the steady-state
control is derived based on the R-CDMP problem. We can
eliminate q1(τ2) and q2(τ1) from the constraints of the R-
CDMP problem by substituting (17) and (22) into (23)
and (25) respectively, resulting in

− α1(τ0) · T1 ≥ α1(τ1) · T2 (33)

− α2(τ1) · T2 ≥ α2(τ0) · T1 (34)

If T1 = 0, then (33) and (34) imply that T2 = 0, and vice
versa. But this is a contradiction to (20) and the fact that
T > 0. Hence, we will have T1 > 0 and T2 > 0. However,
it follows from assumptions A1 and A2 that α1(τ0) < 0
and α2(τ1) < 0, whereby α1(τ1) > 0 and α2(τ0) > 0. We
divide the two equations (33) and (34) by T2 and eliminate
the fraction T1

T2

by comparing between the two equations.
Then we obtain the following necessary condition:

α1(τ1)

−α1(τ0)
≤

−α2(τ1)

α2(τ0)
(35)

or by symmetry

−α1(τ0)

α1(τ1)
≥

α2(τ0)

−α2(τ1)
(36)

4.3 Analytic solution for linear criterion

Now we show that if the criterion J is a strictly increasing
linear function of the queue lengths, then the R-CDMP
problem can be solved analytically. But first we prove the
following proposition.

Proposition 2. The optimal solutions of the queue lengths
q1(τ1) and q2(τ2) in the R-CDMP problem with a strictly
increasing function of the queue lengths must be equal to
zero in order to minimize J , i.e.

q∗1(τ1) = 0 (37)

q∗2(τ2) = 0 (38)

Proof. The proof is done by contradiction. We first as-
sume that the optimal queue lengths q1(τ1), q2(τ2) are non-
zeros, i.e. q1(τ1) > 0 and q2(τ2) > 0. Then in this case, the
max equations (21) and (19) can be written as follows,

q1(τ1) = q1(τ2) + α1(τ0) · T1 (39)

q2(τ2) = q2(τ1) + α2(τ1) · T2 (40)

This leads to slight changes in the equations (33) and (34),
respectively

−α1(τ0) · T1 = α1(τ1) · T2 (41)

−α2(τ1) · T2 = α2(τ0) · T1 (42)

and the R-CDMP problem will be as follows,

min
T1,T2

J (43)

subject to

(17), (20), (22), (39), (40)

Equations (41), (42) and (20) give a solution for T1 and T2.
Then (39), (40) imply that q1(τ1) and q2(τ2) are constant,
not depending on T1 and T2. Hence, we can reduce the
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criterion J by decreasing the queue lengths q1(τ1), q2(τ2)
to zeros. This is a contradiction with the assumption that
the optimal queue lengths q1(τ1), q2(τ2) are non-zeros.

We define a “zero-queue-length period” (ZQLP) as the
time period (larger than zero) for which the queue length
is equal to zero (see Fig. 3). Given the assumptions, a
movement can encounter only one ZQLP per cycle, and
it may happen only before the end of the green light, i.e.
between τ0 and τ1 for movement m1, and between τ1 and
τ2 for movement m2. Let us denote the start of the ZQLP
for movements m1 and m2 by τe1 and τe2 , respectively. Then
the ZQLP for movement m1 starts at time τe1 and ends at
time τ1, and the ZQLP for movement m2 starts at time τe2
and ends at time τ2. Without loss of generality let τ0 = 0,
and the cycle time T = τ2.

As an example for a criterion J which is a strictly in-
creasing linear function of the queue lengths, let J be the
weighted sum of the maximum queue lengths,

J = w1q1(τ2) + w2q2(τ1) (44)

where w1, w2 > 0.

Proposition 3. For the R-CDMP problem with a criterion
J that is a strictly increasing “linear” function of the queue
lengths, the optimal cycle time is equal to the minimum
cycle time Tmin.

Proof. The general case where the cycle time is bigger
than the minimum cycle time and each movement has
a ZQLP is shown in Fig. 4. The cycle time τ2 can be
decreased to Tmin by multiplying all the values by the
coefficient γ = Tmin

τ2
as shown in Fig. 4. Decreasing the

cycle time decrease the maximum queue lengths from
q1(τ2) and q2(τ1) to γq1(τ2) and γq2(τ1), respectively, and
decreases the value of the criterion J , i.e. the maximum
queue lengths decreases as we decrease the cycle time,
which proves that the optimal cycle time will be equal
to the minimum cycle time Tmin.

According to the Propositions 2 and 3, we obtain the
following linear programming (LP) problem when J is
given by (44),

min
T1,T2

J = w2α2(τ0) · T1 + w1α1(τ1) · T2 (45)

subject to
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−α1(τ0) · T1 ≥ α1(τ1) · T2 (46)

−α2(τ1) · T2 ≥ α2(τ0) · T1 (47)

T1 + T2 = Tmin (48)

In the case when the necessary condition (35) is satisfied by

the strict inequality constraint, i.e. α1(τ1)
−α1(τ0)

< −α2(τ1)
α2(τ0)

, the

solution of the problem depends on the slope of the linear
objective function (see Fig. 5). If w2α2(τ0) < w1α1(τ1) the
optimal solution will be point A, where in this point the
movement m2 will not have a ZQLP. When w2α2(τ0) >
w1α1(τ1) the optimal solution will be point B, and the
movement m1 will not have a ZQLP. Points A and B are
equal to

(T1, T2)A =

(

−Tminα2(τ1)

α2(τ0)− α2(τ1)
,

Tminα2(τ0)

α2(τ0)− α2(τ1)

)

(49)

(T1, T2)B =

(

−Tminα1(τ1)

α1(τ0)− α1(τ1)
,

Tminα1(τ0)

α1(τ0)− α1(τ1)

)

(50)

If w2α2(τ0) = w1α1(τ1) all points between A and B (i.e.
the convex combination of α (T1, T2)A + (1− α) (T1, T2)B
where 0 ≤ α ≤ 1) are optimal solutions for the problem.
The inner points will have two zero queue length periods,
one zero queue period for each movement. In the case when
the necessary condition (35) is satisfied with equality, i.e.
α1(τ1)
−α1(τ0)

= −α2(τ1)
α2(τ0)

, the two points A and B are equal. In

this case the optimal solution will not have any movement
with ZQLP. Based on the above explanation the following
proposition holds:

Proposition 4. There is always an optimal solution with
at most one ZQLP.

Remark 1: The solution to (45)–(48) can also be found
through direct substitution.

According to the Proposition 2, the queue lengths q1(τ1) =
0 and q2(τ2) = 0 in the optimal cyclic solutions. Hence the
problem arises how to bring the queue lengths to their
optimal values. N-stages control can be used to solve this
problem.

5. N-STAGES CONTROL

In the N-stages control problem we consider a finite
number of switchings in the optimization procedure. Now
we specifically consider the following problem: for a given
integer N and a given starting time t0 we want to compute
an optimal switching sequence consisting of N cycles 1 .

For the simplified isolated controlled intersection we for-
mulate the problem for the case when the criterion is a
strictly increasing function of the queue lengths. We use
the DMP problem (8) - (12) to solve the optimal problem
for N-stages control when the criterion J is a strictly
increasing function of the queue lengths. In this case, each
max equation can be relaxed to two inequality equations,
which leads to the “Relaxed” Discrete-event Max-Plus (R-
DMP) problem

min
T1(0),T2(0),T1(1),T2(1),··· ,T1(N−1),T2(N−1)

J (51)

subject to

q1(t2k+1) ≥ q1(t2k) + α1(t2k) · T1(k) (52)

q1(t2k+1) ≥ 0 (53)

q2(t2k+2) ≥ q2(t2k+1) + α2(t2k+1) · T2(k) (54)

q2(t2k+2) ≥ 0 (55)

q1(t2N ) = T ∗

2 · α1(τ1) (56)

q2(t2N ) = 0 (57)

and (10), (11)

for k = 0, 1, 2, . . . , N − 1.
Notice that we also impose the endpoint constraints (56)
and (57). The endpoint queue lengths q1(t2N ), q2(t2N )
are equal to the optimal queue lengths cyclic solutions
T ∗

2 · α1(τ1), 0, respectively, where T ∗

2 is the optimal cyclic
solution of T2.

Proposition 5. If the criterion J is a strictly increasing
function of the queue lengths, then any optimal solution
of the R-DMP problem is also an optimal solution of the
DMP problem.

Proof. See the proof of Proposition 3.3 in De Schutter
(2002) which also applies here.

So the R-DMP problem can be solved by linear program-
ming when the criterion J is a strictly increasing linear
function of the queue lengths.

Hence, in order to bring initial queue lengths to the
optimal cyclic queue lengths the N-stages control can
be used. The endpoint queue lengths q1(t2N ), q2(t2N ) are
equal to the optimal cyclic solutions and the condition (35)
or (36) has to be satisfied.

1 In the N-stages control, the queue length vector q is defined as:
(

q1(t1), q2(t1), q1(t2), q2(t2), · · · , q1(t2N−1), q2(t2N−1), q1(t2N ), q2(t2N )
)

T

.



6. CONCLUSIONS

For the simplified isolated controlled intersection we can
compute the optimal switching sequences for the steady-
state problem with constant cycle length by solving a
linear programming problem. It is shown that if the
criterion J is a strictly increasing function and linear of
the queue lengths the steady-state control problem can be
solved analytically.

A necessary condition for the steady-state control with
constant cycle length has been derived. The N-stages con-
trol problem has been formulated. It is shown that the N-
stages control problem can be solved by linear program-
ming if the criterion J is linear and strictly increasing.
Furthermore, the N-stages control can be used to bring
the queue lengths to optimum.
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