Decentralized route choice control of automated baggage handling systems

A.N. Tarău, B. De Schutter, and J. Hellendoorn

If you want to cite this report, please use the following reference instead:
Decentralized route choice control of automated baggage handling systems

A.N. Tarău * B. De Schutter ** J. Hellendoorn *

* Delft Center for Systems and Control
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
{a.n.tarau, j.hellendoorn}@tudelft.nl

** Marine and Transport Technology Department
Delft University of Technology, The Netherlands, b@deschutter.info

Abstract: Modern baggage handling processes in airports use destination coded vehicles (DCVs) to transport the luggage at high speeds. These vehicles transport the bags on a “mini” railway network. In order to optimize the performance of a DCV-based baggage handling system, the route of each DCV has to be determined. In this paper we consider an event-based model of this system. For routing the DCVs through the network we propose decentralized control methods that independently compute local control actions viz. decentralized model predictive control (MPC) and decentralized heuristic approaches. The considered control methods are compared for several scenarios. Results indicate that decentralized MPC can be used to suboptimally solve the problem. Moreover, the decentralized heuristic approaches usually give worse results than those obtained when using decentralized MPC, but on the other hand they require very low computation time.

Keywords: Baggage handling systems, decentralized route choice control, discrete-event simulation.

1. INTRODUCTION

The increasing need for reductions of costs of the air transport industry and the rise of low-cost carriers require a cost effective operation of the airports. The state-of-the-art technology used in a baggage handling system to transport the bags in an automated way incorporates scanners that scan the labels on each piece of luggage, baggage screening equipment for security scanning, networks of conveyors equipped with junctions that route the bags through the system, and destination coded vehicles (DCVs). As illustrated in Figure 1, a DCV is a metal cart with a plastic tub on top. These carts transport the bags at high speed on a “mini” railway network.

![Loading a DCV](image1)

In this paper we consider a DCV-based baggage handling system. Higher-level control problems are route assignment for each bag (and implicitly the switch control of each junction), line balancing (route assignment for each empty DCV such that all the loading stations have enough empty DCVs at any time instant), and prevention of buffer overflows. The low-level control problems of this system are velocity control of each DCV, coordination and synchronization when loading a bag onto a DCV, in order to avoid damaging the bags or blocking the system, and when unloading it to the corresponding end point. Controllers that solve these low-level problems are assumed to be present in the system.

We consider higher-level control problems. In particular, in this paper we focus on the route choice of DCVs that transport the bags. In the literature, the route assignment problem has been addressed by e.g. Gang et al. (1996), Kaufman et al. (1998). But, in our case we do not deal with a shortest-path or shortest-time problem, since we need the bags at their corresponding end point within a given time window. Centralized control methods for a DCV-based baggage handling system require large computational effort see e.g. (Tarău et al., 2008). Therefore, the goal of this paper is to develop and compare efficient decentralized approaches for controlling the route choice of the DCVs.

The paper is organized as follows. In Section 2, an event-driven model of the system is briefly presented. Afterwards, in Section 3 and Section 4, we propose several control methods to determine the route of each DCV in a decentralized manner. The proposed control methods are: decentralized model predictive control and two decentralized heuristic approaches. The analysis of the simulation results and the comparison of the proposed control methods are elaborated in Section 5. Finally, the conclusions for this paper are drawn in Section 6.
The operational constraints are derived from the mechanical and design limitations e.g. the position of a switch at a junction (called switch-in hereafter), and updating the speed of a DCV. For details we refer to (Tarău et al., 2008).

In (Tarău et al., 2008) we have developed an event driven model of the DCV-based baggage handling system. This model consists of a continuous part describing the movement of the individual vehicles transporting the bags through the network, and of the following discrete events: loading a new bag onto a DCV, unloading a bag that arrives at its end point, updating the position of the switch going into a junction (called switch-in hereafter) and the position of a switch going out of a junction (called switch-out hereafter), and updating the speed of a DCV. For details we refer to (Tarău et al., 2008).

The operational constraints are derived from the mechanical and design limitations e.g. the position of a switch at a junction can only change after minimum τ_c time units in order to avoid the quick and repeated back and forth movements of the switch, which may lead to mechanical damage.

As shown by Tarău et al. (2008), centralized approaches to determine the optimal route of the DCVs become intractable in practice due to the large computational effort required. Therefore, in order to lower the computational effort, in the sequel we propose decentralized approaches to control the route of the DCVs such as decentralized model predictive control and fast heuristic approaches.

3. DECENTRALIZED MODEL PREDICTIVE CONTROL

Model predictive control (MPC) is an on-line model-based control design method that uses the receding horizon principle Maciejowski (2002). This control approach can be used for DCV-based baggage handling systems, see (Tarău et al., 2008). In this section we define the local MPC problem.

3.1 Local system boundaries

In decentralized MPC we consider local systems, each consisting of a junction S_s with $s \in \{1,2,\ldots,S\}$, its incoming and its outgoing links. Note that without loss of generality we can assume that each junction has maximum 2 incoming links and maximum 2 outgoing links, both indexed by $l \in \{0,1\}$ as sketched in Figure 3. For the sake of simplicity of notation, in the remainder of this section, we will not explicitly indicate the subscript s for variables that refer to junction S_s, since we refer to one junction only. For all the other junctions, the same procedure is applied.

3.2 Local control measures

In contrast to basic MPC, we do not use a time index, but a bag index. So, we index the bags that successively cross a junction S_s during the entire simulation period as $b_1, b_2, \ldots, b_{N_{\text{bags}}}$, where N_{bags} is the number of bags that cross S_s during the simulation period.

In this section we control the positions of the switch-in and switch-out of junction S_s for each bag that crosses S_s. The local control will be updated every time some bag has just crossed a junction. Let t_{pen} denote a time instant at which the local controls are updated. For junction S_s, we now determine bag step k such that $t_{\text{cross},k} \leq t_{\text{pen}} < t_{\text{cross},k+1}$, where $t_{\text{cross},k}$ is defined as the time instant when bag b_k has just crossed the junction.

The local optimization is performed over the next $N \leq N_{\text{bags}}$ bags that pass junction S_s after bag step k. By solving this local optimization problem we compute the control sequence $u(k) = [u_{\text{sw},\text{in}}(k+1)\ldots u_{\text{sw},\text{in}}(k+N)\ldots u_{\text{sw},\text{out}}(k+1)\ldots u_{\text{sw},\text{out}}(k+N)]^T$ corresponding to the next N bags $b_{k+1}, b_{k+2}, \ldots, b_{k+N}$ that will cross the junction. The control decisions $u_{\text{sw},\text{in}}(k+1), \ldots, u_{\text{sw},\text{in}}(k+N)$ of the switch into S_s determine the order in which the bags cross the junction and the corresponding time instants at which the bags b_{k+1}, \ldots, b_{k+N} enter S_s. The control decisions $u_{\text{sw},\text{out}}(k+1), \ldots, u_{\text{sw},\text{out}}(k+N)$ determine the next junction towards which the bags b_{k+1}, \ldots, b_{k+N} will travel.

3.3 Local objective function

When solving the local MPC optimization problem, we will use a local objective function $J_{\text{DMPC},s}$. The local objective function is computed via a simulation of the local system for the next N bags that will cross the junction. This computation is performed as follows. We first define the performance index $J_{\text{pen},b_{k+j}}$, for bag b_{k+j}, $j = 1,2,\ldots,N$. This performance index penalizes the overdue time and the additional storage time:

$$J_{\text{pen},b_{k+j}}(t_{\text{unload}},b_{k+j}) = \sigma_{b_{k+j}} \max(0, t_{\text{unload}},b_{k+j} - t_{\text{oload}},b_{k+j}) + \lambda_1 \max(0, t_{\text{oload}},b_{k+j} - t_{\text{max,storage}},b_{k+j} - t_{\text{unload}},b_{k+j})$$

where

Fig. 3. Incoming and outgoing links at a junction. The switch-in and switch-out are positioned on link 1.
We assume the initial time of the simulation to be equal to 0 time units. Where \(\lambda \) is the maximum possible length of the time window for which the end point of bag \(b_{k+j} \) is open for that specific flight;
\(\lambda_2 \leq 1 \) is a weighting parameter that represents the relative cost between buying additional storage space at the end points and the cost of customers that have their baggage delayed.

Note that the above performance function has some flat parts, which yields difficulties for optimization algorithms that use gradient information. To get some additional gradient we also include the dwell time (the time that the bag spends on the track network), resulting in:

\[
J_{b_{k+j}}(\text{unload}, b_{k+j}) = J_{\text{pen}, b_{k+j}}(\text{unload}, b_{k+j}) + \lambda_2 \text{dwell, } b_{k+j}
\]

where \(\lambda_2 \) is a small weighting factor \((\lambda_2 < \lambda_1) \).

Then the local objective function \(J_{\text{DMPC,N}}(u(k)) \) is defined as:

\[
J_{\text{DMPC,N}}(u(k)) = \sum_{j=1}^{N} J_{b_{k+j}}(\hat{t}_{\text{unload, } b_{k+j}})
\]

where \(\hat{t}_{\text{unload, } b_{k+j}} \) is the predicted unloading time instant of bag \(b_{k+j} \). Next we present how the predicted unloading time instant is computed.

3.4 Prediction model

Our local prediction model is an even driven model for the local system where for each outgoing link \(l \in \{0, 1\} \) we consider a fixed release rate during the prediction period. The computation of a fixed link release rate is required due to the fact that we use a local simulation as prediction. Next we present how we calculate the release rate of a link given the state of the local system at \(t_{\text{act}} \). Let \(n_l \) denote the number of DCVs that left the outgoing link \(l \) within the time window \([t_{\text{act}} - \tau_l, t_{\text{act}}] \) of length \(\tau_l \) time units. Then, if \(\tau_l / \tau > n_l \), the fixed release rate of link \(l \) that will be used during the entire prediction period at bag step \(k \) is given by \(\tau_l = \frac{n_l}{\tau_l} \). Otherwise the release rate is at its maximum.

Recall that \(u_{\text{sw, out}}(k+j) \) with \(j \in \{1, 2, \ldots, N\} \) represents the position of the switch-out when bag \(b_{k+j} \) will cross \(S_s \), determining the next junction towards which bag \(b_{k+j} \) will travel. Let \(S_{\text{next}, l} \) where \(l = u_{\text{sw, out}}(k+j) \) denote the junction that bag \(b_{k+j} \) will cross next, and let \(S_{\text{dest}, b_{k+j}} \) denote the corresponding end point of bag \(b_{k+j} \). For each possible route \(r \in R_{\text{next}, b_{k+j}, l} \), where \(R_{\text{next}, b_{k+j}, l} \) is the set of routes from \(S_{\text{next}, l} \) to \(S_{\text{dest}, b_{k+j}} \), we predict the time when bag \(b_{k+j} \) will arrive at \(S_{\text{dest}, b_{k+j}} \) via route \(r \) as follows:

\[
\hat{t}_{\text{unload, } b_{k+j}, l,r} = \hat{t}_{\text{cross, } b_{k+j}} + \hat{t}_{\text{link, } b_{k+j}} + \hat{t}_{\text{route, } r}
\]

where

- \(\hat{t}_{\text{unload, } b_{k+j}} \) is the predicted time instant (computed by the local prediction model) at which bag \(b_{k+j} \) crosses \(S_s \).
- \(\hat{t}_{\text{link, } b_{k+j}} \) is the time we predict that bag \(b_{k+j} \) spends on link \(l \) out of \(S_s \). For this estimation we take:

\[
\hat{t}_{\text{link, } b_{k+j}} = \max \left(\frac{d_{\text{link}, l}}{v_{\text{max}}} N_{\text{DCV}, b_{k+j}, l} \right)
\]

where \(d_{\text{link}, l} \) is the length of link, \(v_{\text{max}} \) is the maximal speed of a DCV, and \(N_{\text{DCV}, b_{k+j}, l} \) is the number of DCVs on the link at the time instant \(\hat{t}_{\text{cross, } b_{k+j}} \).
- \(\hat{t}_{\text{route, } r} \) is the average travel time on route \(r \in R_{\text{next, } b_{k+j}, l} \) for an average speed determined based on historical data.

Then the optimal predicted unloading time instant is defined as follows:

\[
\hat{t}_{\text{unload, } b_{k+j}} = \arg \min_{\{\text{unload} \mid b_{k+j}, l,r \in R_{\text{next, } b_{k+j}, l}\}} \hat{t}_{\text{unload, } b_{k+j}, l,r}
\]

3.5 Optimization problem

So, the decentralized MPC optimization problem at junction \(S_s \) and bag step \(k \) is defined as follows:

\[
\min_{u(k)} J_{\text{DMPC,N}}(u(k))
\]

subject to

- the local prediction model
- operational constraints

Since the optimization problem above involves integer variables, to solve it one could use integer optimization algorithms such as genetic algorithms or tabu search see e.g. Reeves and Rowe (2002); Glover and Laguna (1997).

The main advantage of decentralized MPC consists in a smaller computation time than the one needed when using centralized control due to the fact that we now compute in parallel the solution of a smaller and simplified optimization problem.

4. HEURISTIC APPROACHES

In order to lower the computation time of solving the switch control problem even more, in this section we propose two decentralized heuristic approaches to control the route of each DCV. In contrast to decentralized MPC, the heuristic approaches use a prediction horizon \(N = 1 \). Each switch is now locally controlled based on heuristic rules as presented next. We first consider the case where we determine the local switch control based only on local information regarding the flow of DCVs on the incoming and outgoing links of a junction. Let this junction be called \(S_s \), with \(s \in \{1, 2, \ldots, S\} \). Later on we also consider the case where additional data is used viz. information regarding the flow of DCVs on the incoming and outgoing links of the neighboring junctions of \(S_s \).

For the sake of simplicity of notation, we will not explicitly include the subscript \(s \) in the remainder of this section since we describe the control of the switch-in and switch-out for one junction only.

4.1 Local information only

We now consider that the switch control is performed only based on local information regarding the flow of DCVs on the incoming and outgoing links of \(S_s \).
Control of the switch-in

For a junction S_i, we define the following variables:

- Γ_i is the set of bags transported by DCVs that travel on the incoming link $l \in \{0, 1\}$ of junction S_i at the time instant $t_{enter,i}$ when a new bag enters the incoming link l;
- ρ^s_i is total static priority of link l, $\rho^s_i = \sum_{i \in \Gamma_i} \sigma_i$;
- ρ^d_i is the total dynamic priority of link l, $\rho^d_i = \sum_{i \in \Gamma_i} \delta_i$ with δ_i the estimate of the actual time bag i requires to get from its current position to its final destination in case of no congestion and maximum speed, and $\delta_{max,i}$ the maximum time left to bag i to spend in the system while still arriving at the plane on time. If a bag i misses the flight, then the bag has to wait for a new plane with the same destination. Hence, a new departure time is assigned to bag i, and consequently a new loading time $t_{load,plane,i}$ for bag i is considered. Then the variable $\delta_{max,i}$ is defined as $\delta_{max,i} = t_{load,plane,i} - t_{enter,i}$ if $t_{load,plane,i} - t_{enter,i} > 0$ and $\delta_{max,i} = t_{new,load,plane,i} - t_{enter,i}$ if $t_{new,load,plane,i} - t_{enter,i} \leq 0$.

In order to determine the next position of the switch-in at junction S_i, we compute the position measure $p_{sw,in,i}$ for $l = 0, 1$ every time a new bag enters the incoming link l. This performance measure takes into account the static and dynamic priorities of the bags transported by DCVs on the link l and the current position of the switch-in at junction S_i (due to the operational constraint according to which the position of a switch at a junction can only change after minimum τ_x time units):

$$p_{sw,in,0} = w_{st,pr}^0 + w_{dyn,pr}^0 \rho^d_0 - w_{sw,in}^0 \tau_x t_{crt,1}$$
$$p_{sw,in,1} = w_{st,pr}^1 + w_{dyn,pr}^1 \rho^d_1 - w_{sw,in}^1 \tau_x (1 - l_0)$$

where l_0 denotes the current position of the switch-in at junction S_i (i.e. $l_{crt} = 0$ if the switch-in is positioned on the incoming link 0 and $l_{crt} = 1$ if the switch-in is positioned on the incoming link 1). The weighting parameters $w_{st,pr}, w_{dyn,pr}$, and $w_{sw,in}$ can be calibrated as explained in Section 4.3.

Let z_i denote the bag closest to S_i on the incoming link l. The variable d_{zt} denotes the distance between the current position of bag z_i and S_i, and v_{zt} denotes the current speed of the DCV transporting bag z_i. Then we define the time period $\tau_{arrival,zt,S_i,l}$ that the DCV transporting bag z_i needs to travel the distance d_{zt} in case of no speed-update event as $\tau_{arrival,zt,S_i,l} = d_{zt} / v_{zt}$ if $d_{zt} > 0$, and $\tau_{arrival,zt,S_i,l} = 0$ if $d_{zt} = 0$.

The position of the switch-in at S_i is toggled only if $p_{sw,in,0} > p_{sw,in,1}$ and $l_{crt} = 1$, or if $p_{sw,in,1} > p_{sw,in,0}$ and $l_{crt} = 0$. If a toggle has to take place, then the switch-in changes position after $\tau_{sw,in,t} = \max(\tau_x, \tau_{sw,in,prev,v}, \tau_{arrival,zt,S_i,l-1})$ time units where $\tau_{sw,in,prev,v}$ is the time for which the switch-in at junction S_i has been in its current position.

Control of the switch-out

Every time when a bag is at junction S_i we compute the variable $\tau_{sw,out}$ which represents the time period until the position of the switch-out has to be changed. This goes as follows.

Assume that bag i is at junction S_i. Then, using (1), we can predict the arrival time $t_{unload,i,l}$ of bag i at its corresponding end point $S_{next,i}$, when traveling on link $l \in \{0, 1\}$ out of S_i and route $r \in R_{next,i,l}$ where $R_{next,i,l}$ is the set of routes from $S_{next,i}$ to $S_{dest,i}$.

Next we compute the cost criterion $c_{sw,out,i,l}$ for $l = 0, 1$ that takes into account $J_l(t_{unload,i,l,r})$ where

$$t_{unload,i,l} = \arg \min_{J_l(t_{unload,i,l,r}) \in \{S_{unload,i,l,r}\}}$$

and the current position O_{crt} of the outgoing switch:

$$c_{sw,out,i,0} = w_{pen} J_l(t_{unload,i,l,0}) + w_{sw-out} \tau_x O_{crt}$$
$$c_{sw,out,i,1} = w_{pen} J_l(t_{unload,i,l,1}) + w_{sw-out} \tau_x (1 - O_{crt})$$

The weighting parameters w_{pen} and w_{sw-out} can be calibrated as explained in the Section 4.3.

The position of the switch-in at junction S_i is then toggled only if $c_{sw,out,i,0} < c_{sw,out,i,1}$ and $O_{crt} = 1$, or if $c_{sw,out,i,1} < c_{sw,out,i,0}$ and $O_{crt} = 0$. If the toggle has to take place, then the current position of the switch-out is changed after $\tau_{sw-out} = \max(0, \tau_x - \tau_{sw-out,prev})$ where $\tau_{sw-out,prev}$ is the time for which the switch-out at junction S_i has been in its current position.

4.2 Additional information from neighbors

In the sequel of this section we develop an approach where the switch control is performed based on both local information and additional data regarding the flow of DCV on the incoming and outgoing links of the neighboring junctions. This is an extension of 4.1.

Control of the switch-in

Additionally to the variables defined in 4.1, for the junction S_i we define:

- Ω_i is the set of bags transported at the time instant $t_{enter,i}$ on the incoming links of the neighboring junction $S_{prev,i}$ that is linked to S_i via the incoming link l of S_i;
- ρ^s_i is total static priority of the incoming links of junction $S_{prev,i}$, defined as $c_j = \sum_{i \in \Omega_i} \sigma_i$;
- ρ^d_i is the total dynamic priority of the incoming links of $S_{prev,i}$, defined as $d_j = \sum_{i \in \Omega_i} \delta_i$.

The time when junction S_i toggles its position is computed as in the paragraph Control of the switch-in of Section 4.1. The difference is that here we use the following performance measures:

$$p_{sw,in,0} = w_{st,pr}^0 + w_{dyn,pr}^0 \rho^d_0 - w_{sw,in}^0 \tau_x t_{crt,1}$$
$$p_{sw,in,1} = w_{st,pr}^1 + w_{dyn,pr}^1 \rho^d_1 - w_{sw,in}^1 \tau_x (1 - l_0)$$

The additional weighting parameter w_{ad} represents the influence of the additional information on the performance index $p_{sw,in,i}$, for $l = 0, 1$. This weighting parameter is calibrated as explained in Subsection 4.3.

Control of the switch-out

The position of the switch-out of junction S_i is computed similarly to Section 4.1. However, in
Fig. 4. Relevant neighbors of S_s.

As sketched in Figure 4, let $S_{\text{next},l,m}$ for $m = 0, 1$ denote the neighboring junction of $S_{\text{next},l}$ connected via link m out of $S_{\text{next},l}$. Also, let $N_{\text{DCV},i,j,m}$ denote the number of DCVs on link l out of S_s that will choose link m out of $S_{\text{next},l}$. We assume that for a junction $S_{\text{next},l}$, $l \in \{0, 1\}$ with 2 outgoing links, half of the DCVs traveling from S_s to $S_{\text{next},l}$ take link $m = 0$ out of $S_{\text{next},l}$, and the other half take link $m = 1$. Then

$$\hat{t}_{\text{link},l,m,i} = \max \left(\frac{d_{\text{link},l,m}}{v_{\text{max}}}, \frac{N_{\text{DCV},i,j,m} + N_{\text{new DCV},i,j,m}}{\frac{1}{2}r_{m}} \right)$$

is the time period that bag i needs to travel link m out of $S_{\text{next},l}$ considering the release rate ζ_{m} of link m out of $S_{\text{next},l}$, where $d_{\text{link},l,m}$ is the length of the link m out of $S_{\text{next},l}$ and $N_{\text{DCV},i,j,m}$ is the number of DCVs on this link at the time instant when bag i crosses junction S_s.

Let $S_{\text{next},l,m}$ with $l \in \{0, 1\}$ and $m \in \{0, 1\}$ denote the set of routes from junction S_s, travel link l, is the time we predict that bag i will spend on link l out of S_s, and t_{route} is the average travel time on route r for an average speed empirically determined.

Finally, in computing the cost criterion $c_{\text{cost},i,j}$ and $t_{\text{unload},i,j,m}$ for $l = 0, 1$ defined in Section 4.1, we use $J_{i}(t_{\text{unload},i,j})$, where $t_{\text{unload},i,j}$ is the predicted unloading time that optimizes the performance index of bag i when choosing link $m \in \{0, 1\}$ out of $S_{\text{next},l}$, and route $r \in S_{\text{next},l,m}$:

$$t_{\text{unload},i,j,m} = \arg \min_{t \in S_{\text{next},l,m}} J_{i}(t_{\text{unload},i,j,m}).$$

4.3 Calibration

The calibration of the weighting parameters presented in the Sections 4.1 and 4.2 will be done by solving the following optimization problem for a set of typical scenarios:

$$\min \limits_{w} \sum_{j=1}^{N_{\text{scenario}}} J_{j,\text{tot}}(w)$$

subject to

- the system dynamics and control actions depending on w
- operational constraints

where w is $[w_{\text{st}}, w_{\text{dyn}}, w_{\text{pen}}, w_{\text{sw, in}}, w_{\text{sw, out}}]^{\top}$ for 4.1, or $[w_{\text{st}}, w_{\text{dy}}n, w_{\text{ad}}]^{\top}$ for 4.2, N_{scenario} is the number of scenarios over which the calibration is performed, and $J_{j,\text{tot}}$ is the total performance index of the DCV-based baggage handling system for a given scenario j. The total performance index of the DCV-based baggage handling system for a given scenario is defined as $J_{j,\text{tot}} = \sum_{r \in \Lambda} J_{\text{pen},r}(t_{\text{unload},i,j})$, where Λ is the set of bags to be handled during the entire simulation.

The above optimization problem is nonlinear and nonconvex, and has continuous variables. So, in order to solve this problem, one could use global optimization algorithms such as multi-start sequential quadratic programming, pattern search, simulated annealing algorithms, or multi-start genetic algorithms, see e.g. (Pardalos and Resende, 2002).

5. CASE STUDY

In this section we compare the proposed control methods based on a simulation example.

5.1 Set-up

We consider the network of tracks depicted in Figure 5 with 6 loading stations, 1 unloading station, and 10 junctions. We consider this network because on the one hand it is simple, allowing an intuitive understanding of and insight in the operation of the system and the results of the control, and because on the other hand, it also contains all the relevant elements of a real set-up.

We assume that the velocity of each DCV varies between 0 m/s and $v_{\text{max}} = 20$ m/s, being controlled by on-board collision avoidance controllers. The lengths of the track segments are indicated in Figure 5.

In order to faster assess the efficiency of our control method we assume that we do not start with an empty network but with a network already populated by DCVs transporting bags.

5.2 Scenarios for calibration and control

For the calibration of the weighting parameters we have defined 27 scenarios where 180 bags have to be handled.

We have considered typical scenarios with different classes of demand profiles for each loading station, different initial states of the system, queues on different links, and different time windows for this data. For example, in Figure 5, we have simulated a scenario where the transportation of the bags is very tight, i.e. the last bag that enters the system can only...

Fig. 5. Case study for a DCV-based baggage handling system.
arrive in time at the corresponding end point if the shortest path is used and its DCV is continuously running with maximum speed, or cases where the timing is more relaxed).

For comparing the control methods we have used the same scenarios, but different samples of the demand profiles than those considered for calibrating the weighting parameters w.

5.3 Results

To solve the local optimization problem of decentralized MPC and the calibration problem of the heuristic approaches we have chosen a genetic algorithm with multiple runs since experiments indicate that this optimization technique gives good performance, with the shortest computation time.

Based on simulations we now compare, for the same scenarios, the proposed control methods. Let $J_{j, \text{control approach}}$ denote the performance index of the baggage handling system corresponding to scenario index j and the considered control approach.

In Table 1 we list the average results

$$J_{\text{avg,control approach}} = \frac{1}{N_{\text{scenario}}} \sum_{j=1}^{N_{\text{scenario}}} J_{j, \text{control approach}}$$

obtained when using centralized MPC, decentralized MPC, and the decentralized heuristic approaches, where N_{scenario} is the number of considered scenarios.

The results indicate that decentralized MPC involves a good trade-off between computation time and optimality, the performance being influenced by the considered horizon. In Figure 6 we illustrate the dependence of the performance and computation time upon the prediction horizon N when using decentralized MPC for a typical scenario. The simulations show that by increasing the horizon the performance typically improves, but at the cost of higher computation time. Moreover, the heuristic approaches perform very fast, but, usually, the results are worse than those obtained when using decentralized MPC.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have considered baggage handling processes using destination coded vehicles (DCVs) that transport bags at high speed on a “mini” railway network. In particular we have considered the route choice control problem for each DCV transporting bags on the track network. The best performance of the system is obtained when using centralized switch control. However, in practice, this approach is not tractable due to the very high computational effort that centralized control methods require to solve an optimization problem that is nonlinear, non-convex, and with integer valued variables. Therefore, in this paper, we have developed and compared approaches to control the switches of the network (and implicitly the route for each DCV)

[2] The simulations were performed on a 3.0 GHz P4 with 1 GB RAM.

ACKNOWLEDGMENTS

This research is supported by the STW-VIDI project “Multi-Agent Control of Large-Scale Hybrid Systems”, by the BSIK project “Next Generation Infrastructures” (NGI), by the Transport Research Centre Delft, by the Delft Research Centre Next Generation Infrastructures, and by the European STREP project “Hierarchical and Distributed Model Predictive Control” (HD-MPC).

REFERENCES

