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Optimal Routing for Intelligent Vehicle Highway Systems Using a

Macroscopic Traffic Flow Model

L.D. Baskar, B. De Schutter, and J. Hellendoorn

Abstract— We consider Intelligent Vehicle Highway Systems
(IVHS) consisting of automated highway systems on which
intelligent vehicles organized in platoons drive to their des-
tination, controlled by a hierarchical control framework. In
this framework there are roadside controllers that manage
single stretches of highways. A collection of highways is then
supervised by so-called area controllers. We focus on the
optimal route choice control problem for the area controllers.
In general, this problem is a nonlinear integer optimization
problem with high computational requirements, which makes
the problem intractable in practice. Therefore, we first propose
a simplified but fast simulation model to describe the flows of
platoons in the network. This model is a modified version of the
macroscopic METANET traffic flow model, adapted to the case
of platoons. Next, we use this model in a model-based predictive
control approach in order to determine optimal splitting rates
at the network nodes. These splitting rates can subsequently
be communicated to the roadside controllers, which translate
them into actual route instructions for the individual platoons.

I. INTRODUCTION

Due to the ever-increasing demand for mobility and trans-

portation, traffic congestion is a growing problem throughout

the world. There are many possible approaches to reduce

the frequency and impact of traffic jams (such as building

new roads, introducing road pricing policies, stimulating

modal shift, promoting public transportation, etc.). On the

longer term one of the most promising approaches is the

integrated use of traffic management and control systems,

called Intelligent Vehicle Highway Systems (IVHS), that

incorporate intelligence in both the roadside infrastructure

and in the vehicles.

In IVHS all vehicles are assumed to be fully automated

with throttle, braking, and steering commands being deter-

mined by automated on-board controllers. This complete

automation of the driving tasks allows to organize the traffic

in platoons, i.e., a closely spaced group of vehicles traveling

together with short intervehicle distances [1]. Platoons can

travel at high speeds and to avoid collisions between platoons

at these high speeds, a safe interplatoon distance of about

20–60 m should be maintained. Moreover, the vehicles in

each platoon travel with small intraplatoon distances of about
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2–5 m, which are maintained by the automated on-board

speed and distance controllers using Adaptive Cruise Control

(ACC). By traveling at high speeds while maintaining short

intraplatoon distances, the platoon approach allows more

vehicles to travel on the network, which improves the traffic

throughput [2], [3].

In [4] we have proposed a hierarchical traffic management

and control framework for IVHS that builds upon earlier

research in this field such as the PATH framework [1]. The

control architecture of [4] consists of a multi-level control

structure with local controllers at the lowest level and one

or more higher supervisory control levels (see also Figure

1). In this paper, we will in particular concentrate on how

the area controllers can determine optimal routes for the

platoons using optimal control. In general this leads to a

nonlinear mixed-integer optimization problem. However, by

considering a simplified model to describe the behavior

of the platoons in the network, the problem can be re-

cast into an optimization problem that only involves real-

valued variables, which leads to a significant improvement

in computational efficiency. More specifically, the model we

propose is a modified version of the macroscopic traffic flow

model METANET [5], [6], which is adopted to fit the IVHS

and platoon framework.

This paper is organized as follows. In Section II we

briefly revisit the hierarchical traffic management and control

framework of [4]. Next, we focus on the route guidance tasks

of the area controllers. In Section III we introduce the new

macroscopic traffic flow model for platoons based on the

METANET model. This model is then embedded in a model-

based predictive control approach for optimal route guidance

by the area controllers in Section IV. Section IV-A presents

a simple example that illustrates the proposed approach, and

Section V concludes the paper.

II. INTELLIGENT VEHICLE HIGHWAY SYSTEMS (IVHS)

We now briefly present the hierarchical control framework

for IVHS we have proposed in [4]. This framework is based

on the platoon concept and it distributes the intelligence

between roadside infrastructure and vehicles using control

measures such as intelligent speed adaption, adaptive cruise

control, lane allocation, on-ramp access control, route guid-

ance, etc. The control architecture of [4] consists of a multi-

level structure with local controllers at the lowest level and

one or more higher supervisory control levels as shown in

Figure 1.

The layers of the hierarchical control framework can be

characterized as follows:



Platoon controller

Supraregional controller

Regional controllerRegional controller

Area controller Area controller

Roadside controller Roadside controller

Platoon controller

Vehicle controllerVehicle controller

Fig. 1. The hierarchical control framework of [4] for IVHS

• The higher-level controllers (such as area, regional, and

supraregional controllers) provide network-wide coordi-

nation of the lower-level and middle-level controllers.

In particular, the area controllers provide area-wide

dynamic route guidance for the platoons, and they

supervise and coordinate the activities of the roadside

controllers in their area by providing set-points and

control targets. In turn, a group of area controllers could

be supervised by regional controllers, and so on.

• The roadside controllers may control a part of a high-

way or an entire highway. The main tasks of the road-

side controllers are to assign speeds for each platoon,

safe distances to avoid collisions between platoons, and

ramp metering values at the on-ramps. The roadside

controllers also give instructions for merging, splitting,

and lane changes to the platoons.

• The platoon controllers receive commands from the

roadside controllers and are responsible for control and

coordination of each vehicle inside the platoon. These

controllers are mainly concerned with actually executing

the interplatoon maneuvers (such as merges with other

platoons, splits, and lane changes) and intraplatoon ac-

tivities (such as maintaining safe intervehicle distances).

• The vehicle controllers present in each vehicle receive

commands from the platoon controllers (e.g., set-points

or reference trajectories for speeds (for intelligent speed

adaption), headways (for adaptive cruise control), and

paths) and they translate these commands into control

signals for the vehicle actuators such as throttle, braking,

and steering actions.

In [7], [8] we have proposed model predictive control

methods for the roadside controllers to determine optimal

speeds, lane allocations, and on-ramp release times for the

platoons. In the remainder of the paper we will focus on the

area controllers and in particular on how optimal routes can

be determined for the platoons.

In principle, the optimal route choice control problem

in IVHS consists in assigning an optimal route to each

individual platoon in the network. However, this results in

a huge nonlinear integer optimization problem with high

computational complexity and requirements, making the

problem in fact intractable in practice. Since considering

each individual platoon is too computationally intensive for

on-line real-time control, we will consider a more aggregate

model based on the METANET model.

III. A MACROSCOPIC METANET-BASED MODEL FOR

IVHS

In general, macroscopic traffic flow models consider the

traffic flow as a continuum, i.e., a fluid or gas with specific

characteristics [9], [10] using aggregated variables like mean

speed, flow, density, etc. to describe the dynamics of traffic

flow. There exists a wide variety of macroscopic traffic

flow models [10], [11]. Since the METANET model has

been used extensively for model-based control (see, e.g., [5],

[12]–[14]) and since it can quite easily be extended to fit

the IVHS/platoon framework, we propose a platoon-based

version of the METANET model in this section. First, we

discuss the effect of using platoons on the macroscopic traffic

flow characteristic, in particular, on the fundamental diagram.

A. Macroscopic traffic flow characteristics and intelligent

vehicles

In macroscopic models the flows in a traffic network are

characterized by aggregated variables such as the mean speed

v, the mean traffic density ρ , and the mean traffic flow q for

a given segment and a given time span. In general, these

three quantities are related by the fundamental relation

q = ρv . (1)

For human drivers the (equilibrium) relation between the

speed v and the density ρ can be modeled as [15]:

V (ρ) = vfree exp

[

−
1

a

(

ρ

ρcrit

)a]

. (2)

where ρcrit is the critical density (i.e., the density at which

the flow is maximal), vfree is the free-flow speed, and a is

a model parameter. Typical values for these parameters are

vfree=120 km/h, ρcrit=33.5 veh/km/lane, and a = 1.867 [12].

The fundamental relation given in (2) can be depicted using

the so-called fundamental diagram shown in Figure 2 for a

single lane. This figure shows the maximum flow qmax, and

the critical density ρcrit.

When semi-automatic or intelligent vehicles are used on

the road, the macroscopic traffic flow will change. An

example of such a change is given by Bose et al. [16], where

Adaptive Cruise Control (ACC) is considered with a constant

time headway policy. The constant time headway policy is

the control form most often used for ACC [16]–[18]. The

spacing is given in [18] as

si = hdesvi +Li ,

where si is the space headway for vehicle i (i.e., the distance

difference in position between the rear of vehicle i and the

rear of its predecessor), hdes is the desired time headway, vi

is the velocity of vehicle i, and Li is the length of the vehicle.

If s is the average space headway in a given segment or

link, then the corresponding density ρ is given by ρ =
1

s
.

This implies that for a given speed v, a given average space

headway s, and a given average vehicle length L, the maximal
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Fig. 2. Fundamental diagram for human drivers

density ρACC with ACC-controlled intelligent vehicles can be

expressed as:

ρACC =
1

s
=

1

hdesv+L
. (3)

Rewriting (3) gives an expression for the (maximally possi-

ble) speed as

v =
1

hdes

(

1

ρACC
−L

)

.

Now taking into account that the speed cannot exceed the

free-flow speed vfree, the expression for the desired speed

using ACC-equipped vehicles only becomes

vACC =

{

vfree if ρ ≤ ρACC,crit ,

1
hdes

(

1
ρ −L

)

if ρ > ρACC,crit .
(4)

For a situation with ACC-equipped intelligent vehicles only

the critical density ρACC,crit at which the maximal flow is

obtained, is thus given by:

ρACC,crit =
1

hdesvfree +L
.

Using (4) and (1) the relation between the flow and density

becomes

qACC =

{

ρvfree if ρ ≤ ρACC,crit ,

1
hdes

(1−ρL) if ρ > ρACC,crit .

For typical values of hdes=0.5 s, L=4 m, and vfree=120 km/h,

we obtain ρACC,crit=48.39 veh/km and the speed-density and

flow-density curves shown in Figure 3. The flow-density

curve illustrates that platoons of ACC-equipped intelligent

vehicles will yield a better performance than human drivers,

and it also shows that the maximum flow is more than

doubled.
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Fig. 3. Fundamental diagram for ACC-equipped intelligent vehicles

traffic flow
freeway link m

. . .. . .segment 1 segment i segment Nm

Fig. 4. In the METANET model a freeway link is divided into segments

B. A METANET-like model for platoons in IVHS

The METANET model is a second-order macroscopic traf-

fic flow model that has been proposed by Papageorgiou and

his co-workers [6]. Since we will use the METANET model

for solving routing problems, we will use the destination-

oriented version of the METANET, which explicitly models

the traffic flow with routing choices for multiple origin and

destinations and associates splitting rates for each reachable

destination from a node. In the case of human drivers the

splitting rates are determined by an autonomous process

called traffic assignment. However, in the case of IVHS the

splitting rates can considered as a controllable input.

The METANET model represents a network as a directed

graph with the links corresponding to freeway stretches

as shown in Figure 4. Where major changes occur in the

characteristics of the link or in the road geometry (e.g., on-

ramp or an off-ramp), a node is placed.

1) Link model: In the METANET each link m is divided

into Nm segments with length Lm. The number of lanes on

link m is denoted by λm. The traffic flow in segment i of

link m destined to a destination j is characterized by three

macroscopic variables:

• mean speed vm,i(k) [km/h]



• partial density ρm,i, j(k) [veh/km/lane]

• traffic flow qm,i(k) [veh/h]

where k is the discrete time instant t = kT where T is the

simulation time step (typically around 10 seconds). At time

step k, the partial density ρm,i, j(k) describes the density in

the segment i of link m that is traveling to destination j.

For each segment in a link, for all possible destinations

reachable via the link, the conservation of vehicles in a

segment can be expressed as

ρm,i, j(k+1) = ρm,i, j(k)+

T

Lmλm

(

γm,i−1, j(k)qm,i−1(k)− γm,i, j(k)qm,i(k)
)

,

where qm,i−1(k) is the traffic flow that flows out of segment

i− 1 of link m into segment i for simulation time step k,

qm,i(k) is the flow out of segment i of link m, and γm,i, j(k)
is the composition rate for the traffic flow in segment i of

link m with destination as j at simulation time step k,

The mean speed in segment i of link m at the next discrete

time step k+1 is given by

vm,i(k+1) = vm,i(k)+
T

τ

(

V
(

ρm,i(k)
)

− vm,i(k)
)

+
T

Lm

vm,i(k)
(

vm,i−1(k)− vm,i(k)
)

−
ηT

τLm

ρm,i+1(k)−ρm,i(k)

ρm,i(k)+κ
, (5)

where τ corresponds to the driver’s response time and where

η and κ are model parameters. For human drivers a typical

value for τ is 18 s. For IVHS this value will be much lower,

e.g., 8 s. Typical values for η and κ are1 η=60 km2/h and

κ=40 veh/km/lane.

For human drivers, V (ρm,i(k) is given by (cf. 2)

V (ρm,i(k)) = vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcrit,m

)am
]

, (6)

where am is a model parameter for the specific link m, vfree,m

is the free-flow speed, and ρcrit,m is the critical density.

The expression of V (ρm,i(k) for platoons in an IVHS is given

by (cf. (4)):

V (ρm,i(k)) =
{

vfree if ρm,i(k)≤ ρACC,crit,m ,

1
hdes

(

1
ρm,i(k)

−L
)

if ρm,i(k)> ρACC,crit,m .
(7)

2) Origin model: Origins are modeled using a simple

queue model. A queue is formed at origin o when the traffic

demand do(k) exceeds the service rate qo(k) of the origin.

The queue length wo, j(k + 1) destined to destination j at

origin o can be determined from the previous queue length

and the total demand do(k) at time step k as follows:

wo, j(k+1) = wo, j(k)+T γo, j(k)(do(k)−qo(k)) ,

1These are values for human drivers, for IVHS these values might be
somewhat higher.

with γo, j(k) is the fraction of the demand traveling to

destination j from origin o. The outflow at origin qo(k) can

be expressed as:

qo(k)=min

[

do(k)+
wo(k)

T
,Qcap,o min

(

1,
ρmax −ρµ ,1(k)

ρmax −ρcrit,µ

)]

where Qcap,o is the capacity (veh/h) of the origin o under

free-flow conditions, ρmax is the maximum density of a

segment, and µ is the index of the link to which the origin

is connected.

3) Node model: The node model describes how the traffic

should be routed among the set of entering and leaving links

of a node. For a given node n, let In denote the set of input

links, and let On denote the set of output links. The traffic

flow Qn, j(k) with destination j that enters the node n at

simulation step k is distributed to the output links according

to

Qn, j(k) = ∑
µ∈In

qµ ,Nµ (k)γµ ,Nµ , j(k) (8)

qn,m,out(k) = ∑
j∈Jm

βn,m, j(k)Qn, j(k) , (9)

where qµ ,Nµ (k) is the flow leaving the last segment of link µ ,

βn,m, j(k) is the splitting rate in node n that is defined as the

fraction of the traffic flow heading towards destination j that

leaves node n via output link m, Jm is the set of destinations

that are reachable through link m, and qn,m,out(k) is the total

traffic flow that leaves node n via output link m at step k.

The composition rate γn,m,out, j(k) of the traffic flow out of

node n into link m is given by:

γn,m,out, j(k) =
βn,m, j(k)Qn, j(k)

qm,out(k)
.

We capture the effect of the downstream density of the

output links leaving node n by the following expression:

ρm,Nm+1
(k) =

∑µ∈On
ρ2

µ ,1(k)

∑µ∈On
ρµ ,1(k)

,

where ρµ ,1(k) is the density of the first segment of output

link µ . Similarly when a node n has many input links, then

the upstream speed is captured by adding a virtual segment

at the beginning of the link and by setting

vm,0(k) =
∑µ∈Invµ ,Nµ (k)qµ ,Nµ (k)

∑µ∈In qµ ,Nµ (k)
,

where Nµ is the index of the last of last segment of link µ .

IV. MODEL PREDICTIVE ROUTE CHOICE CONTROL

We can use the model of the previous subsection to derive

a model-based predictive approach that can be used by the

area controllers to determine the optimal splitting rates.

More specifically, we adopt the model predictive control

(MPC) scheme [19] (see Figure 5). At each control step k

the state of the traffic system is measured or estimated, and

an optimization is performed over the prediction horizon

[kT,(k + Np)T ] to determine the optimal control inputs,
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Fig. 5. Schematic view of the MPC approach

where Np is the prediction horizon. Only the first value of

the resulting control signal (the control signal for time step

k) is then applied to the process. At the next control step

k+1 this procedure is repeated.

To reduce complexity and improve stability often a control

horizon Nc (≤Np) is introduced in MPC, and after the control

horizon has been passed the control signal is taken to be

constant. So there are two loops: the rolling horizon loop

and the optimization loop inside the controller. The loop

inside the controller of Figure 5 is executed as many times

as needed to find the optimal control signals at control step

k, for the given Np, Nc, traffic state, and expected demands.

The loop connecting the controller and the traffic system

is performed once for each control step k and provides the

state feedback to the controller. This feedback is necessary to

correct for (the ever present) prediction errors, and to provide

disturbance rejection (compensation for unexpected traffic

demand variations). The advantage of this rolling horizon

approach is that it results in an on-line adaptive control

scheme that allows us to take changes in the system or in

the system parameters into account by regularly updating the

model of the system.

For our case the control variables in this set-up are the

splitting rates at the nodes with more than one outgoing link

(and if speed limits are included, also these speed limits).

The optimization variables include the control variables as

well as the state variables of the macroscopic METANET-

like traffic flow model for IVHS derived above.

A typical objective function to be used is the total time

spent (TTS) by all the vehicles in the network. This includes

both the time spent traveling through the network and

the time spent waiting in the queues, if any. Minimizing

TTS then results in a nonlinear nonconvex optimization

problem with real-valued variables. To solve the nonlinear

optimization problem we can use a global or a multi-start

local optimization method such as multi-start sequential

quadratic programming, pattern search, genetic algorithms,

or simulated annealing.

A. Case study

In this subsection we present a simple case study involving

a basic set-up to illustrate the area-level control approach for

IVHS proposed in this section. First, we will describe the set-

up and the details of the scenario used for our simulations.

Next, we will discuss and analyze the obtained results.

1) Scenario: We consider a simple network of highways

with one origin o1 and two destinations d1, d2, and three

internal nodes v1, v2, and v3 (see Figure 6). The network of
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Fig. 6. Set-up of case study network

Period (min) 0–10 10–30 30–40 40–60

Do1 ,d1
(veh/h) 5000 8000 2500 0

Do1 ,d2
(veh/h) 1000 2000 1000 0

TABLE I

DEMAND PROFILES USED IN THE CASE STUDY

Figure 6 consists of three links connecting o1 to v1, v2 to

d1, and v3 to d2, as well as six links connecting the internal

nodes allowing four possible routes to each destination (e.g.,

d1 can be reached via l2, l3, l4+l9, and l5+l9). In Figure 6,

the values within brackets indicates the number of segments

(Nm) in the particular link. The length of a segment (Lm) in

any link is taken to be 1 km.

We consider four different cases (due to the use of two

fundamental diagrams):

• Case A: no control case with human drivers,

• Case B: controlled case with humans drivers,

• Case C: controlled case with platoons.

For all the links we use the following values for the

parameters of the METANET(-like) model: vfree=120 km/h,

a = 1.867, κ=40 veh/km/lane and η=60 km2/h. For the hu-

man drivers case we use ρcrit=33.5 veh/km/lane, τ=18 s, and

the fundamental V –ρ relation (6), while for the IV case we

use ρcrit =48.39 veh/km/lane, τ=8 s, and the fundamental V –

ρ relation (7).

We simulate a period of 60 min. The simulation time step

T is set to 20 s. The demand pattern is piecewise constant

during the simulation period and is given in Table I. The

demand to be processed in the period [10,30] higher than the

capacity of the network, giving rise to an origin queue for

each destination. For the proposed scenario the initial state

of the network is taken to be empty. We choose Np = 20 and

Nc = 6. For the sake of simplicity we take the simulation

model to be equal to the prediction model.

2) Control problem: The control variables considered for

this case study are the splitting rates βn,m, j(k) associated with

all reachable destinations via outgoing links for each internal

node for k = 0,1, . . . ,Nsim −1 where Nsim = 180 is the total

number of simulation steps (of length T = 20 s) within the

entire simulation period of 60 min.

Since it makes no sense to send vehicles reaching node

v2 that are going to destination 1, towards link l7 we set

βv2,l6,1(k) = 1 and βv2,l7,1(k) = 0 for all k. Likewise, we

set βv2,l6,2(k) = 0 and βv2,l7,2(k) = 1 for all k. For node v3

we have: βv3,l8,1(k) = 0 and βv3,l9,1(k) = 1, βv3,l8,2(k) = 1,

βv3,l9,2(k) = 0 for all k. So in fact the optimization variables



are βv1,m, j(k) for m = l2, l3, l4, l5 and j = 1,2.

We have the following constraints:

βv1,l2, j(k)+βv1,l3, j(k)+βv1,l4, j(k)+βv1,l5, j(k) = 1

for j = 1,2 and for all k.

The goal of our area controller is to improve the traffic

performance. The objective that we consider for our case

study is minimization of the total time spent (TTS) by all the

vehicles in the network using routing as the control measure.

The TTS for the entire simulation period can be expressed

as:

JTTS,sim =
Nsim−1

∑
k=0

(

∑
(m,i)∈Lls

ρm,i(k)Lmλm + ∑
(o, j)∈Ood

wo, j(k)

)

T ,

where Lls is the set of all link-segment index pairs (m, i),
and Ood the set of all origin-destination pairs (o, j).

3) Results and analysis: In case of no control (Cases A

and B), the capacities of the direct links l1, l2, l3, and l4 are

consumed up to their maximum while the links l7 and l9 are

not used due to the fact that all vehicles and platoons want

to take the shortest routes. At the point when the demand

exceeds the maximum capacity of the links, origin queues

are formed. As the simulation advances, the queue length

increases with time, thus leading to a huge total time spent.

For the controlled cases (Cases B and C) the area con-

troller assigns the splitting rates at the internal node v1

and routes the traffic flow (human drivers or platoons) in

a system-optimum manner such that the traffic performance

is improved. When platoons of ACC-equipped vehicles are

deployed in the traffic system, the traffic performance is

improved more than the human drivers case. For these cases

we have used the SQP function SNOPT, implemented via the

function snopt of the Matlab Tomlab toolbox, to compute

the optimal splitting rates. Compared to Case A this results

in a performance improvement of about 3 % for Case B and

of about 46 % for Case C.

V. CONCLUSIONS

We have considered the optimal route guidance prob-

lem for IVHS using a hierarchical setting in which area

controllers coordinate the routes of the platoons in the

network. Since in general this results in a nonlinear mixed-

integer optimization problem, we have proposed a simplified

model to describe the flow of platoons in IVHS based

on the macroscopic METANET traffic flow model, which

has been adapted to fit the case of platoons of intelligent

vehicles equipped with Adaptive Cruise Control (ACC). The

resulting model has subsequently been used in a model-based

predictive control approach for determining optimal splitting

rates of the platoon flows at the nodes in the network. This

leads to a nonlinear optimization problem with real-valued

variables, for which efficient solvers exist. Once the optimal

splitting rates have been determined by the area controller,

they are sent to the lower-level roadside controllers, which

can then translate them into actual route instructions for the

platoons. The proposed approach has been illustrated via a

simple case study.

In our future research, we will also consider additional

case studies and assess the performance improvement of

the proposed approach with respect to an approach based

on mixed-integer optimization. We will also investigate the

coordination and mutual interaction between various area

controllers and between the area and the roadside controllers.
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