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Hierarchical Route Choice Control for Baggage Handling Systems

Alina N. Tarău, Bart De Schutter, and Hans Hellendoorn

Abstract— We propose a hierarchical control framework for
state-of-the-art baggage handling systems where the luggage
is transported by fast destination coded vehicles (DCVs). In
this control framework switch controllers provide position
instructions for each switch in the network. A collection of
switch controllers is then supervised by a network controller
that mainly takes care of the route choice instructions for DCVs.
The route choice control problem is problem is a nonlinear,
mixed integer optimization problem, with high computational
requirements, which makes it intractable in practice. Therefore,
we present an alternative approach for reducing the com-
plexity of the computations by approximating the nonlinear
optimization problem and rewriting it as a mixed integer linear
programming (MILP) problem for which solvers are available
that allow us to efficiently compute the global optimal solution.
The solution of the MILP problem is then used in computing
optimal switch control actions. For a benchmark case study
we compare the hierarchical control with centralized switch
control. The results indicate that the proposed hierarchical
control offers a balanced trade-off between optimality and
computational efficiency.

I. INTRODUCTION

State-of-the-art baggage handling systems in airports

transport luggage at high speeds using destination coded

vehicles (DCVs). These vehicles transport the bags in an

automated way on a “mini” railway network. The first

objective of a baggage handling system is to transport all the

checked-in or transfer bags to the corresponding end points

before the planes have to be loaded. However, due to the

airport’s logistics, an end point is allocated to a plane only

with a given amount of time before the plane’s departure.

Hence, the baggage handling system performs optimally if

each of the bags to be handled arrives at its given end point

within a specific time window.

Currently, the DCVs are routed through the system using

routing schemes based on preferred routes. These routing

schemes can be adapted to respond on the occurrence of

predefined events. However, as argued in [1], the patterns of

loads on the system are highly variable, depending on e.g. the

season, time of the day, type of aircraft at each gate, number

of passengers for each flight. Therefore, in the research

we conduct we do not consider predefined preferred routes.

Instead we develop advanced control methods to determine

the optimal routing in case of dynamic demand.
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The route assignment problem has been addressed in e.g.

[2], [3]. But, in our case we do not deal with a shortest-path

or shortest-time problem, since we need the bags at their

corresponding end point within a given time window. In [4] is

presented an analogy between the DCV routing problems and

data transmissions via internet. Also, [5] presents a multi-

agent approach for routing DCVs. However, this multi-agent

system is faced with major challenges due to the extensive

communication required. The goal of our work is to develop

and compare efficient control approaches for route choice

control of each DCV on the track network.

Theoretically, the maximum performance of such a DCV-

based baggage handling system would be obtained if one

computes the optimal routes using optimal control [6].

However, as shown in [7], for a fast event-based model

of this system, this control method becomes intractable in

practice due to the heavy computation burden. Therefore,

in order to make a trade-off between computational effort

and optimality, in [8], we have also implemented centralized

and decentralized model predictive control (MPC), and also

a decentralized heuristic approach. As the results confirmed,

centralized MPC requires high computation time to deter-

mine a solution. The use of decentralized control lowers the

computation time, but at the cost of suboptimality.

We propose a hierarchical control framework where the

higher level controllers use MPC. The large computation

time obtained in previous work comes from solving the

nonlinear, mixed integer optimization problems that have

multiple local minima, and therefore, are difficult to solve.

So, in this paper we investigate whether the computational

effort required to compute the optimal route choice can be

lowered by using mixed integer linear programming (MILP).

II. PRELIMINARIES

A. DCV-based baggage handling systems

The track network of a DCV-based baggage handling

systems consists of a set of loading stations as origin nodes,

a set of unloading stations as destination nodes, and a set

of junctions as internal nodes. Let us call the switch that

makes the connection between a junction and its incoming

links switch-in, and the switch that makes the connection

between a junction and its outgoing links switch-out.

The DCV-based baggage handling system operates as fol-

lows: given a demand of bags and the network of tracks as a

directed graph, the route of each DCV (from a given loading

station to the corresponding unloading station) has to be

determined subject to the operational and safety constraints

detailed in [7] such that all the bags to be handled arrive at

their end points within the corresponding time window.
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Fig. 1. Hierarchical control for DCV-based baggage handling systems.

B. Control Framework

In order to efficiently compute the route choice of each

DCV we propose a hierarchical control framework that

consists of a multi-level control structure as shown in Fig. 1

with the following layers:

• The network controller provides the route choice for

DCVs by determining reference flow trajectories over

time for each link in the network. These flow trajectories

are computed so that the performance of the system is

optimized. Then the optimal reference flow trajectories

are communicated to switch controllers.

• The switch controller present in each junction receives

the information sent by the network controller and

determines the sequence of optimal positions for its

ingoing and outgoing switches at each time step so that

the tracking error between the reference trajectory and

the future flow trajectory is minimal.

• The DCV controller present in each vehicle detects the

speed and position of the vehicle in front of it and the

position of the switch into the junction the DCV travels

towards to. This information is then used to determine

the speed to be used next such that no collision will

occur and such that the DCV stops in front of a junction

the switch of which is not positioned on the link that

the DCV travels.

The lower levels in this hierarchy deal with faster time

scales (typically in the milliseconds range for the DCV con-

trollers up to the seconds range for the switch controllers),

whereas for the higher-level layer (network controller) the

frequency of updating is up to the minutes range.

C. Basic MPC

Since later on we will use the MPC approach for deter-

mining the routes of the DCVs in the network, in this section

we briefly introduce the basic MPC concept.

MPC is an on-line model-based predictive control design

method [9] that uses the receding horizon principle. In the

basic MPC approach, given an horizon N, at step time k,

the future control sequence u(k+1),u(k+2), . . . ,u(k+N) is

computed by solving a discrete-time optimization problem

over a prediction period [kτs,(k+N)τs] with τs the sampling

time and k an integer. The optimization problem is defined so

that a cost criterion is optimized over the prediction period

subject to the operational constraints. After computing the

optimal control sequence, only the first control sample is

implemented, and subsequently the horizon is shifted. Next,

the new state of the system is measured or estimated, and a

new optimization problem at time (k+1)τs is solved using

this new information. In this way, a feedback mechanism is

introduced.

III. ROUTE CHOICE CONTROL

In this section we focus on the network controller. The

switch controller will be discussed in Section IV.

A. Approach

The predictive switch control problem results in a huge

nonlinear integer optimization problem with high compu-

tational complexity and requirements, making the problem

in fact intractable in practice [8]. So, since considering

each individual switch is too computationally intensive we

will consider streams of DCVs instead (characterized by

real-valued demands and flows expressed in vehicles per

second). The routing problem will be recast as the problem

of determining the flows on each link. Once these flows are

determined, they can be implemented by switch controllers

at the junctions. So, the network controller provides flow

targets to the switch controllers under its supervision, which

then have to control the position of the switch into and out

of each junction in such a way that these targets are met as

well as possible.

B. Set-up

We consider the following set-up. We have a transportation

network with a set of origin nodes O , a set of destination

nodes D , and a set of internal nodes I . Define the set of

all nodes as V = O ∪I ∪D . The nodes are connected by

unidirectional links. Let L denote the set of all links.

Let the time instant tk be defined as tk = kτnc with τnc

the sampling time for the network controller. Then, for each

pair (o,d) ∈ O ×D , there is a dynamic, piecewise constant

demand pattern Do,d(·) with Do,d(k) the demand of bags at

origin o with destination d in the time interval [tk, tk+1) for

k = 0, . . . ,K−1 with K the demand horizon (we assume that

beyond tK the demand is 0). Let Ld be the set of links that

belong to some route going to d, Ld ⊆ L. We also denote the

set of incoming links for node v ∈ V by Lin
v , and the set of

outgoing links by Lout
v . Note that for origins o ∈ O we have

Lin
o = /0 and for destinations d ∈ D we have Lout

d = /0. Also,

without loss of generality, we assume each origin node to

have only one outgoing link (|Lout
o |= 1) and the destination

nodes have only one incoming link (|Lin
d | = 1) where |Λ|

represents the cardinality of the set Λ. For each destination

d ∈D and for each link l ∈ Ld in the network we will define a

real-valued flow ul,d(k). The flow ul,d(k) denotes the number

of DCVs per time unit traveling towards destination d that

enter link l during the time interval [tk, tk+1).
The aim is now to compute using MPC (see Section II), for

each step k, flows ul,d(k) for every destination d ∈D and for

every link l ∈ Ld in such a way that the capacity of the links

is not exceeded and such that the performance criterion is

minimized over a given prediction period [tk, tk+N ]. Possible

goals for the network controller that allow linear or piecewise

affine performance criteria are reaching a desired outflow at



destination d or minimizing the lengths of the queue in the

network.

C. Route choice model

In this section we determine the model of the DCV flows

through the network. Let τl denote the free-flow travel time

on link l. The free-flow travel time represents the time period

that a DCV requires to travel on a track segment in case of

no congestion, using, hence, maximum speed. We assume

the travel time τl to be an integer multiple of τnc.

In case the capacity of a loading station is less than the

demand, queues might appear at the origin of the network.

Let qo,d(k) denote the length of the partial queue of DCVs at

origin o going to destination d at time instant tk. In principle,

the queue lengths should be integers as their unit is “number

of vehicles”, but we will approximate them using reals.

For every origin node o ∈ O and for every destination

d ∈ D we now have:

ul,d(k)6 Do,d(k)+
qo,d(k)

τnc
for l ∈ Lout

o ∩Ld (1)

with Do,d(k) = 0 for k > K. Moreover,

qo,d(k+1) = max(0, qo,d(k)+(Do,d(k)−∑
l∈Lout

o ∩Ld

ul,d(k))τ
nc) (2)

But queues can form also inside the network. We assume

that the DCVs run with maximum speed along the track

segment and, if necessary, they wait before crossing the

junction in a vertical queue. Let qv,d(k) denote the length

of the vertical queue at junction v ∈ I , for destination

d ∈ D , at time instant tk. Note that, we do not consider

outflow restrictions on queues to destination d for a junction

v connected via a link to destination d (qv,d(k) = 0 for all k).

Taking into account that every flow on link l has a delay

of
τl

τnc time steps before it reaches the end of the link, for

every internal node v ∈ I and for every d ∈ D we have:

Fout
v,d (k)6 F in

v,d(k)+
qv,d(k)

τnc
(3)

where F in
v,d(k) is the flow into the queue at junction v,

F in
v,d(k) = ∑

l∈Lin
v ∩Ld

ul,d(k−
τl

τnc ) and where Fout
v,d (k) is the flow

out of the queue at junction v, Fout
v,d (k) = ∑

l∈Lout
v ∩Ld

ul,d(k).

The evolution of the length of the queue for every internal

node v ∈ I and for every d ∈ D is given by:

qv,d(k+1) = max(0,qv,d(k)+(F in
v,d(k)−Fout

v,d (k))τnc) (4)

We also have the following condition for every link l:

∑
d∈D

ul,d(k)6Umax
l . (5)

where Umax
l is the maximum flow on link l.

Next we define the performance index to be used for

computing the optimal routing at step k for a prediction

period [tk, tk+N).
The objective is to have each bag arriving at its end point

within a given time interval [tclose
d − τ

open
d , tclose

d ] where tclose
d

tclose
d − τ

open
d

tclose
d

t

udesired
d

τnc

Fig. 2. Desired arrival profile at destination d.

is the time instant when the end point d closes and the last

bags are loaded onto the plane, and τ
open
d is the time period

for which the end point d stays open for a specific flight.

We assume tclose
d and τ

open
d to be integer multiples of τs.

Without loss of generality, in this paper we consider that

each destination has only one flight assigned to it. However,

this can be easily extended to the general case, but where a

presorting will be performed.

Hence, one MPC objective that allows a piecewise affine

performance criterion is to achieve a desired flow at des-

tination d during the prediction period. Let udesired
d denote

the desired piecewise constant flow profile at destination d

as sketched in Fig. 2, where the area under udesired
d equals

the total number of bags to be sent to destination d out

of the total demand. Note that outside the time window

[tclose
d − τ

open
d , tclose

d ) no bags should enter the incoming link

of destination d outside the given time window. Conse-

quently, udesired
d (k) = 0 for all k < k

open
d and all k > kclose

d

with k
open
d =

tclose
d

−τopen

τs
and kclose

d =
tclose
d
τs

.

Hence, one can define the following penalty for flow

profiles Jpen(k) = ∑
d∈D

λd |u
desired
d (k)− ul,d(k +

τdest
d
τs

)| where

τdest
d is the free-flow travel time of link l ∈ Lin

d and λd > 0 is

a penalty that expresses the importance of the flight.

Note that using as MPC performance criterion

∑k+N−1
i=k Jpen(i) for each time step k, could have adverse

effects for small prediction horizons. Therefore, to counteract

these effects, we also consider as additional controller goal

maximizing the flows of all links that are not directly

connected to unloading stations. To this aim, let τ link
l,d be

the typical time required for a DCV that just entered link l

to reach destination d. Then one can define the following

penalty: Jflow
l,d (k) = ul,d(k) if k

open
d −

τ link
l,d

τs
≤ k ≤ kclose

d −
τ link

l,d

τs

and Jflow
l,d (k) = 0 otherwise. This penalty will be later on

used in the MPC performance criterion.

Next, in order to make sure that all the bags will be han-

dled in finite time, we also include in the MPC performance

criterion the weighted length of queues at each junction in

the network as presented next. Let τ
junc
v,d be the typical time

required for a DCV in the queue at junction v to reach

destination d. Then we define the new penalty: Joverdue
v,d (k) =

dmin
v,d qv,d(k) if k ≥ kclose

d −
τ

junc
v,d

τs
and Joverdue

v,d (k) = 0 otherwise,

where dmin
v,d represents the length of the shortest route from

junction v to destination d.

Finally, let Ldest denote the set of links directly connected

to unloading stations. Then the MPC performance index is



defined as follows:

Jk,N =
k+N−1

∑
i=k

(

Jpen(i)−α ∑
d∈D

∑
l∈(L\Ldest)∩Ld

Jflow
l,d (i)+

β ∑
d∈D

∑
v∈I

Joverdue
v,d (i)

)

with α ≪ 1 and β ≪ 1 nonnegative weighting parameters.

Then the nonlinear MPC optimization problem is defined

as follows:

min
u(k)

Jk,N s.t. (3)–(5). (6)

where u(k) is the control sequence consisting of all the flows

ul,d(k) . . . ul,d(k+N −1) with d ∈ D and l ∈ Ld .

D. Equivalent MILP model

In this section we transform the dynamic optimal route

choice problem (6) into an MILP problem, for which efficient

solvers have been developed [10]. To this aim we use the

following equivalences, see [11], where f is a function

defined on a bounded set X with upper and lower bounds

M and m for the function values, δ is a binary variable, y

is a real-valued scalar variable, and ε is a small tolerance

(typically the machine precision):

P1: [ f (x)6 0] ⇐⇒ [δ = 1] is true if and only if
{

f (x)6 M(1−δ )
f (x)> ε +(m− ε)δ ,

P2: y = δ f (x) is equivalent to














y 6 Mδ
y > mδ
y 6 f (x)−m(1−δ )
y > f (x)−M(1−δ ) .

As an example we will show how equation (2) of the

nonlinear route choice model presented in the previous

section can be transformed into a set of linear equations and

inequalities by introducing some auxiliary variables. For the

other equations of the route choice model we apply a similar

procedure.

Depending on the order in which properties P1 and P2

are applied and in which additional auxiliary variables are

introduced, we may end up with more or less binary and real-

valued variables in the final MILP problem. The number of

binary variables — and to a lesser extent the number of real

variables — should be kept as small as possible since this

number has a direct impact on the computational complexity

of the final MILP problem.

We consider now (2). This is a nonlinear equation and

thus it does not fit the MILP framework. Therefore, we will

first introduce the binary variables δo,d(k) such that

δo,d(k) = 1 if and only if

qo,d(k)+
(

Do,d(k)− ∑
l∈Lout

o ∩Ld

ul,d(k)
)

τnc
6 0 (7)

and rewrite (2) as follows:

qo,d(k+1) =
(

1−δo,d(k)
)

·
(

qo,d(k)+

(

Do,d(k)− ∑
l∈Lout

o ∩Ld

ul,d(k)
)

τnc
)

. (8)

Condition (7) is equivalent to (cf. Property P1):
{

f (k)6 (qmax
o,d +Dmax

o,d τnc)(1−δo,d)

f (k)> ε +(−Umax
l τnc − ε)δo,d ,

where f (k) = qo,d(k)+
(

Do,d(k)−ul,d(k)
)

τnc with l ∈ Lout
o ∩

Ld , Umax
l is the maximal possible flow out of origin node o

towards destination d, qmax
o,d is the maximal queue length at

origin o for traffic going to destination d, and where Dmax
o,d =

maxk Do,d(k) is the maximal demand for origin-destination

pair (o,d).
However, (8) is still nonlinear since it contains a multipli-

cation of a binary variable δo,d(k) with a real-valued (linear)

function. However, by using Property P2 this equation can

be transformed into a system of linear inequalities.

Next we transform the nonlinear terms of (6) into sets of

equality and inequality constraints. For example the problem

min
u(k)

∑
d∈D

λd

k+N−1

∑
i=k

∣

∣udesired
d (k)− ∑

l∈Lin
d

ul,d(k+
τdest

d
τs

)
∣

∣

can be written as:

min ∑
d∈D

k+N−1

∑
i=k

λdudiff
d (i)

s.t.

udiff
d (i)> udesired

d (i)− ∑
l∈Lin

d

ul,d(i+
τdest

d
τs

)

for i = k+1, . . . ,k+N −1

udiff
d (i)>−udesired

d (i)+ ∑
l∈Lin

d

ul,d(i+
τdest

d
τs

)

for i = k+1, . . . ,k+N −1,

which is a linear programming problem.

So, the overall objective function Jk,N can be written as

a linear one. Hence, the problem (6) can be written as an

MILP problem.

Several efficient branch-and-bound MILP solvers [10] are

available for MILP problems. In principle, — i.e., when

the algorithm is not terminated prematurely due to time

or memory limitations, — these algorithms guarantee to

find the global optimum. This global optimization feature

is not present in the other optimization methods that can be

used to solve the original nonlinear, nonconvex, nonsmooth

optimization problem (6). Moreover, if the computation time

is limited (as is often the case in on-line real-time control),

then it might occur that the MILP solution can be found

within the allotted time whereas the global and multi-start

local optimization algorithm still did not converge to a good

solution. As a result, the MILP solution even performs

much better than the solution returned by the prematurely

terminated global and multi-start local optimization method.

Hence, we can say that the MILP solution often provides a

good trade-off between optimality and computational effort,

as will be illustrated in the case study of Section V.



IV. SWITCH CONTROL

In this section we focus on the switch controller for the

proposed hierarchy.

Recall that at each control step k, the network controller

provides optimal flows for each link in the network and for

each destination. Let these flows be denoted by u
opt
l,d (k) with

d ∈ D and l ∈ L∩ Ld . Then the switch controller of each

junction has to compute optimal switch-in and switch-out

positions such that the tracking error between the reference

optimal flow trajectory and the flow trajectory obtained by

the switch controller is minimal for each network controller

time step k = 0, . . . ,Ksim. Next we will refer to one junction

v∈I only. For all other junctions, the switch control actions

are determined similarly.

Let sin
v (k

sc) denote the position of the switch-in at junction

v ∈ I during the time interval
[

tsw
ksc , t

sw
ksc+1

)

, where tsw
ksc =

tk + kscτsc with ksc an integer and τsc the switch controller

sampling time (tk = tsc
0 ). Similarly, we define sout

v (ksc), the

position of the switch-out at junction v ∈ I during the time

interval
[

tsw
ksc , t

sw
ksc+1

)

.

We want to determine the switch control sequence at most

until time instant tk+1. However, the prediction period has at

most Nsc
max steps. As a consequence, the prediction period for

the MPC switch problem at step ksc is defined as
[

tsw
ksc , t

sw
end,k

)

with tsw
end,k = min(tk+1, t

sw
ksc+Nsc).

Hence, at each MPC step ksc, the switch controller solves

the optimization problem: minsv J
sw,v,k
ksc,Nsc(sv) where

• Nsc is the length of the prediction horizon (Nsc =
tsw
end,k

τsc ),

• sv = [sin
v (k

sc) . . . sin
v (k

sc + Nsc − 1) . . . sout
v (ksc) . . .

sout
v (ksc +Nsc −1)]T,

• J
sw,v,k
ksc,Nsc is the local performance index defined next.

Let X
opt
v,l,k denote the optimal number of DCVs to enter the

outgoing link l of junction v during the period
[

tsw
ksc , t

sw
end,k

)

.

Then for l ∈ Lout
v ∩Ld the variable X

opt
v,l,k is given by X

opt
v,l,k =

(tsw
end,k − tsw

ksc)∑d∈D u
opt
l,d (k). Next let Xv,l,ksc be the actual num-

ber of DCVs entering link l during the prediction period.

The variable Xv,l,ksc is determined via simulation for the fast

event-driven model of [8]. Then, at time step ksc, the local

performance index is defined as follows:

J
sw,v,k
ksc,Nsc(sv)= ∑

l∈Lout
v ∩Ld

|X
opt
v,l,k−Xv,l,ksc(sv)|+γ

(

nsw in(sv)+nsw out(sv)
)

where nsw in and nsw out represent the number of toggles of

the switch-in and of the switch-out respectively during the

prediction period
[

tsw
ksc , t

sw
end,k

)

, which are obtained from sim-

ulation, and where γ is a nonnegative weighting parameter.

V. CASE STUDY

A. Set-up and scenarios

We consider the network of tracks depicted in Fig. 3 with

4 loading stations, 2 unloading stations, 9 junctions, and

20 unidirectional links, where the free-flow travel time is

provided for each link. This network allows more than four

possible routes to each destination from any origin point.

We consider this network because on the one hand it is

simple, allowing an intuitive understanding of and insight

in the operation of the system and the results of the control,

and because on the other hand, it also contains all the relevant

elements of a real set-up.

We assume that the velocity of each DCV varies between

0 m/s and 10 m/s. In order to faster assess the efficiency of

our control method we assume that we do not start with

an empty network but with a network already populated by

DCVs transporting bags.

We consider 6 different scenarios where 2500 bags have to

be handled for different initial states of the system, queues on

different links, different piecewise constant demand profiles

over the first 180 s of the simulation, and different weighting

parameters. We simulate a period of 40 min. The control time

step for the network controller is set to 60 s, while the control

time step for the switch controller is set to 2 s. In these sce-

narios we have also considered the occurrence of queues at

origin. Assuming that we start the simulation at time instant

t0 = 0 s, we consider the time window to be [800,1400] for

destination d1, and [1000,1600] for destination d2.

B. Results

In this section we compare the results obtained when

using the proposed hierarchical control framework and the

centralized switch control of [8]. In order to solve the MILP

optimization of the network controller we have used the

CPLEX solver of the Matlab optimization toolbox Tomlab,

while to solve the nonlinear optimization problem of the

switch controller we have chosen a genetic algorithm of the

Matlab optimization toolbox Genetic Algorithm and Direct

Search implemented via the function ga, using multiple

runs. The same genetic algorithm has been used to solve

the optimization problem of the centralized switch control.

Essentially the centralized switch control boils down to solv-

ing a problem like (6) but with r(k+1),r(k+2), . . . ,r(k+N)
as optimization variables for each MPC step k, where r(i)
is the route of the ith DCV that entered the network (for

details see [8]). As prediction horizon we have considered

N = 11 for the network controller and Nsc = 15 for the

switch controller of the hierarchical control, and N = 40

for the centralized MPC switch control. Note that due to
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Fig. 3. Case study for a DCV-based baggage handling system.
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Fig. 4. Closed-loop results (the smaller J the better system performance).

computational requirements reasons, for the switch control

of both frameworks we shift the horizon with N, respectively

Nsc samples at each MPC step. Also, due to the same

reason (computational requirements), we allow a limited

amount of time (1 hour) for solving an optimization problem

corresponding to the centralized switch control.

Based on simulations we now compare, for the given

scenarios, the results obtained for the proposed control

frameworks. The results of the simulations are reported in

Fig. 4. For this comparison we consider the total performance

of the system to be defined as J = ∑
d∈D

Xd

∑
i=1

|ti,d − tdesired
i,d | with

ti,d the time when the ith bag crossing the junction directly

connected to destination d actually crosses that junction,

tdesired
i,d is the desired crossing time for the same DCV, and Xd

the total number of bags to be sent to destination d during

the simulation period. The time sequence tdesired
1,d , . . . , tdesired

Xd ,d

with d ∈ D is computed such that at each control time step

k of the network controller, the τncudesired
d (k) bags arrive at

equidistant time instants during the period [tk, tk+1).
Using simulations we have obtained an average perfor-

mance over all scenarios of 9.92 · 105 s for the hierarchical

control framework versus a performance of 6.44 ·106 s. So,

simulation results confirm that computing the route choice

using the hierarchical control framework gives better per-

formance than using the centralized switch control. Hence,

the hierarchical control with MILP flow solutions performs

better than the centralized switch control, the solution of

which was returned by the prematurely terminated global

and multi-start local optimization method.

However, even with these computational restrictions, the

total computation time of the centralized switch control (over

62 hours) is much larger than the one of the hierarchical

control (an average of 246 s per junction, plus 12 s for solving

the MILP optimization problems).

Hence, the proposed hierarchical control outperforms the

centralized switch control of [8].

VI. CONCLUSIONS

In this paper we have proposed a hierarchical control

framework for efficiently computing routes for destination

coded vehicles (DCVs) that transport bags in an airport on

a railway network. In the proposed control framework the

network controller computes reference flow trajectories over

time for each link in the network so that the performance of

the DCV-based baggage handling system is optimized. Then

the switch controllers determine the sequence of optimal

positions for their ingoing and outgoing switches so that

the tracking error between the reference trajectory and the

future flow trajectory is minimal. The problem of computing

optimal routes for DCVs is a nonlinear, nonconvex, mixed

integer optimization problem, and very expensive to solve

in terms of computational efforts. Therefore, we have used

an alternative approach for reducing the complexity of the

computations by rewriting the nonlinear optimization prob-

lem of the network controller as a mixed integer linear

programming (MILP) problem. The advantage is that for

MILP optimization problems solvers are available that allow

us to efficiently compute the global optimal solution. The

solution of the MILP problem is then used in computing

optimal switch control actions. For a benchmark case study

we have compared the hierarchical control with centralized

switch control. Results indicate that the proposed hierarchical

control outperforms the centralized switch control where the

multi-start local optimization method has been terminated

prematurely.
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