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Abstract

In this paper we use a model-based traffic control approach to determine dynamic speed limits

with the aim of reducing fuel consumption and emissions, while still guaranteeing small travel

times. The approach we propose is based on model predictive control (MPC). MPC is a model-

based control design method that combines prediction and on-line optimization of a performance

criterion over a given time horizon to determine appropriate control inputs. MPC allows the

inclusion of constraints on inputs and outputs, and it can handle changes in the system parameters

by using a moving horizon approach, in which the model and the control strategy are updated

regularly. We consider reduction of the total fuel consumption, total CO emissions, and total time

spent in the traffic network. For the MPC controller we use a microscopic car-following traffic

flow model and a microscopic emission and fuel consumption model. Based on simulations we

demonstrate that a traffic control strategy (such as MPC) addressing total fuel consumption, total

emissions, and total time spent can result in a balanced reduction of all the performance measures,

by considering their weighted combinations as the overall performance criterion.

1 Introduction

Despite the improvements in transportation systems, the rise of fuel prices, and the imposition of

more stringent environmental policies for emission levels, the demand for mobility and transportation

is continuously increasing. Consequently roads are frequently congested, creating economical, social,

and ecological challenges. Moreover, in recent epidemiological studies of the effects of combustion-

related (mainly traffic-generated) air pollution, NO2 was shown to be associated with adverse health

effects [21, 22]. Furthermore, road traffic exhaust emissions account for 40% of volatile organic

compounds, more than 70% of NOx, and over 90% of CO in most European cities [21], and for about

45% pollutants released in the US [19]. Frequent and longer congested traffic conditions make this

even worse.

There are several possible approaches to address these problems. Large-scale substitution of fossil

oil by alternative fuels is a possible solution, but it is not feasible to realize in the short to medium

term. A second possible solution is enhancing vehicle technology. However, vehicle improvements

seem to be approaching their limit [16] and they alone cannot solve the problems. Furthermore, the

limitations in the availability of land, and the economical and environmental constraints often make

extending infrastructures infeasible. An alternative and promising solution is the implementation of

intelligent transportation systems [17, 23]. Different traffic control measures (such as traffic signal,

ramp metering, speed control, route guidance, etc.) can then be used to minimize the impact of traffic

jams (such as longer travel times and emissions).
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To the best of our knowledge, there are not many papers in the traffic control literature that explic-

itly aim at the reduction of emissions directly. Many papers either study the effect of different traffic

assignment solutions on emissions and fuel consumption [1, 8, 9] or deal with traffic control problems

to improve traffic flow [13, 23]. Most traffic control papers address problems related to the reduction

of congestion, improving safety, reducing total time travel, and the like. As an example, Hegyi et

al. [13] showed that integration of speed limit control and ramp metering can be used to reduce the

total time spent (TTS). Related work by Zhang et al. [23] but using microscopic models shows similar

results. But, both studies focus on the improvement of traffic flow. However, improvement in traffic

flow does not necessarily guarantee reduced emission or fuel consumption levels. As will be shown

in this paper, a controller that focuses only on the reduction of emissions and fuel consumption does

not necessarily guarantee reduced travel times. Therefore, this paper illustrates how to integrate both

requirements so that a balanced trade-off is obtained.

In this paper we use a model-based control approach to reduce fuel consumption and emissions

while still improving the traffic flow. We implement model predictive control (MPC) using a car-

following model and a dynamic VT-micro fuel consumption and emission model. We use dynamic

speed limit control to control a freeway network to improve the total fuel consumed, total CO emission

level, and TTS.

The paper starts by discussing traffic flow and emission fuel consumption models considered in

this study in Section 2. In Section 3 the MPC control strategy is presented. Section 4 illustrates the

particular example we considered for this study. Finally, Section 5 gives the conclusions drawn from

the work.

2 Models

2.1 Traffic flow models

Traffic flow models can be divided into three classes, viz. macroscopic, microscopic, and mesoscopic

[15]. Macroscopic traffic models deal with the average traffic variables (such as average speed, aver-

age density, and average flow). On the other hand microscopic traffic models describe the behavior

of individual vehicles in the traffic flow. The position, speed, and acceleration of each vehicle are

the states of such models. Mesoscopic traffic models describe the behavior of each vehicle (micro-

scopically) using macroscopic variables (such as link flows and link travel times). In other words

mesoscopic models combine characteristics of both microscopic and macroscopic traffic flow models.

For this study we use a microscopic traffic model, in particular a car-following model. Note that in

this paper only the longitudinal kinematic behavior of vehicles and drivers is considered. However,

the proposed approach is generic and also valid for other more complex models that also include lane

changing behavior.

Vehicle kinematics

The general longitudinal kinematic motion of the vehicles after discretization is described by

xi(k+1) = xi(k)+ vi(k)ts +0.5ai(k)t
2
s (1)

vi(k+1) = vi(k)+ai(k)ts (2)

where xi(k), vi(k), and ai(k) are respectively the position, speed, and acceleration of the ith vehicle in

the network at time t = k · ts. Here, k is the simulation time step counter, while ts (e.g. ts = 1 s) is the
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sampling time of the discretized model. The acceleration in Equations (1)–(2) is determined from the

driver model described in the sequel. Moreover, the acceleration is saturated between minimum and

maximum acceptable accelerations amin and amax.

Longitudinal human driver behavior

The speed and nature of the reaction of drivers is dependent on their headway time (or distance). The

time headway is defined as the time difference between two consecutive vehicles that pass a certain

location. This can be described as the time needed by the following vehicle to reach the current

position of the leading vehicle with its current speed. Mathematically this can be expressed as

th(k) =
xl(k)− xf(k)

vf(k)
(3)

where xl, xf are the positions of the leading and the following vehicle respectively, and vf is the speed

of the following vehicle. Depending on the time headway a vehicle can be either in car-following or

free-flow mode. When the time headway is larger than the threshold time headway ttr(e.g., ttr = 10s),

then the vehicle is said to be in free-flow mode. However, if the time headway is smaller than the

threshold time headway, then the vehicle is in a car-following mode.

In free-flow driving conditions the acceleration of a vehicle is determined by a constant multiple

of the difference in the delayed reference speed (or speed limit) and delayed speed of the vehicle.

Mathematically, this is described as

ai(k) = F (vref,i(k−σ)− vi(k−σ)) (4)

where F is a controller parameter (typically in the range 0.01-0.4), vref,i is the speed limit (or reference

speed) of the ith vehicle and, σ is the reaction delay of the driver. Here, we assume that the reaction

time is an integer multiple of simulation time step. In the car-following driving mode, where the time

headway is smaller than the threshold time headway ttr, the acceleration of the vehicle is determined

using car-following models. There are various types of car-following models. A review of various

car-following models can be found in [6]. In this paper we use the Gazis-Herman-Rothery (GHR)

[12] stimuli-response car-following model. In this model the reaction of the driver (in other words the

acceleration of the vehicle) varies with the variation of its current speed, and the relative speed and

position of the vehicle with respect to its predecessor vehicle [4, 6, 15]. The model also takes into

account the delay in the reaction of the driver in the relative speed and position of the vehicle. The

following expression describes the relationship of the variables

af(k) = αv
β
f (k)

(vl(k−σ)− vf(k−σ))

(xl(k−σ)− xf(k−σ))γ (5)

where α , β , and γ are model parameters, and σ is the reaction delay of the driver.

2.2 Traffic emission and fuel consumption models

Traffic emission and fuel consumption models calculate the emissions produced and fuel consumed

by vehicles based on the operating conditions of the vehicles. Emissions and fuel consumption of a

vehicle are influenced by the vehicle technology, vehicle status (such as age, maintenance, etc.), vehi-

cle operating conditions, the characteristics of the infrastructure, and external environment conditions.

The main inputs to the models are the operating conditions of the vehicle (such as speed, acceleration,

engine load) [14].
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Figure 1: CO emissions and fuel consumption curves of a vehicle as a function of the speed for

acceleration a ∈ {−1,0,1}m/s.

Traffic emission and fuel consumption models are developed for diverse collections of vehicles

grouped in homogeneous categories. Traffic emission and fuel consumption models can be either

average-speed-based or dynamic. Average-speed-based models are simple to use and they are long es-

tablished methods [5]. However, since such models neglect the dynamics of the speed of the vehicles,

the estimates are relatively inaccurate [1, 5]. On the other hand, dynamic (also called microscopic)

emission and fuel consumption models use the instantaneous speed and acceleration of individual

vehicles in the traffic fleet [2]. For this study we use the VT-micro [2] dynamic emission and fuel

consumption model.

VT-micro [2] is a microscopic dynamic model that yields emissions and fuel consumption using

second-by-second speed and acceleration of individual vehicles. The model has the form

Jy(k) = exp
(

ṽT (k)Pyã(k)
)

(6)

where Jy is the estimate or prediction of the variable y ∈ {CO,NOx,HC, fuel consumption}, with

the operator ·̃ defining the vectors of the speed v [km/h] and the acceleration a [km/h2] as ṽ(k) =
[

1 v(k) v2(k) v3(k)
]T

and ã(k) =
[

1 a(k) a2(k) a3(k)
]T

during the time period [k · ts,(k+1) · ts], and Py

denotes the model parameter matrix for the variable y. The values of the entries of Py can be found in

[2]. Figure 1(a) and Figure 1(b) portray some CO emissions and fuel consumption curves generated

using the VT-micro model.

3 Model Predictive Control

3.1 Philosophy of model predictive control (MPC)

The basic concept of Model Predictive Control (MPC) [7, 18] lies in the optimization of control inputs

based on prediction and a moving horizon approaches. An MPC controller uses an on-line optimiza-

tion method, based on the measurement of current and future predicted evolution of the system states.

Using a model of the system and numerical optimization, it determines a sequence of control inputs

that optimize a performance criterion over a given future time horizon (i.e. from control step ℓ up to
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Figure 2: Conceptual representation of model predictive control (MPC).

ℓ+Np). However, only the first control input is applied for the system in a moving horizon concept,

i.e. at each control time step only the first sample of the optimal control input is applied to the system;

afterward the time axis is shifted one control time step. Then, based on the new states and control in-

puts of the system, a new sequence of optimal control inputs is generated. Once again the first control

input is applied. At every control time step the process in repeated. This process is repeated until the

end of the simulation time.

Figure 2(a) illustrates the interrelationship of the traffic system and MPC controller, and Figure

2(b) depicts the concepts of prediction and control horizons. We consider both the traffic system and

the MPC controller in discrete time. Recall that ts represents the sampling time. We define the control

time step tc (a typical value is tc = 1 min). For the sake of simplicity we assume that tc = M · ts, for

some positive integer M. Therefore, at time t = ℓ · tc = k · ts the controller time step counter ℓ is an

integer divisor of the simulation time counter k. They are related by k(ℓ) = M · ℓ. A measurement of

the traffic states (such as position, speed, acceleration, etc.) is made every tc time units and the traffic

control measures (such as speed limits, ramp metering rates, etc.) will be applied for the next tc time

units (see Figure 2(a)). In other words, after a control signal is applied for M sample steps of ts time

units, a new measurement of the states of the traffic system is undertaken and the MPC controller

generates and applies new control inputs by predicting the evolution of the system states from the

current time t = ℓ · tc up to t = (ℓ+Np) · tc (see Figure 2(b)).

The main advantage of MPC is its ability to take constraints into account and that it can be used for

nonlinear systems. Its main limitation emanates from the computation time required by the optimiza-

tion process. To alleviate the computational problems several methods can be used (e.g. introducing

control horizon). In order to limit the number of variables to be optimized, thereby to improve com-

putation speed, a control horizon Nc ≤ Np is defined after which the control input is kept constant, i.e.

u(ℓ+ j) = u(ℓ+ j−1) for j = Nc, . . . ,Np −1.

3.2 MPC for traffic control

Besides the difference in the effects of traffic speed on emissions, fuel consumption, and total time

spent, the minimum values of the traffic emissions, fuel consumption, and travel time are attained

at different traffic speeds. This makes it difficult to decide which speed limit to select to optimally

reduce the level of the emissions. Reducing the total emissions may have more influence on some

gases than others. In the report of WHO [22], it is shown that NOx has a stronger adverse health
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effect than the other gases. However, gases like CO, have adverse effect in the long run. By assigning

relative weight (policies) on the different emissions, and total time spent (TTS) it is possible to use

model-based traffic control to set the optimal speed limit which can result in a balanced trade-off of

the conflicting requirements.

In this study we use an MPC controller to control the traffic flow using speed limits. We investigate

the impact of speed limit control on the improvement of the total CO emissions, total fuel consump-

tion, and TTS in a traffic network. The model of the optimization accommodates both a traffic flow

model and an emission and fuel consumption model. As prediction model we could use the models

presented in Section 2. However, note that the MPC approach is generic and can also accommodate

other, more complex traffic flow and emission models.

At control time step ℓ, the MPC controller predicts the evolution of the traffic flow and the emission

levels in the network over the time interval
[

tc · ℓ, tc · (ℓ+Np)
]

and it optimizes the speed limit control

sequence u(ℓ), u(ℓ+1), . . . ,u(ℓ+Nc −1) in such a way that the objective function is reduced. After

the optimal control input sequence u∗(ℓ), u∗(ℓ+ 1), . . . ,u∗(ℓ+Nc − 1) has been computed, the first

sample u∗(ℓ) is applied to the system until the next control step ℓ+1. Subsequently, whole process is

repeated all over again.

As an objective function we could for example consider the following expression. Note however

that MPC is generic as regards the choice of the performance criteria, and so other objective functions

could also be considered instead.

J(ℓ) =
λ1

TTSnominal

MNp

∑
j=1

N (k(ℓ)+ j)ts

+
λ2

TCOnominal

MNp

∑
j=1

N (k(ℓ)+ j)

∑
i=1

JCO,i(k(ℓ)+ j)ts

+
λ3

Tfuelnominal

MNp

∑
j=1

N (k(ℓ)+ j)

∑
i=1

Jfuel,i(k(ℓ)+ j)ts

+
λ4

T∆Unominal

Nc−1

∑
j=0

‖u(ℓ+ j)−u(ℓ+ j−1)‖2
2 (7)

where λn ≥ 0 for n = 1,2,3,4 are weighting coefficients, N (k) denotes the number of vehicles at

time t = k · ts, and JCO,i(k) and Jfuel,i(k) respectively denote the CO emissions, and fuel consumption

of the ith vehicle in the network or in a queue at time t = k · ts. Moreover, the last term in the objective

function denotes a penalty term for the fluctuation of the speed limit control. Note that each term

in the objective function contains a normalization factor consisting of a “nominal” value for respec-

tively the total time spent (TTSnominal), the total CO emission (TCOnominal), total fuel consumption

(Tfuelnominal), and a measure for the total speed limit difference (T∆unominal) (see also Section 4.2 for

an example of how to compute these normalization factors).

3.3 Optimization method

One of the bottlenecks in the MPC control approach is the extensive optimization and the resulting

computational requirements. The MPC optimization problem considered for this study is nonlinear

and nonconvex. Thus a proper choice of an optimization technique has to be made in order to obtain

feasible optimal control values. Owing to the nonconvex nature of the objective function, global

or multi-start local optimization methods are required. In our case multi-start sequential quadratic
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programming [20], pattern search [3], generic algorithms [10], or simulated annealing [11] can be

used.

4 Case Study

In this section we demonstrate the applicability of the MPC traffic control strategy described in Section

3 on a simple case study. We consider this simulation benchmark to investigate the effect of the control

strategy. The layout of the freeway, the performance criterion and simulation results are given in the

subsequent subsections.

4.1 Traffic freeway layout

We consider a single-lane one-way 12 km freeway. As shown in Fig. 3, the roadway is divided into six

sections and each section is controlled with a dynamic speed limit control. We conduct the simulation

experiment for half an hour (tduration = 0.5 h). At the beginning of the simulation, the segment of the

freeway from 6.8 km to 6.935 km is assumed to be congested. The traffic demand varies over the

whole span of the simulation time (see Fig. 4). The profile of the demand depicted in Fig. 4 is defined

as

do(k) =











(0.024+0.057sinc(0.001k−π/4))ts for 0 ≤ k ≤
3Nsim

4

0 for k >
3Nsim

4

(8)

where sinc(x) = sin(πx)/(πx), ts = 1 s is the simulation sampling time, and Nsim = 1800 denotes the

number of simulation time steps.

The setup is simulated for three different cases. In the first case (S1) we simulate the setup for

uncontrolled traffic flow. The TTS, total CO emissions, and total fuel consumptions resulted from the

simulation are given in the first row of Table 1. In the second and the third simulation we deal with

controlled traffic flow, i.e. the scenarios are:

S2. controlled traffic flow with the objective of reducing both total CO emissions and total fuel

consumption, i.e. λ1 = 0, λ2 = λ3 = 1, and λ4 = 0.01, and

S3. controlled traffic flow with the objective of reducing total CO emissions, total fuel consumption,

and total time spent, i.e. λ1 = λ2 = λ3 = 1, and λ4 = 0.01.
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4.2 Performance criterion

In this case study we have considered the performance criterion defined in Equation (7). The nor-

malization factors TTSnominal, TCOnominal, and Tfuelnominal were computed by simulating the traffic

system for the 12 km freeway with a speed limit of 80 km/h and for the scenario given in Section

4.1. A value for T∆unominal is computed as follows: we consider a simulation where the speed limit

changes with vstep = 10 km/h at every control step. So

T∆unominal = ∑ ℓ= 0Nc−1v2
step = Ncv2

step (9)

For solving the MPC optimization problem we have adopted a multi-start sequential quadratic pro-

gramming (SQP) [20] optimization method. More specifically, we have used the fmincon command

of the Matlab optimization toolbox.

4.3 Simulation results

The three performance indicators defined to analyze the simulation results are the total CO emissions,

total fuel consumption, and the total time spent (TTS). The results of the simulation are shown in

Table 1.

Simulation TTS Total Total

scenario (veh.h) CO (kg) Fuel (l)

S1 23.563 28.009 21741

S2 27.826 1.0614 1027.7

S3 14.004 20.093 16730

Table 1: Simulation results

As it can be seen from the table, the TTS, total CO, and total fuel consumed respectively are

23.563 veh·h, 28.009 kg, and 21741 l, when the system is not controlled (S1). When an MPC con-

troller with an objective function of reducing total CO emission and total fuel consumption (S2) is
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used, both the total CO emission and total fuel consumption are respectively reduced by 96.21% and

95.28%. However, the TTS is increased by 18.09%. On the other hand if the controller aims on the

reduction of all the performance indicators (TTS, total CO emission, and total fuel consumption) as

in S3, we observe that all of the performance measures are reduced relative to the uncontrolled sce-

nario. Quantitatively, the total CO emission is reduced by 23.05%, total fuel consumption is reduced

by 28.26%, and total time spent is reduced by 40.57%.

Moreover, since there is proportional relationship between fuel consumption and CO2 emission,

it is also possible to deduce that the CO2 emission is also reduced.

5 Conclusions

We have proposed a model-based traffic flow control approach to reduce total CO emissions, total

fuel consumption, and total time spent. This control method uses a prediction model and on-line op-

timization to determine the optimal traffic control measures over a given prediction horizon, which

are subsequently applied using a receding horizon approach. We have illustrated the approach using a

car-following traffic flow model and a dynamic microscopic emission model. In addition we have con-

sidered a case study involving a single-lane one-way traffic freeway to show how MPC can be applied

to provide a balanced trade-off between conflicting performance measures. The results of this case

study also demonstrate the possible solutions MPC can offer for mobility, energy, and environmental

challenges.

Based on simulation results, we have shown that the focus on the reduction of total CO emission

or fuel consumption alone can have negative consequence on the traffic flow under jammed traffic

conditions. The simulation results suggest that the challenge of reducing CO emissions and fuel

consumption while improving the traffic can be realized by proper definition of an objective function

in an MPC based traffic controller. More specifically, the simulations indicate 23.05%, 28.26%, and

40.57% reduction of CO emissions, fuel consumptions, and total travel time respectively. Moreover,

by addressing fuel consumption one can also implicitly reduce the CO2 emissions.
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