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Model Predictive Traffic Control to Reduce Vehicular Emissions – An

LPV-Based Approach

S. K. Zegeye, B. De Schutter, and J. Hellendoorn

Abstract— We propose a traffic control approach that can
reduce both traffic emissions and travel times based on model
predictive control (MPC). We approximate the traffic flow and
emission models into a linear parameter varying (LPV) form,
which leads to an LPV-MPC control approach. We consider two
objective functions and formulate them as convex functions, so
that convex optimization methods can be used to generate the
optimal control sequences of the LPV-MPC control approach.
The resulting LPV-MPC solutions can next be used as a good
initial point in the nonlinear-nonconvex optimization of the
nonlinear original MPC problem.

I. INTRODUCTION

A potential control approach for traffic systems is Model

Predictive Control (MPC) [12]. In this control approach mod-

els are used to predict the evolution of the traffic states and

to provide a prediction of the total travel time, throughput,

emissions, and fuel consumption. One of the typical traffic

modeling categories is the class of the microscopic models.

Microscopic traffic flow models are accurate, because they

describe the dynamics of each vehicle in a traffic network.

However, they require longer simulation time. Another traffic

modeling categories is the class of macroscopic models.

Such models treat the traffic flow as a compressible fluid

and they require a low computation time [6]. However,

emission models that use the output of such models are

subject to larger estimation errors [1]. In order to improve

the estimation error the macroscopic traffic flow models can

be integrated with microscopic emission models [19].

The METANET [13] traffic flow model and the VT-

macro [19] are employed in this paper. Since both the

METANET traffic flow model and VT-macro emission model

are nonlinear and nonconvex models, the resulting MPC

problem boils down to a nonlinear-nonconvex optimization

problem. Nonconvex optimization methods heavily depend

on the initial points of the optimized variables, which are

usually difficult to determine. But, there are nonlinear Model

Predictive Control (MPC) approaches that are well developed

for certain class of models [3], [7], [17]. One of them is

Linear Parameter Varying (LPV) models.

In this paper, we use the LPV formulation of the

METANET-like traffic flow model as described in [9], [10],

[11]. We further extend it to explicitly describe metered on-

ramp flow and node equations of the METANET [13] traffic

flow model in an LPV framework. Moreover, we integrate

the VT-macro [19] emission and fuel consumption model to
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the traffic flow model in an LPV form by adding new states,

defining new outputs, and introducing approximations of the

emission model. Finally, the resulting integrated traffic flow

and emission LPV model is used in the design of an LPV-

MPC controller.

Since the LPV-MPC control problem is formulated based

on approximation of both the METANET [13] traffic flow

model and the VT-macro [19] emission and fuel consumption

model, the control solutions may not be optimal. Neverthe-

less, the control solutions from the LPV-MPC approach can

be used as a good initial point for the nonlinear-nonconvex

optimization of the original nonlinear MPC optimization

problem.

II. MODELS

A. METANET

METANET [4], [8], [13] is a macroscopic second-order

traffic flow model. The model describes the evolution of the

traffic variables — the density, the flow, and the space-mean

speed — as nonlinear difference equations. The METANET

model is discrete in space and time. In this model, a node is

placed at a point where there is a change in the geometry of

a freeway (such as lane drop, on/off-ramp, and bifurcation).

A homogeneous freeway that connects such nodes is called

a link. Links are divided into equal segments of length 300-

500 m. The equations that describe the traffic dynamics in a

segment of a link are given by

qm,i(k) = λmρm,i(k)vm,i(k) (1)

ρm,i(k+1) = ρm,i(k)+
Ts

Lmλm

[qm,i−1(k)−qm,i(k)] (2)

vm,i(k+1) = vm,i(k)+
Ts

τ
[V [ρm,i(k)]− vm,i(k)]

+
Tsvm,i(k) [vm,i−1(k)− vm,i(k)]

Lm

−
Tsη [ρm,i+1(k)−ρm,i(k)]

τLm (ρm,i(k)+κ)
(3)

V [ρm,i(k)] = vfree,m exp

[

−
1

bm

(
ρm,i(k)

ρcr,m

)bm
]

(4)

where qm,i, ρm,i, and vm,i, denote respectively the flow,

density, and space-mean speed of segment i of link m, Lm

denotes the length of the segments of link m, λm denotes

the number of lanes of link m, and Ts denotes the simulation

time step. Furthermore, ρcr,m is the critical density, τ a time

constant, η the anticipation constant, bm the parameter of the

fundamental diagram, and κ is a model parameter.



For origins (such as on-ramps and mainstream entry

points) a queue model is used. The dynamics of the queue

length wo at the origin o are modeled as

wo(k+1) = wo(k)+Ts(do(k)−qo(k)) (5)

where do and qo denote respectively the demand and outflow

of the origin o. The outflow qo is given by

qo(k) = min

[

do(k)+
wo(k)

Ts
, ro(k)Co,

Co

(
ρjam,m −ρm,1(k)

ρjam,m −ρcr,m

)]

(6)

where ro(k) ∈ [0 1] for a metered on-ramp and ro(k) = 1 for

an unmetered on-ramp or mainstream origin, ρjam,m and ρcr,m

are respectively the maximum and critical densities of link

m, and Co denotes the capacity of on-ramp or mainstream

origin o.

If m is the link out of a node to which an on-ramp o is

connected, then for the first segment of link m the term

−
δTsqo(k)vm,1(k)

Lmλm(ρm,1(k)+κ)
(7)

is added to (3) in order to account for the speed drop caused

by the merging phenomena, where δ is model parameter.

METANET can also include lane drops, merging lanes, off-

ramps, and so on [5], [8], [13].

A node provides a downstream density to incoming links,

and an upstream speed to leaving links. The flow that enters

node n is distributed among the leaving links according to

Qn(k) = ∑
µ∈In

qµ ,Nµ (k) (8)

qm,0(k) = βn,m(k)Qn(k) (9)

where Qn(k) is the total flow that enters the node at simula-

tion step k, In is the set of links that enter node n, βn,m(k) are

the turning rates (i.e., the fraction of the total flow through

node n that leaves via link m), and qm,0(k) is the flow that

leaves node n via link m.

When node n has more than one leaving link, the virtual

downstream density ρm,Nm+1(k) of entering link m is given

by

ρm,Nm+1(k) =
∑µ∈On

ρ2
µ ,1(k)

∑µ∈On
ρµ ,1(k)

(10)

where On is the set of links leaving node n.

When node n has more than one entering link, the virtual

upstream speed vm,0(k) of leaving link m is given by

vm,0(k) =
∑µ∈In vµ ,Nµ (k)qµ ,Nµ (k)

∑µ∈In qµ ,Nµ (k)
. (11)

B. VT-macro

VT-macro [19] is a dynamic macroscopic emission and

fuel consumption model that we have developed for integra-

tion with the METANET model. It provides estimates of the

traffic emissions and fuel consumption based on the space-

mean speed, the average acceleration, and the corresponding

number of vehicles subject to the space-mean speed and

average acceleration.

In this model a distinction is made between the temporal

and spatial-temporal accelerations and number of vehicles

subject to it [19]. The temporal acceleration and the corre-

sponding number of vehicles are given by

am,i(k) =
vm,i(k)− vm,i(k−1)

Ts
(12)

nm,i(k) = Lmλmρm,i(k)−Tsλmvm,i−1(k−1)ρm,i−1(k−1).
(13)

On the other hand, the spatial-temporal acceleration is

different for different freeway geometries [19]. For brevity,

we only consider spatial-temporal accelerations of links and

on-ramps here. The spatial-temporal acceleration and the

number of vehicles corresponding to segment i of a link m

are given by

am,i,i+1(k) =
vm,i+1(k)− vm,i(k−1)

Ts
(14)

nm,i,i+1(k) = Tsqm,i(k−1), (15)

while the spatial-temporal acceleration and number of vehi-

cles for an on-ramp o are given by

ao(k) =
vm,i(k)− vo

Ts
(16)

no(k) = Tsqo(k−1). (17)

where vo is the on-ramp speed.

Using the temporal and spatial-temporal components of

the space-mean speed, acceleration, and number of vehicles,

the VT-macro model is expressed as

J̄γ(k) =ntemp(k)exp
(

v̆⊤temp(k)Pγ ătemp(k)
)

+nspat(k)exp
(

v̆⊤spat(k)Pγ ăspat(k)
)

(18)

where J̄γ(k) is the emission or fuel consumption γ ∈ S =
{CO, HC, CO2, NOx, Fuel Consumption} during the time

period [kTs,(k + 1)Ts], the subscripts ‘temp’ and ‘spat’ re-

spectively are the shorthand representation of ‘temporal’

and ‘spatial-temporal’, n(·) denotes the number of vehi-

cles that are subject to the space-mean speed v(·) and the

average acceleration a(·) with the speed vector v̆⊤(·)(k) =

[1 v(·)(k) v2
(·)(k) v3

(·)(k)] and the acceleration vector ă⊤(·)(k) =

[1 a(·)(k) a2
(·)(k) a3

(·)(k)], and Pγ denotes the model param-

eter. The values of the parameter matrices Pγ can be found

in [2].

C. LPV formulation of METANET

An LPV model of a system can be considered as a

weighted sum of a set of Linear Time Invariant (LTI) models,

where the weighting is determined by scheduling parameters

that are known a priori or that can be estimated [16], [18].



In general a discrete-time LPV system can be written

x(k+1) =
np

∑
i=0

pi(k)(Aix(k)+Biu(k)) (19)

y(k) =
np

∑
i=0

pi(k)(Cix(k)+Diu(k)) (20)

where x ∈ R
nx , u ∈ R

nu , and y ∈ R
ny are respectively the

state vector, the input vector, and the output vector with

nx,ny,nu,np ∈ Z
+, pi denotes the scheduling parameter, and

Ai, Bi, Ci, and Di are the system matrices.

In order to design a traffic controller based on an LPV-

MPC approach, the METANET model has to be transformed

into an LPV form. The exact and approximate LPV trans-

formation of the METANET model have been developed

in [11]. The exact LPV model in [11] has four scheduling

variables for every segment i of a link m. The number of the

scheduling variables increases with the number of segments.

Hence, in order to avoid the computational problems in the

LMI solvers, we use the approximate LPV model proposed

in [11]. The approximate LPV model reduces the number of

scheduling variables to two for every segment of i of link m.

These are:

p
(1)
m,i(k) =ṽm,i(k) (21)

p
(2)
m,i(k) =

Tsvfree,m

τρ̃m,i(k)
exp

(

−
1

bm

(
ρ̃m,i(k)+ρ∗

m,i

ρcr,m

)bm
)

(22)

where ṽm,i = vm,i − v∗m,i and ρ̃m,i = ρm,i −ρ∗
m,i with v∗m,i and

ρ∗
m,i respectively are steady-state1 values of the space-mean

speed and the density.

By using the relation in (1), linear state transformation

described by the x̃ = x− x∗, and the scheduling variables in

(21) and (22), one can transform (1)-(4) into

ρ̃m,i(k+1) =ρ̃m,i(k)+
Ts

Lm

q̃m,i−1 −
Ts

Lm

[

p
(1)
m,i(k)ρ̃m,i(k)

+ ṽm,i(k)ρ
∗
m,i + v∗m,iρ̃m,i(k)+ v∗m,iρ

∗
m,i

]

(23)

ṽm,i(k+1) =ṽm,i(k)−
Ts

Lm

ṽm,i(k)+ p
(2)
m,i(k)ρ̃m,i(k)

+
Ts

Lm

v∗m,i (ṽm,i−1(k)− ṽm,i(k))

+
Ts

Lm

p
(1)
m,i(k)(ṽm,i−1(k)− ṽm,i(k))

+
νTs (ρ̃m,i+1(k)− ρ̃m,i(k))

ρcr,m +κ
. (24)

These transformed equations can be rewritten into LPV state-

space representation as

xm,i(k+1) =
2

∑
ℓ=0

p
(ℓ)
m,i(k)(A

(ℓ)
m,ixm,i(k)+G

(ℓ)
m,iuG(k))+H0

(25)

1The values of v∗m,i and ρ∗
m,i are determined by setting ρm,i(k + 1) =

ρm,i(k) = ρ∗
m,i, vm,i(k+1) = vm,i(k) = v∗m,i, wo(k+1) = wo(k) = w∗

o, etc. in
the equations of the METANET model for each segment and each node
as well as in the boundary conditions and solving the resulting system of
equations.

where xm,i = [ρ̃m,i ṽm,i]
⊤ is the state vector, uG =

[ρ̃m,i+1 q̃m,i−1 ṽm,i−1]
⊤ is an exogenous input vector, p

(0)
m,i = 1,

p
(1)
m,i =(21), p

(2)
m,i =(22), with appropriately defined system

matrices A
(ℓ)
m,i, G

(ℓ)
m,i, and H0.

III. LPV EXTENSION AND INTEGRATION

A. Metered on-ramp LPV modeling

The LPV formulation in Section II-C does not explicitly

model an on-ramp flow and the queue model in the LPV

model. In this section we consider these separately and show

how they can be rewritten into LPV from.

Due to the speed drop in (7) and the change in the inflow

of (2) for i = 1, the LPV description of a segment with an

on-ramp is slightly different from (25). To reformulate the

on-ramp flow into an LPV form, we first convert the min

function of the on-ramp flow in (6) into a linear description.

Next we define new states and then formulate the on-ramp

flow as an LPV form.

The on-ramp flow in (6) is the minimum of three quan-

tities: the flow qwant(k) of vehicles that want to enter the

freeway, the maximum flow qcontrol(k) determined by the

controller (which is equal to Co if there is no ramp metering

present), and the maximal flow qspace(k) determined by the

available space in the freeway. These three quantities are

analyzed and reformulated into linear inequalities as follows.

The flow of the on-ramp in (6) can be equivalently recast

to

qo(k) = min

[

do(k)+
wo(k)

Ts
︸ ︷︷ ︸

qwant(k)

,

Co min

(

ro(k)
︸︷︷︸

qcontrol(k)
Co

,
ρjam,m −ρm,1(k)

ρjam,m −ρcr,m
︸ ︷︷ ︸

qspace(k)
Co

)]

. (26)

For simplicity of notation, let us rewrite the above on-ramp

flow equation as

qo(k) = min{qwant(k), q̄ro(k)} (27)

where q̄ro(k) = min
{

qcontrol(k), qspace(k)
}

. According to

(26) a ramp controller can generate qcontrol(k)> qspace(k), but

in the end the flow that can enter to the link is determined

by the available space in the segment. Hence, we can simply

restrict the controller to only generate flows that do not

exceed the available space. In other words, the ramp metering

rate ro(k) has to be designed in such a way that qcontrol(k)≤
qspace(k) is satisfied. Since ro(k) ∈ [0 1], this is equivalent to

stating that





−1

1

1



ro(k)≤





0

1
ρjam,m

ρjam,m−ρcr,m



+





0

0
−1

ρjam,m−ρcr,m



ρm,1(k). (28)

Then, we can reformulate q̄ro(k) in (27) as q̄ro(k) =Coro(k)
with ro(k) is subject to the linear inequality (28). Hence, we

have qo(k) = min{qwant(k), Coro(k)} subject to (28).



The term qwant(k) = do(k)+
wo(k)

Ts
determines the flow of

available vehicles that want to enter the network if there is

enough capacity. This limits the maximum amount of vehi-

cles the controller can “ask” for, i.e., it imposes a constraint

such that qcontrol(k)≤ qwant(k). In fact, this prevents the on-

ramp queue wo(k+ 1) in (5) from becoming negative. But,

we can also impose non-negativity constraints on the queue

length to avoid having to use the min function. This leaves

us with an on-ramp flow equation that is equal to

qo(k) =Coro(k) (29)

where ro(k) satisfies (28) and wo(k+1)≥0.

Now using the relations given in (7) and (29), applying the

linear state transformation on qo and vm,1, setting i = 1 for

the LPV model of a segment without an on-ramp in (25), and

increasing the ρ̃m,1(k+1) by
Ts(q̃o(k)+q∗o)

Lmλm
due to the on-ramp

flow, an extra term

A
(0)
r xr(k)+(B

(0)
r + p

(1)
m,1(k)B

(1)
r )r̃o(k)+Hr +G

(0)
r ur(k) (30)

is added to (25) for i = 1, with xr(k) = [ρ̃m,1(k) ṽm,1(k)
w̃o(k)]

⊤, ur(k) = [do(k) qo(k)]
⊤ and with appropriate matri-

ces A
(0)
r , B

(0)
r , B

(1)
r , Hr, and G

(0)
r , and p

(1)
m,1(k) = ṽm,1(k).

B. LPV formulation of node equations

When the turning rate βn,m(k) in (9) is approximated by

a constant2 βn,m, which is the average over a certain time

window, one can model the flow that leaves a node n in an

LPV form as

q̃m,0(k) = βn,m ∑
µ∈In

λµ p
(1)
µ ,Nµ

(k)ρ̃µ ,Nµ (k) (31)

where p
(1)
µ ,Nµ

(k) = ṽµ ,Nµ (k).

The node equations corresponding to the virtual density

in (10) and (11), are also nonlinear in the state variables.

Therefore, we approximate (10) as

ρ̃m,Nm+1(k) =
∑µ∈On

ρ∗
µ ,1ρ̃µ ,1(k)

∑µ∈On
ρ∗

µ ,1

(32)

by introducing steady-state values ρ∗
µ ,1. Moreover, we ap-

proximate (11) as

ṽm,0(k) =
∑µ∈In λµ v∗µ ,Nµ

ρ∗
µ ,Nµ

ṽµ ,Nµ (k)

∑µ∈In λµ v∗µ ,Nµ
ρ∗

µ ,,Nµ

(33)

by introducing additional steady-state values v∗µ ,Nµ
and ρ∗

µ ,Nµ
.

These linear formulations, i.e., (31), (32), and (33) describe

a way of combining the LPV models of different links.

2The time dependent βn,m(k) can also be considered as a scheduling
variable. But, to reduce the computation time (which increases exponentially
with the number of scheduling variables) we take the constant approximation
of the βn,m(k).

C. State augmentation

The VT-macro model is a nonlinear function of the

states of the LPV formulation of the METANET model

described in (25) and (30). In general, an increased number

of scheduling variables increases the computation time ex-

ponentially. So, in order to avoid an increase in the number

of the scheduling variables of the LPV formulation of the

METANET, we first define new memory states. Then, we

define new output variables of the LPV model. Finally, we

define an objective function that can be optimized using

LMIs.

1) Temporal variables: The LPV formulation of the

METANET model cannot capture the ṽm,i−1(k − 1) and

ρ̃m,i−1(k − 1) in (12) and (13). Moreover, an additional

scheduling variable should be introduced due to (13). In order

to solve these two issues we add two new states to the LPV

model as

q̃ms,m,i(k+1) =λmṽm,i(k)ρ̃m,i(k), (34)

ṽms,m,i(k+1) =ṽm,i(k). (35)

With the newly added states, (12) and (13) become

ãm,i(k) =
ṽm,i(k)− ṽms,m,i(k)

Ts
(36)

ñm,i(k) =Lmλmρ̃m,i(k)−Tsq̃ms,m,i−1(k) (37)

where q̃ms,m,i−1(k) = q̃m,i−1(k) for i = 1, and (34) for i > 1.

Now (36) and (37) are linear with respect to the states or

external inputs of the LPV model.

2) Spatial variables: Using the newly introduced states in

(34) and (35) the spatial acceleration from one segment to

another segment of a link and the number of vehicles subject

to it given in (14) and (15) are formulated as

ãm,i,i+1(k) =
ṽm,i+1(k)− ṽms,m,i(k)

Ts
(38)

ñm,i,i+1(k) = Tsq̃ms,m,i(k). (39)

In order to recast the on-ramp spatial variables in (16)

and (17), we once more define two extra memory states

ṽms,o(k+1) = ṽo and q̃ms,o(k+1) = q̃o(k). Thus, the spatial

acceleration in (16) and the number of vehicles in (17) are

formulated as linear function of the states as

ão(k) =
ṽm,i(k)− ṽms,o(k)

Ts
(40)

ño(k) = Tsq̃ms,o(k). (41)

Therefore, the state vector of the LPV model for a segment

i of a link is3 x̃m,i = [ρ̃m,i ṽm,i q̃ms,m,i ṽms,m,i]
⊤ and the

state vector for a segment i = 1 with an on-ramp is x̃m,1 =
[ρ̃m,1 ṽm,1 q̃ms,m,1 ṽms,m,1 w̃o q̃ms,o ṽms,o]

⊤.

Accordingly, the system matrices in (25) and (30) are

changed appropriately to adopt these new states. Therefore,

the LPV model of a freeway can be formulated by combining

the states depending on the nature of the segments (i.e.,

depending on whether a segment has an on-ramp or not).

3The independent simulation step k is removed for the sake of brevity.



D. Output formulation

Since in the LPV-MPC formulation we want the objective

to be a function of the states and the output; since we need

the space-mean speed, density, queue length, acceleration,

and number of vehicles in the expression for the total time

spent and the emission; and since space-mean speed, density,

and queue length are already the state variables, the output

of the LPV model should only contain the acceleration and

the number of vehicles. Thus, we have

ỹm,i(k) =Cm,ix̃m,i(k)+Dm,iũm,i(k) (42)

where ỹm,i = [ãm,i ñm,i ãm,i,i+1 ñm,i,i+1]
⊤ and ũm,i =

[q̃ms,i−1 ṽo]
⊤ for a segment i without an on-ramp, and

ỹm,i = [ãm,1 ñm,1 ãm,1,2 ñm,1,2 ão ño]
⊤ and ũm,i = q̃ms,0 for

a segment i = 1 with an on-ramp, and with appropriately

defined matrices Cm,i and Dm,i.

IV. OPTIMIZING TOTAL TIME SPENT

One performance function that we can consider is the total

time spent of all the vehicles in a traffic network. The total

time spent (TTS) is given by [5]

JTTS = Ts

Nsim

∑
k=0

(

∑
(m,i)∈Iall

Lmλmρm,i(k)+ ∑
o∈Oall

wo(k)

)

(43)

where Nsim is the simulation time, Iall is the set of pairs of

indexes (m, i) of all links and segments in the network, and

Oall is the set of indexes of all origins.

The TTS is linear and convex in the original state variables

ρm,i(k) and wo,m(k). Since the ρm,i(k) = ρ̃m,i(k)+ ρ∗
m,i and

wo(k) = w̃o(k)+w∗
o, the TTS remains linear and convex in

the linearly transformed variables ρ̃m,i(k) and w̃o(k) of the

LPV model. Now we discuss how the minimization of the

TTS for the METANET LPV model can be transformed into

an LMI problem.

The objective of the MPC controller is to reduce the TTS

over the prediction horizon Np, i.e.

JMPC
TTS (k) =

Np−1

∑
j=0

(

∑
(m,i)∈Iall

Lmλmρm,i(k+ j)+∑
o∈Oall

wo(k+ j)

)

.

(44)

The MPC problem subject to the METANET model is a

nonlinear-nonconvex optimization problem [5]. But, by using

the approximate LPV model the minimization of the TTS can

be turned into convex optimization problem subject to linear

matrix inequalities (LMIs).

We propose a state feedback control law

u(k+ i) = Kx(k+ i), for i = 0,1,2, . . . ,Np −1 (45)

where K is the state feedback gain.

Moreover, naturally the state variables of the LPV traffic

flow model are bounded due to physical limitations of the

system. This implies that the system is stable. Then we can

find matrices P and K such that

ΦK(p(k))⊤PΦK(p(k))≺ P, ∀k ∈ Z
+,

K⊤K �
r̃2
o,max

4
P

(46)

where P = P⊤ ≻ 0, P ∈ R
n×n, Φ(p(k)) = A(p(k)) +

B(p(k))K, r̃o,max = 1+ r∗o, and A(·) and B(·) are appropriate

matrices that describe (30).

Thus, the resulting LPV-MPC problem is to determine a

state feedback gain K such that the TTS in (44) is minimized.

This can be done by formulating the state feedback control

law (45) and (46), the minimization of the objective function

JMPC
TTS , the LPV model, and the state and input constraints into

a minimization of a scalar variable subjected to LMIs (this

reformulation can be performed using the methods of [7],

[17]).

The solution of the resulting LPV-MPC problem, i.e. u(0),
u(1), . . . , u(Np − 1) obtained using the approximated LPV

model can be used as a good initial point for the original

nonlinear-nonconvex MPC problem.

V. OPTIMIZING TOTAL TIME SPENT AND VEHICULAR

EMISSIONS

Another objective function we can consider is reduction

of vehicular emission while improving the traffic flow. This

requires the inclusion of the total emission (TE) in the

objective function of the LPV-MPC problem. So, one way

to define the control objective is as follows

Jcon = ζ1
TTS

TTSnom
+ζ2

TE

TEnom
(47)

where TE is the total emissions computed using (18), ζ j for

j = 1,2 denotes the weighting factor, and TTSnom and TEnom

are respectively the nominal values of the TTS and TE.

In general, however, due to the nonlinearity of (18), Jcon

in (47) is a nonlinear and nonconvex function, implying the

advantages of the LPV modeling effort cannot be exploited.

In other words, we cannot use LMI solvers to compute the

optimal control inputs nor other convex optimization tools.

But, the VT-macro emission model for CO, HC, and CO2

emissions and fuel consumption can be approximated by a

convex function in the operating region of the model [14].

We therefore propose an approximation of the emission

plots by exp( f (v,a)), where

f (v,a) = c0 + c1v+ c2a+ c3v2 + c4a2 + c5av (48)

with ci ∈ R for i ∈ {0,1, ...5}, and

Q =

[
c3

c5
2

c5
2

c4

]

� 0

i.e., c3 ≥ 0 and c3c4−
c2

5
4
≥ 0. Thus, if Q is positive semidef-

inite, then c3v2 + c4a2 + c5av is convex, as well as f (v,a),
and thus also exp( f (v,a)) [15]. Since ρm,i(k)= ρ̃m,i(k)+ρ∗

m,i,

vm,i(k) = ṽm,i(k)+v∗m,i, and qm,i(k) = q̃m,i(k)+q∗m,i are linear

in ρ̃m,i(k), ṽm,i(k), and q̃m,i(k), the convexity of the function

f (v,a) will be retained [15].

So we approximate the VT-macro emission and fuel con-

sumption model in (18) by

J̄γ(k)≈ntemp(k)exp
(

f (vtemp(k),atemp(k))
)

+nspat(k)exp
(

f (vspat(k),aspat)(k)
)

(49)



where f (vtemp,aspat) is as defined in (48).

The function in (49) is a nonconvex function due to the

multiplication of the exp(·) part and other states (ntemp(k) and

nspat(k)). But, for a short prediction horizon Np of an LPV-

MPC control approach, one can approximate both ntemp,i(k)
and nspat,i(k) by constants n̄temp,i and n̄spat,i respectively. In

this way the function in (49) can be approximated by a

convex function Jconvex.

The actual fit of (49) could be performed using a nonlinear

constrained least squares optimization approach. Note that as

this only has to be done once (for HC, CO, CO2, and fuel

consumption), we can argue that it is worthwhile to invest

computation time in this. We could even use the original data

and fit the proposed function on it [2].

Once again, using the approximate convex objective func-

tion Jconvex, the LMI constraints, and the LPV model, one can

formulate a LPV-MPC problem as described in the previous

section.

VI. LPV-MPC

The LPV system is subject to linear inequality constraints

(input and state). Moreover, we have defined two convex

objective functions. The TTS is convex and holds for any

predictions horizon. The objective of reducing emissions

along with the TTS can be approximated by a convex

function (at least for short prediction horizons). Hence, the

MPC control problem based on the LPV formulation boils

down to a convex optimization problem, which can be solved

either using LMI solvers or other convex optimization tools.

However, since numerous approximations are introduced

in the process of LPV formulation, the control solutions may

not be optimal. Therefore, we propose to use the LPV-based

MPC to quickly and efficiently get a good initial point for

the original nonlinear-nonconvex MPC problem.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an LPV formulation of the traffic

flow model METANET. In doing so, we have analyzed and

simplified the nonlinear (metered) on-ramp flow and the

node equations of the model. Finally, we have arrived at an

LPV formulation of the model with linear constraints on the

system states and control input. Moreover, by introducing

new memory states we formulated the output of the LPV

traffic flow model in such a way that they can be used

as inputs to the emission and fuel consumption model. In

this way we kept the number of the scheduling variables

unchanged. Further, we have defined two objective functions

that describe the total time spent only and total time spent

and emissions together. Moreover, the objective functions

describing the total time spent and the emissions have been

analyzed and simplified to a convex formulation. Finally, we

have briefly discussed on how an LPV-MPC approach can

be used to quickly and efficiently provide good initial points

for the original nonlinear-nonconvex MPC problem.

In our future work, we will consider extensive case stud-

ies, extensive comparison of LPV-MPC and other control

methods (either applied directly or for providing good initial

points), and extend the approach in [17].
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