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Hierarchical Multiobjective Model Predictive Control Applied to a

Dynamic Pickup and Delivery Problem

Alfredo Núñez, Bart De Schutter, Doris Sáez, Cristián E. Cortés

Abstract— A hierarchical multiobjective model based predic-
tive control approach is presented for solving a dynamic pickup
and delivery problem. The hierarchical multilayer structure
of the system is used to decompose the optimization problem
into smaller but more tractable subproblems. In the bottom
layer, the dispatcher (re)routes the vehicles when a new request
appears, and minimizes user and operator costs. As those two
components are usually aimed at opposite goals, the problem is
formulated and solved through multiobjective model predictive
control. The dispatcher participates in the dynamic routing
decisions by expressing his/her preferences in a progressively
interactive way. An illustrative experiment of the new approach
through simulation of the process is presented to show the
potential benefits in the operator cost and in the quality of
service perceived by the users.

I. INTRODUCTION

The dynamic pickup and delivery problem (DPDP) consid-

ers a set of online requests of service for passengers traveling

from an origin (pickup) to a destination (delivery) served by

a fleet of vehicles initially located at several depots [1], [2],

[3]. The final output of such a problem is a set of routes

for the fleet, which dynamically change over time and are

required in real-time. The DPDP designed to operate dial-a-

ride systems (DARS) has been intensely studied in the last

decades [4], [5], among which the ADART system in Corpus

Christi Texas, which is a distributed system for dynamic

routing already implemented in real-life [6].

A well-defined DPDP should be based on an objective

function that includes prediction of future demands and

traffic conditions in current routing decisions, [7]. In previous

works we have proposed an analytical formulation for the

DPDP as a model based predictive control (MPC) problem

[8]. The resulting optimization problem was NP-hard, so,

the use of evolutionary algorithms was considered. However,

the global optimum solution was not reached due to the

trade-off between computation time and accuracy in those

algorithms. In this paper, we propose a new control structure

for DPDP that does not only incorporate predictions, but

also the inherent hierarchical multilayer and multiobjective

structure of the DPDP.

Regarding hierarchical model based predictive control

(HMPC), a very nice and comprehensive review can be

found in [9]. In an HMPC structure the local actions of the
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controllers are coordinated by an algorithm operating at a

higher level. The higher layers determine general character-

istics of the system and generate control variables, usually

by a static optimization procedure. In the lower layers,

control variables are determined by means of a higher rate

optimization procedure (MPC) and their effects are local and

short-term. In this paper, we propose a hierarchical scheme

with three layers for solving the DPDP.

In real implementations of DPDP the quality of service is

very important. The authors in [10] conclude that most dial-

a-ride studies are focused on the minimization of operational

costs, and that it is necessary to develop more studies on

user-policies. Therefore, we will consider quality of service

for users while minimizing operational costs. We must notice

that these two dimensions represent opposite objectives and

we will need to solve conflicts between them. The users want

to obtain good service, implying more direct trips, resulting

in lower vehicle occupancy rates and consequently, higher

operational costs. More efficient routing policies from the

operators’ standpoint will reflect higher occupation rates,

longer routes, and consequently, longer waiting and travel

time for users. Thus, to guide the decision-maker in this line,

we propose the use of multiobjective model based predictive

control. The dispatcher must express his/her preferences

(criterion) in a progressive way (interactively), seeking the

best-compromise solution from the dynamic Pareto set. Mul-

tiobjective optimization (MO) has been applied to vehicle

routing problems [11], [12]. As far as we know, all the

multiobjective applications in vehicle routing problems are

evaluated in static scenarios, one of the aims of this paper

being to contribute in the analysis of using MO in dynamic

and stochastic environments.

The outline of the paper is as follows. In Section 2, the

HMO-MPC approach is presented. In Section 3 the DPDP,

including the model and the objective functions are dis-

cussed. In Section 4, the scheme based on MPC for solving

the DPDP by [8] is reformulated under the new approach. In

Section 5 simulation results are shown and analyzed. Finally

conclusions and future work are highlighted.

II. HIERARCHICAL MULTIOBJECTIVE MODEL

PREDICTIVE CONTROL

A. Hierarchical Model Predictive Control

In hierarchical multilayer systems, the system is divided

into different functional layers, and the control structure

consists of algorithms dealing with different components of

the system, working at different temporal and spatial scales.

This structure is useful to control plants characterized by



significantly different dynamics and where the action of local

controllers is coordinated by an algorithm operating at a

higher level [9]. In some applications, at a higher level a

simpler and more abstract model is considered to predict the

long-term behavior of the system and to compute the optimal

plant operating conditions based on an economic criterion. At

the lower level, a more accurate model is used to compute the

current control actions by looking at a shorter time horizon.

Consider for example a hierarchical model based predic-

tive controller with a given number of layers. The variables

of the higher layer are denoted with superscript 1, in the

next lower level the superscript is 2 and so on. The process

modeled in layer s is given by the following non-linear

discrete-time system:

xs(ks +1) = fs(x
s(ks),u

s(ks),X
s(ks)), (1)

where xs(ks) ∈ R
ns is the state vector, us(ks) ∈ R

ms is the

input vector, X s(ks) are states and inputs from higher layers

that affect the dynamics of layer s, and ks ∈ N denotes the

time step in layer s. In the layer s, the following MPC

problem is solved:

min
Us

λs · Js(U
s,xs

ks
)

subject to

xs(ks + ℓ+1) = fs(x
s(ks + ℓ),us(ks + ℓ),X s(ks + ℓ)),

ℓ= 0,1, ...,Ns −1,
X s(ks + ℓ) = [x1(ks + ℓ), ...,xs−1(ks + ℓ),

u1(ks + ℓ), ...,us−1(ks + ℓ)], ℓ= 0,1, ...,Ns −1,
xs(ks) = xs

ks
,

xs(ks + ℓ) ∈ Xs, ℓ= 1,2, ...,Ns,
us(ks + ℓ) ∈ Us, ℓ= 0,1, ...,Ns −1,

(2)

where U s = [us(ks)
′, ...,us(ks +Ns −1)′]′ is the sequence

of future control actions in layer s, Js(U
s,xs

ks
) =

[Js
1(U

s,xs
ks
), ...,Js

ls
(U s,xs

ks
)]′ are the ls objective functions to

minimize, λs = [λ 1
s , ...,λ

ls
s ] is the weighting factor vector,

Ns is the prediction horizon, xs(ks + ℓ) is the ℓ-step-ahead

predicted state from the initial state xs
ks

, X s(ks+ℓ) is a vector

with the predicted states and the outputs of higher layers that

will affect the dynamics of layer s at step ks+ℓ. We suppose

X s(ks + ℓ) is known from the higher level MPC and is fixed

for the optimization problem to solve in layer s. The state

as well as the inputs are constrained to Xs and Us.

B. Hierarchical Multiobjective Model Predictive Control

Usually the objective functions in MPC are conflicting,

i.e., a solution that optimizes one objective may not optimize

others [13]. Multiobjective (MO) in MPC is a generalization

of MPC, where instead of minimizing a single objective func-

tion, we consider more performance indices. In Hierarchical

Multiobjective Model Predictive Control (HMO-MPC), if

the layer s modeled by (1) has conflicts, the following

multiobjective problem is solved:

min
Us

{

Js
1(U

s,xs
ks
),Js

2(U
s,xs

ks
), ...,Js

ls
(U s,xs

ks
)
}

(3)

subject to the same constraints as in (2). The variables U s

and Js
l (U

s,xs
ks
), l = 1, ..., ls, are the sequence of future control

actions and the objective functions to minimize in layer s

respectively. The solution of HMO-MPC problem is a set of

control action sequences called Pareto optimal set. Next we

define Pareto optimality. Consider a feasible control sequence

U s
P = [us

P(ks)
′, ...,us

P(ks +Ns −1)′]′. The sequence U s
P is said

to be Pareto optimal if and only if there does not exist another

feasible control action sequence U such that:

1) Js
i (U,xk)≤ Js

i (U
s
P,xk), for i = 1, ..., ls.

2) Js
j(U,xk)< Js

j(U
s
P,xk), for at least one j ∈ {1, ..., ls}.

The Pareto optimal set contains all Pareto optimal solu-

tions. The set of all objective function values corresponding

to the solutions is known as the Pareto optimal front. From

this set, just the first component us(ks) of one of those

solutions has to be applied to the system, so at every instant,

the controller (dispatcher in the context of a DPDP) has to

use a criterion in order to find the control sequence that better

suits the current objectives. In this paper, that decision is

obtained after the Pareto set is determined. Then, it is not

possible to choose a priori some weighting factor and to

solve a single-objective optimization problem. The idea is

to provide to the dispatcher a more transparent tool for the

decisions.

III. DYNAMIC PICKUP AND DELIVERY PROBLEM

A. Process description

Dial-a-ride systems (DARS) are transit services which pro-

vide a shared-ride door-to-door service with flexible routes

and schedules. The quality of service of a DARS is supposed

to be in between of public transit buses and taxis. The typical

specifications are the users pickup and delivery destinations

and desired pickup or delivery times. We will assume that

all the requests are known only after the dispatcher receives

the associated call and that all the users want to be served as

soon as possible. Thus, even we will not include explicitly

hard windows, to provide a good service we propose a

user-oriented objective function that deals with the problem

of undesired assignments to clients, and keeps the service

provided as regular (stable) as possible.

The service demand ηk comprises the information of the

request and is characterized by two positions, pickup pk and

delivery dk, the instant of the call tk, a label rk that identifies

the passenger who is calling and the number of passengers

waiting there Ωk. Also we consider the expected minimum

arrival time trk which is the best possible time to serve

the passenger, considering a straight journey from origin to

destination (like a taxi service) and a waiting time obtained

with the closest available vehicle (in terms of capacity) to

pick up that passenger.

We assume a fixed and known fleet size F over an urban

area A. The dispatcher receives calls asking for service

every instant k. Once a new request enters the system, the

assignment of the vehicle and the insertion position of the

new request into the previous sequence of that vehicle, are



control actions decided by the dispatcher (controller), based

on a dynamic objective function. Then, at any instant k, each

vehicle j is assigned to complete a sequence of tasks which

includes several points of pickup and delivery. Only one of

those vehicles will serve the last new request. The set of

sequences u(k) = S(k) = {S1(k), ...,SF(k)} correspond to the

control variable. The sequence of stops assigned to vehicle

j at instant k is given by S j(k) =
[

S0
j(k),S

1
j(k), ...,S

w j(k)
j (k)

]

,

where Si
j(k) is the information about the i-th stop and w j(k)

is the number of planned stops of vehicle j at instant k.

Two sources of stochasticity are considered: the first

regarding the unknown future demand entering the system

in real-time, and the second coming from the network traffic

conditions, in its spatial and temporal dimension represented

by a speed distribution v(t, p) at instant t in a position p.

We will assume a conceptual network, where the trajectories

are defined as the straight line that joins two consecutive

stops. Besides, a speed distribution for the urban zone during

a typical period represented by a speed model v̂(t, p) is

supposed to be known, obtained from historical data.

B. Process model

The predictive model for vehicle j is given by [8]:

χ̂ j(k+1) = Pi∗

j (k)+

tk+τ
∫

T i∗
j (k)

v̂(t, p(t))(Pi∗+1
j (k)−Pi∗

j (k))

‖Pi∗+1
j (k)−Pi∗

j (k)‖
dt,

L̂i
j(k+1) = L0

j(k)+
i

∑
m=1

(2zm
j (k)−1)Ωm

j (k),

T̂ i
j (k+1) = tk +

i

∑
m=1

κm
j (k), i = 1, .,w j(k).

where χ̂ j(k) is the expected position of vehicle j, T̂ i
j (k)

the expected departure time of vehicle j from stop i, and

L̂i
j(k) the expected load of vehicle j when leaving stop i.

Moreover, tk is the continuous instant time when request k

happens, τ is the instant between tk and the occurrence of

the future probable call, i∗ is the expected last stop visited by

the vehicle before instant tk + τ , and κ i
j(k) is an estimation

of the time interval between stop i−1 and stop i.

C. Objective functions

We design objective functions able to reflect the fact that

some users can become particularly annoyed if their service

is postponed (either pickup or delivery), by means of an

incremental weight in the objective functions that penalizes

differently very-long waiting or travel times.

The optimization variables are the current sequence S(k)
that incorporate the new request ηk, and the future se-

quences Sh = {Sh(k+ 1), ...,Sh(k+N)}, h = 1, ...,hmax, that

incorporate the prediction of future requests. The scenario

h consists of the sequential occurrence of N − 1 estimated

future request η̂h
k+1, η̂

h
k+2, ..., η̂

h
k+N−1, with a probability ph.

Thus Sk+N
k = {S(k),S1, ...,Shmax} comprises all the control

actions to be calculated. The user cost J1(k) and the operator

cost J2(k) are given by:

J1(k) =
F

∑
j=1

hmax

∑
h=1

N

∑
ℓ=1

ph · (J
U
j,h(k+ ℓ)− JU

j,h(k+ ℓ−1))

JU
j,h(k+ ℓ) =

θv

w j(k+ℓ)

∑
i=1

f v
ri

j(k+ℓ)
(1− zi

j(k+ ℓ))(T̂ i
j (k+ ℓ)− trri

j(k+ℓ))

+θe

w j(k+ℓ)

∑
i=1

f e
ri

j(k+ℓ)
zi

j(k+ ℓ)(T̂ i
j (k+ ℓ)− tri

j(k+ℓ)),

(4)

J2(k) =
F

∑
j=1

hmax

∑
h=1

N

∑
ℓ=1

ph · (J
O
j,h(k+ ℓ)− JO

j,h(k+ ℓ−1))

JO
j,h(k+ ℓ) = cT (T̂

w j(k+ℓ)
j (k+ ℓ)−T 0

j (k+ ℓ))

+cL

w j(k+ℓ)

∑
i=1

Di
j(k+ ℓ),

(5)

where N is the prediction horizon, hmax is the number of

predicted scenarios, k + ℓ is the instant at which the ℓ-th
request enters the system, measured from instant k, ph is the

probability of occurrence of the h-th scenario, JU
j,h(·) is the

cost of the users in vehicle j, and JO
j,h(·) is the operator

cost of vehicle j when the scenario h occurs. The first

component of JU
j,h(·) is related to the re-routing time and the

second component to the effective waiting time experienced

by user ri
j(·). Moreover, f v

ri
j(·)

and f e
ri

j(·)
are special weighting

functions designed for the user ri
j(·); both will start to grow

linearly if the user is not experiencing a good total travel or a

good waiting time respectively. Regarding JO
j,h(·), it includes

a first term that depends on the total operational time and

another which depends on the total traveled distance. Thus,

Di
j(·) represents the distance between stops i− 1 and i in

the sequence of vehicle j. Finally, θv, θe, cT and cL are

weights defined by the dispatcher. In the next section, we

propose to exploit the inherent hierarchical structure of this

optimization problem, splitting the problem in smaller ones

that work coordinated in different time scales.

IV. HMO-MPC FOR THE DPDP

In Fig. 1 the proposed three layers scheme of HMO-MPC

for DPDP is shown and next each layer is explained.

1) First layer, Dispatcher Management: The outputs of

this layer are the parameters of the objective functions (4)

and (5): value of waiting θe and travel θv times, value of each

minute traveled by vehicles cT , cost for kilometer traveled

cD, prediction horizon N, call-rate τ . The demand patterns

h and their probabilities are determined here by using fuzzy

clustering. Those parameters clearly change on time, each

one with a different but slow rate. In this paper we are

focusing on the operational process, so we will assume that

the information provided by this layer is given and fixed.

2) Second layer, Vehicles Characterization: The second

layer characterizes each vehicle according to its coverage

area and occupancy by providing parameters of membership

functions of a fuzzy inference system [14]. With this in-

formation, the controller determines the group of vehicles
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Dispatcher Management
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Vehicles Characterization
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Multiobjective MPC
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Fig. 1. HMO-MPC for the DPDP

with better chances to serve new requests. The information

is updated every 20 minutes and will permit to reduce the

computational effort when discarding vehicles too far away

from new requests ηk or when their number of tasks is

too high. The output of this layer are the parameters of

three membership functions (MFs) for each vehicle j, which

represent the coverage in axis x µ
j

x (·), in axis y µ
j

y (·) and

the number of tasks µ
j

N(·). The following MFs are used:

µ
j

x (η
x
k ) = exp(−

0.5(ηx
k
−P̄x

j )
2

(σx
j )

2 ), µ
j

y (η
y
k ) = exp(−

0.5(η
y
k
−P̄

y
j )

2

(σ
y
j )

2 )

µ
j

N(w j(k)) =
1

1+ e−(w j(k)−c j(t))

where ηx
k and η

y
k are the x and y coordinates of the pickup or

delivery of the new request ηk, P̄x
j and P̄

y
j are the mean values

and σ x
j and σ

y
j are the standard deviations of coordinates

x and y of the task assigned to vehicle j including the

current position of the vehicle and the last stop visited.

The variable c j(t) is the point of inflection of the sigmoidal

membership function. The Gaussian MF for the coordinates

captures the fact that some vehicles will serve requests in

specific zones with a small coverage area, and others with a

wider coverage. Regarding the sigmoidal (logit) shape of the

MF for the number of tasks, the idea is to include the fact

that when a vehicle is too saturated with future tasks, not

only a bad service would be provided to the user, but also

more computation time for solving the optimization problem

would be required. We use c j(t) = 10 for the simulation

results, so vehicles with up to 10 tasks are still reasonable.

3) Third layer, Multiobjective Optimization: The last layer

consists of two components. The first one is a pre-processing

algorithm where the optimization problem is reduced and

conflicts between users and operator costs are detected. If

there is a conflict, in the second component, we solve it by

using MO-MPC.

The pre-processing algorithm is divided in three steps.

Step 1.1. Using a fuzzy inference system, the new request

ηk is evaluated in the MFs of each trip pattern. This fuzzy

inference uses the parameters of MFs provided by the first

layer. The predicted future scenarios with a high activation

degree are chosen. These are denoted by h̄.

Step 1.2. With another fuzzy inference system, the candi-

date vehicles F̄ to serve the new and the probable requests

h̄ are determined. To show how this fuzzy inference works,

consider for example the vehicle j at instant k as shown in

Fig. 2. This fuzzy inference uses the parameters of the MFs

provided by the second layer. A new call ηk arrives, whose

pickup coordinate is (7,5) and whose delivery coordinate is

(7,6), as shown in Fig. 2(a). We check first whether ηk is in

the coverage area of vehicle j, by evaluating the MFs µ
j

x (·)
and µ

j
y (·) shown in Fig. 2(b) and Fig. 2(c) respectively. For

the pickup we get µ
j

x (7)·µ
j

y (5) = 0.45 and for the delivery

µ
j

x (7)·µ
j

y (6) = 0.53. Then we check whether the number

of stops by using the MF µ
j

N(·) shown in Fig. 2(d). At

instant k, w j(k) = 10, so µ
j

N(10) = 0.5, which means that

the vehicle is still having a reasonable number of tasks.

Finally the activation degrees of the rule for vehicle j equals

0.12. Whether vehicle j is a good candidate or not, will

depend on the conditions of the other vehicles. The first

vehicle candidate is obtained by choosing the vehicle with

the maximum activation degree, the second candidate with

the second maximum, and so on (defuzzification).

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

x (km)

y
 (

k
m

) New request
η

k

Vehicle
j

Pickup point

Delivery point

(a)

0 1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η
k

x
η

k
 (km)

xj
(η

kx
)

 coordinate x of the new call 

µ

(b)

0 1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η
k

y
 coordinate y of the new call η

k
 (km)

µ
yj
(η

ky
)

(c)

0 2 4 6 8 10 12 14 16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w
j
(k) number of stops vehicle j

µ
Nj
(w

j(k
))

(d)

Fig. 2. Fuzzy characterization of vehicle j. (a) Vehicle j sequence,
Membership Functions for (b) x-axis, (c) y-axis and (d) number of stops

Step 1.3. Two MPC optimization problems are solved. To

optimize just user cost and to optimize just operator cost:

min
Sk+N

k

J1(k) = ∑
j∈F̄

∑
h∈h̄

N

∑
ℓ=1

ph ·∆JU
j,h(k+ ℓ)

s.t. Model and constraints

(6)

min
Sk+N

k

J2(k) = ∑
j∈F̄

∑
h∈h̄

N

∑
ℓ=1

ph ·∆JO
j,h(k+ ℓ)

s.t. Model and constraints

(7)

The objective functions minimized in (6) and (7), are like

in (4) and (5) respectively, but considering just the set of



vehicles F̄ and the probable scenarios h̄, which reduces the

computational effort significantly. If the solution for both

MPC problems (6) and (7) is the same or the trade-off

between them is small, then the optimal solution which is

closer to a pre-defined dispatcher criterion is used. If the

trade-off is significant, then MO-MPC is required to find the

optimal Pareto front, as the set of vehicles has conflicts and

a better picture of the trade-off is necessary.

The MO-MPC algorithm is divided in four steps.

Step 2.1. The scenario h consists of the sequential oc-

currence of N requests ηk, η̂
h
k+1, η̂

h
k+2, ..., η̂

h
k+N−1. For each

vehicle j ∈ F̄ , for each scenario h ∈ h̄, we will solve 2N MO

problems considering the cases where vehicle j is the one

that serves none, one, or a combination of more of those

requests. For example, if N = 2, for each vehicle we solve

four MO problems considering the cases to serve none, to

serve ηk, to serve η̂h
k+1, and to serve ηk and η̂h

k+1. The MO

problem in this step is the following:

min
{S j(k),S

h
j (k+1),...,Sh

j (k+N)}

{

N

∑
ℓ=1

∆JU
j,h(k+ ℓ),

N

∑
ℓ=1

∆JO
j,h(k+ ℓ)

}

Capacity constraints and consistency are considered, so the

Pareto set contains just feasible sequences. Note that some of

those MO problems are easy to solve, but the more requests

the vehicle serves, the more possible solutions we will have.

In fact, considering the no-swapping constraint, the number

of possible solutions when the N requests are served by

vehicle j only is 0.5 ·∏N−1
i=0 (w j(k)+ i)(w j(k)+ i−1), where

w j(k) is the number of stops of vehicle j at instant k. The

MO problems in this step are the most time consuming, but

they can be solved simultaneously and in parallel because

they are not related with each other.

Step 2.2. Then for a given scenario h ∈ h̄, considering the

constraint that just one vehicle can serve each request, we

obtain the Pareto set of the following MO problem:

min
{S(k),S1,...,Shmax}

{

∑
j∈F̄

N

∑
ℓ=1

∆JU
j,h(k+ ℓ), ∑

j∈F̄

N

∑
ℓ=1

∆JO
j,h(k+ ℓ)

}

The solution of this MO problem is obtained with the

Pareto sets from Step 2.1 by combining the |F̄ |N possible

cases in a way that the current request and each future request

are served by just one vehicle.

Step 2.3. Then, using the Pareto set of all the scenarios

h ∈ h̄, we solve the following MO problem:

min
Sk+N

k

{

∑
j∈F̄

∑
h∈h̄

N

∑
ℓ=1

ph ·∆JU
j,h(k+ ℓ), ∑

j∈F̄

∑
h∈h̄

N

∑
ℓ=1

ph ·∆JO
j,h(k+ ℓ)

}

The solution of this MO problem is obtained using the

Pareto sets from Step 2.2, by multiplying each Pareto front

by the probability of occurrence of the associated scenario

ph and then combining the different cases considering all the

scenarios.

Step 2.4. The Pareto front is presented to the operator,

who will select a sequence S(k) that is Pareto optimal, based

on a criterion. For example, the operator can choose the

solution that provides the minimum user effective cost, or

other characteristics that could be estimated. For estimating

for example the effective user waiting time, we weight the

expected waiting time of each of scenario with its probability

of occurrence ph. In this step the performance of the DPDP

will depend on how good the criterion applied is.

In this kind of problems, HMO-MPC suits very well, as its

main objective is to be implemented as a reference to support

the decisions of the dispatcher, who has the flexibility of

deciding which criterion is more adequate.

V. SIMULATION RESULTS

A period of four hours representative of a labor day

(14:00-17:59) is simulated, over an urban area of approx-

imately 81 (km2). A fixed fleet of twenty vehicles is consid-

ered, with a capacity of four passengers each. We assume that

the vehicles travel in a straight line between stops and that the

transport network behaves according to a speed distribution

with mean equal to 20 (km/h). We suppose that the future

calls are unknown for the dispatcher. However, he(she) has

historical data from where the typical trip patterns can be

extracted. A speed distribution model and the trip patterns are

known, from the historical data and the fuzzy zoning method.

This fuzzy zoning permits to generate the trip patterns and

their probabilities as shown in Fig. 3.
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Fig. 3. HMO-MPC for the DPDP. Origin-destination patterns

Three hundred calls were generated over the simulation

period of four hours following the spatial and temporal

distribution observed from the historical data. A negative

exponential distribution for time intervals between calls with

rate 0.8 (call/min) was assumed. The pickup and delivery

coordinates were generated randomly within each zone. The

first 30 calls at the beginning and the last 30 calls at the

end of the experiments were deleted from the statistics to

avoid limit distortion (warm up period). One experiment was

carried out to obtain the statistics, to show how the approach

works. The experiment (emulating four hours and 300 on-

line decisions) took 7.66 (min), on average 1.69 seconds

per request, on a Intel Core2 CPU, 3.00 GHz processor.



TABLE I

SIMULATION RESULTS, USER AND OPERATOR COST

Case Effective Effective User Operator
travel time waiting time cost cost

(min) (min) (Ch.$) (Ch.$)
a) 11.18 5.82 477.49 18124.56
b) 12.88 6.51 539.91 17499.78
c) 12.68 8.57 639.62 16910.75
d) 12.70 11.39 781.07 16670.66

TABLE II

USER INDEXES

Case Waiting time Unfavorable Worst
higher than total time served

10 min (pax) (pax) user cost (Ch.$)
a) 31 20 1679.82
b) 50 32 2000.56
c) 73 51 2574.48
d) 120 72 3256.77

This computing time represents an upper bound of what is

possible to do if a more efficient algorithm like the meta-

heuristics from the multiobjective evolutionary computation

were applied.

The objective function is formulated at two steps

ahead, considering parameters θv = 16.7(Ch.$/min), θe =
50(Ch.$/min), cT = 25(Ch.$/min), cL = 350(Ch.$/km).
The users will start to get annoyed if their perceived total

travel time is bigger than 1.7 times their minimal travel time,

or if their waiting time is longer than 10(min). In the 3rd

layer, the six best vehicles to serve a new request are chosen,

ranked according the fuzzy inference system. The most likely

demand pattern was used for the predictions. The formulation

considers concepts already presented in the literature, like

the total service time and dissatisfaction [4], the operational

cost like in [8]; being the aim of this paper to present a

general framework, where different objective functions could

be included.

The criteria for selecting a Pareto solution was the value

nearest to a given user cost. We considered four cases:

500, 600, 700 and 800 (Ch.$) for cases a), b), c) and d)

respectively. Simulations for two steps ahead were conducted

to analyze and evaluate the performance of the HMO-MPC

strategies. In Table I the effective user waiting and travel

time, user and operator costs are reported. In Table II we

also show the number of passengers (pax) badly served, i.e.,

having a waiting time higher than a threshold of 10(min), as

well as a very bad level of service considering the total time

spent in the trip (in-vehicle and waiting time) and the worst

served user cost. Tables I and II clearly show the trade off

between opposite components. The resulting mean user cost

over the whole simulation fitted quite well the thresholds

defined at each case.

VI. CONCLUSIONS AND FUTURE WORK

A new approach to solve a dynamic pickup and delivery

problem was presented. The proposed hierarchical multi-

objective model predictive control scheme considers three

layers. In the first one, variables with a long-term effect in

the system are determined. In the second layer, the vehicles

are characterized by fuzzy membership functions, which are

used in the next layer to optimize the composition of the

fleet in a better way . The last layer consists of an MO-

MPC problem. Under the implemented on-line system it is

easier and more transparent for the operator to follow service

policies as weighting parameters are not tuned.

The method we use in this paper has one main drawback:

obtaining the solution set of the MO problem requires a

significant computational effort. We claim that new toolboxes

for Evolutionary Computation and other efficient algorithms

(see e.g. [15]) that have been developed in recent years, make

it possible to determine a good representative pseudo-optimal

Pareto set in a dynamic context. Future work will thus focus

on efficient optimization algorithms.
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