
Delft University of Technology
Delft Center for Systems and Control

Technical report 10-050

Model predictive control for randomly
switching max-plus-linear systems using a

scenario-based algorithm∗

T. van den Boom and B. De Schutter

If you want to cite this report, please use the following reference instead:
T. van den Boom and B. De Schutter, “Model predictive control for randomly switching
max-plus-linear systems using a scenario-based algorithm,” Proceedings of the 49th
IEEE Conference on Decision and Control, Atlanta, Georgia, pp. 2298–2303, Dec.
2010.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/10_050

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/10_050

1

Model predictive control for randomly switching max-plus-linear

systems using a scenario-based algorithm

Ton van den Boom∗ and Bart De Schutter∗

Abstract— Switching max-plus-linear (SMPL) systems are
discrete event systems that can switch between different modes
of operation. In each mode the system is described by a
max-plus-linear state equation and a max-plus-linear output
equation, with different system matrices for each mode. The
switching between from one mode to the other is a stochastic
process. In the model predictive control (MPC) formulation
stability is enforced by additional constraints. To reduce the
computational complexity we use an algorithm based on sce-
nario generation for such stochastic SMPL systems.

I. INTRODUCTION

The class of discrete event systems (DES) essentially

consists of man-made systems that contain a finite number

of resources that are shared by several users all of which

contribute to the achievement of some common goal [1]. In

general, models that describe the behavior of a discrete event

system are nonlinear in conventional algebra.

In this paper we consider switching max-plus-linear

(SMPL) systems, discrete event systems that can switch

between different modes of operation, in which the mode

switching depends on the previous state, the previous mode

and the input [17]. In each mode the system is described by a

max-plus-linear state equation and a max-plus-linear output

equation, with different system matrices for each mode.

The class of randomly switching max-plus-linear (RSMPL)

systems contains discrete event systems with synchronization

but no concurrency, in which the order of synchronization of

the event steps may vary randomly, or cannot be determined

a priori [18] (see Figure 1). Typical examples of SMPL sys-

tems are flexible manufacturing systems, telecommunication

networks, traffic signal controlled urban traffic networks. The

random switching between different max-plus linear (MPL)

modes is then due to e.g. randomly changing production

recipes, varying customer demands or traffic demands, or

failures in production unit, transmission lines or traffic links.

In [18] we have derived a stabilizing model predictive

controller for these randomly switching max-plus-linear sys-

tems. The resulting optimization problem was solved using

linear programming algorithms. The main drawback of the

algorithm is that the number of linear constraints and the

number of optimization variables was increasing fast with the

prediction horizon and the number of modes in the system.

In this paper we study ways to reduce the computational

complexity.

∗Delft Center for Systems and Control, Delft Uni-
versity of Technology, Mekelweg 2, 2628 CD Delft,
The Netherlands a.j.j.vandenboom@tudelft.nl,
b.deschutter@dcsc.tudelft.nl

RSMPL✲ ✲

Stochastic

Process

❄
u(k) y(k)

ℓ(k)

Fig. 1. Randomly switching max-plus-linear system

The paper is organized as follows. In Section II we

introduce the max-plus algebra and the concept of RSMPL

systems. We also recapitulate conditions for a stabilizing con-

troller for RSMPL systems. In Section III we give conditions

for a stabilizing controller, and we present a stabilizing model

predictive controller for RSMPL systems. In Section IV the

scenario optimization tree is discussed, and in Section V we

give a worked example.

II. MAX-PLUS ALGEBRA AND SMPL SYSTEMS

A. Max-plus algebra

In this section we give the basic definition of the max-plus

algebra [1], [4].

Define ε = −∞ and Rε = R∪ {ε}. The max-plus-algebraic

addition (⊕) and multiplication (⊗) are defined as follows:

x⊕ y = max(x, y) x⊗ y = x+ y

for any x, y ∈ Rε, and

[A⊕B]ij = aij ⊕ bij = max(aij , bij)

[A⊗ C]ij =

n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . The matrix ε is

the max-plus-algebraic zero matrix: [ε]ij = ε for all i, j.

A max-plus diagonal matrix S = diag⊕(s1, . . . , sn) has

elements Sij = ε for i 6= j and diagonal elements Sii = si
for i = 1, . . . , n. If all si are finite, the inverse of S is equal

to S⊗
−1

= diag⊕(−s1, . . . ,−sn). There holds S⊗S⊗
−1

=

S⊗
−1
⊗S = E, where E = diag⊕(0, . . . , 0) is the max-plus

identity matrix.

B. SMPL and RSMPL systems

In [17] we have introduced Switching Max-Plus-Linear

(SMPL) systems, i.e. discrete event systems that can switch

between different modes of operation. In each mode ℓ ∈

{1, . . . , L}, the system is described by a max-plus-linear

state equation and a max-plus-linear output equation:

x(k) = A(ℓ(k)) ⊗ x(k − 1)⊕B(ℓ(k)) ⊗ u(k) (1)

y(k) = C(ℓ(k)) ⊗ x(k) (2)

in which the matrices A(ℓ) ∈ R
nx×nx
ε , B(ℓ) ∈ R

nx×nu
ε ,

C(ℓ) ∈ R
ny×nx
ε are the system matrices for the ℓth mode.

The index k is called the event counter. For discrete event

systems the state x(k) typically contains the time instants at

which the internal events occur for the kth time, the input

u(k) contains the time instants at which the input events

occur for the kth time, and the output y(k) contains the time

instants at which the output events occur for the kth time1.

In [18] we have introduced random switching, i.e. for

the system (1)-(2), the mode switching variable ℓ(k) is a

stochastic process. For a system with L possible modes, we

assume the probability of a switching from mode i to a mode

j to be given by Ps(i, j) for i = 1, . . . , L, j = 1, . . . , L.

C. Stability of RSMPL systems

Just like in [16], [18], we adopt the notion of stability for

DES from [15], in which a DES is called stable if all its

buffer levels remain bounded. Let r(k) be the due date for

output event y(k). All the buffer levels in DES are bounded

if there exist finite constants k0, Myr, Myx and Mxu such

that

| yi(k)− ri(k) | ≤Myr, ∀i (3)

| yi(k)− xj(k) | ≤Myx, ∀i, j (4)

|xj(k)− um(k) | ≤Mxu, ∀j,m (5)

for all k > k0. Condition (3) means that the delay between

the actual output date y(k) and the due date r(k) remains

bounded (for y − r < ∞), and on the other hand, that the

stock time will remain bounded (for r−y <∞). Conditions

(4) and (5) mean that the throughput time (i.e. the time

between the starting date u(k) and the output date y(k))
is bounded. For a due date defined as

r(k) = ρ k + d(k), where |di(k)| ≤ dmax, ∀i (6)

where r and d are vectors and ρ is a scalar, satisfying ρ > 0,

this implies finite buffer levels.

For RSMPL systems one can compute the maximum

growth rate:

Definition 1: Consider an RSMPL system of the form (1)-

(2) and define the matrices A
(ℓ)
α with [A

(ℓ)
α]ij = [A(ℓ)]ij−α.

The maximum growth rate λ of the RSMPL system is the

smallest α for which there exists a max-plus diagonal matrix

S = diag⊕(s1, . . . , sn) with finite diagonal elements si, such

that

[S ⊗A(ℓ)
α ⊗ S⊗

−1
]ij ≤ 0, ∀ i, j, ℓ (7)

1More specifically, for a manufacturing system, x(k) contains the time
instants at which the processing units start working for the kth time, u(k)
the time instants at which the kth batch of raw material is fed to the system,
and y(k) the time instants at which the kth batch of finished product leaves
the system.

The maximum growth rate λ can be easily computed by

solving a linear programming problem.

The set LN = { [ℓ1 · · · ℓN]T | ℓm ∈ {1, . . . , L}, m =
1, . . . , N} is the set of all possible consecutive mode switch-

ing vectors.

Definition 2: An RSMPL system is controllable if there

exists a finite positive integer N such that for all ℓ̃ ∈ LN

the matrices

ΓN
ρ (ℓ̃)=

[

B(ℓN) A
(ℓN)
ρ ⊗B(ℓN−1) A

(ℓN)
ρ ⊗A

(ℓN−1)
ρ ⊗B(ℓN−2)

. . . A
(ℓN)
ρ ⊗· · ·⊗A

(ℓ2)
ρ ⊗B(ℓ1)

]

are row-finite, i.e. in each row there is at least one entry

larger then ε.

Theorem 3: [18] Consider a switching MPL system with

random mode switching and due-date signal (6), and a max-

imum grow rate λ. Define the matrices A
(ℓ)
ρ with [A

(ℓ)
ρ]ij =

[A(ℓ)]ij − ρ. Further assume C(ℓ) to be row-finite. Now if

1) ρ < λ (8)

2) the system is controllable,

then any input signal

u(k) = ρ k + µ(k), (9)

where µmin ≤ µi(k) ≤ µmax, ∀i, and µmin and µmax are

finite, will stabilize the SMPL system.

III. A STABILIZING MODEL PREDICTIVE

CONTROLLER

Model predictive control (MPC) [3], [13] is a model-based

predictive control approach that has its origins in the process

industry and that has mainly been developed for linear or

nonlinear time-driven systems. Its main ingredients are: a

prediction model, a performance criterion to be optimized

over a given horizon, constraints on inputs and outputs, and

a receding horizon approach. In [5], [18] we have extended

this approach to MPL systems and randomly switching MPL

systems and shown that the resulting optimization problem

can be solved using linear programming algorithms.

In MPC we use predictions of future signals based on

the RSMPL model. The cost criterion reflects the input and

output cost functions (Jin and Jout, respectively) in the

event period [k, k +Np − 1]:

J(k) =IE







Np−1
∑

j=0

ny
∑

i=1

max(yi(k + j)− ri(k + j), 0)







− β

Np−1
∑

j=0

nu
∑

i=1

ui(k + j) (10)

where β ≥ 0 is a tuning parameter, ŷ(k+j|k) denotes the

prediction of y(k+j) at event step k+j, based on knowledge

at event step k, u(k+j) denotes the future inputs, ℓ(k+j)
denotes the future modes, and Np is the prediction horizon

(so it determines how many cycles we look ahead in our

control law design). More about the choice of cost function

J can be found in [17].

Define the prediction vectors

ỹ(k)=











ŷ(k|k)
...

ŷ(k+Np−2|k)
ŷ(k+Np−1|k)











, ũ(k)=











u(k)
...

u(k+Np−2)
u(k+Np−1)











,

Now the performance index can be written as

J(k) =IE







nyNp
∑

i=1

max(ỹi(k)− r̃i(k), 0)







− β

nuNp
∑

i=1

[ũ(k)]i . (11)

Define the mode sequence vector

ℓ̃(k)=











ℓ(k)
...

ℓ(k+Np−2)
ℓ(k+Np−1)











,

and the matrices

C̃(ℓ̃(k))=







C̃1(ℓ̃(k))
...

C̃Np
(ℓ̃(k))







D̃(ℓ̃(k))=







D̃11(ℓ̃(k)) · · · D̃1Np
(ℓ̃(k))

...
. . .

...

D̃Np1(ℓ̃(k)) · · · D̃NpNp
(ℓ̃(k))







where

C̃m(ℓ̃(k)) = C(ℓ(k+m−1)) ⊗A(ℓ(k+m−1)) ⊗ . . .⊗A(ℓ(k))

and

D̃mn(ℓ̃(k))=



























C(ℓ(k+m−1)) ⊗A(ℓ(k+m−1))

⊗A(ℓ(k+n)) ⊗B(ℓ(k+n−1)) if m>n

C(ℓ(k+m−1)) ⊗B(ℓ(k+m−1)) if m=n

ε if m<n

then the prediction model for (1)–(2) is given by:

ỹ(k) = C̃(ℓ̃(k))⊗ x(k − 1)⊕ D̃(ℓ̃(k))⊗ ũ(k). (12)

The probability for the switching sequence ℓ̃(k) ∈ LNp
,

given the present mode ℓ(k), is given by

P (ℓ̃(k)|ℓ(k)) = Ps(ℓ(k), ℓ(k+1))·

Ps(ℓ(k+1), ℓ(k+2)) · · ·Ps(ℓ(k+Np−2), ℓ(k+Np−1))

where Ps denotes the switching probability (see Section II-

B).

The MPC problem for RSMPL systems with due-date

signal (6) can be defined at event step k as minimizing (11)

subject to the constraints

u(k + j)− u(k + j − 1) ≥ 0, j=0, . . . , Np−1 (13)

µmin ≤ ui(k)− ρ k ≤ µmax, i = 1, . . . , nu, (14)

where (13) guarantees a non-decreasing input sequence, and

(14) guarantees stability (cf. Theorem 3).

Theorem 4: [18] Assume that LNp
can be rewritten as

LNp
= {ℓ̃1, ℓ̃2, . . . , ℓ̃M} for M = LNp−1. The MPC problem

of minimizing (11) subject to (13)-(14) can be recast as a

linear programming problem:

min
{ũ(k),ti,m}

nyNp
∑

i=1

M
∑

m=1

ti,mP (ℓ̃m|ℓ(k))− β

nuNp
∑

i=1

ũi(k) (15)

subject to

ti,m ≥ [C̃(ℓ̃m)]i,l + xl(k − 1)− r̃i(k) , ∀i,m, l (16)

ti,m ≥ [D̃(ℓ̃m)]i,l + ũl(k)− r̃i(k) , ∀i,m, l (17)

ti,m ≥ 0 , ∀i,m (18)

ui(k + j)− ui(k + j − 1) ≥ 0, ∀i, j (19)

µmin ≤ ui(k + j)− ρ k ≤ µmax, ∀i, j (20)

MPC uses a receding horizon strategy. So after computation

of the optimal control sequence ũ∗(k), only the first control

sample u(k) = u∗(k) will be implemented, subsequently the

horizon is shifted and the model and the initial state estimate

can be updated if new measurements are available, then the

new MPC problem is solved, etc.

So the optimization in the MPC algorithm boils down to a

linear programming problem, which is polynomially solvable

[11] and for which efficient algorithms are available.

IV. SMPL-MPC USING SWITCHING SCENARIOS

In equation (15) in Theorem 4 we see that the performance

index is built up from M = LNp−1 terms. This number

M can become very large if there are many modes and

the prediction horizon is large. In this section we derive a

scenario-based algorithm (inspired by the work of Bernardini

and Bemporad [2]), that still gives a good approximation of

the performance index, but is computationally less complex.

Instead of computing all possible realizations of ℓ̃(k) we

only consider the most probable ones. We will now describe

an algorithm to create the nmax (≪ LNp−1) most probable

realizations of ℓ̃(k). Note that in the approach of Bernardini

and Bemporad [2] the length of the realizations is not fixed

but variable since they are using standard algorithms for

determining the nmax shortest paths in a graph2 originating

from a given node [7]; in principle, these algorithms do not

return paths with the same, fixed number of edges. However,

in the context of MPC it is natural to look for realization

or paths with the same fixed number of modes or edges,

viz. Np−1. To the authors’ best knowledge there are no

algorithms described in the literature that return the nmax

shortest path with a fixed number of edges. Therefore, we

propose a dedicated algorithm based on a breadth-first search

in combination with an approach to cut away parts of the

search tree.

To this aim we consider the search tree T with Np − 1
levels and a root node n0 that corresponds to the known

2This graph is the probability graph corresponding to the transition
probability matrix Ps defined in Section II-B.

mode ℓ(k). The first level of T consists of L child nodes

(corresponding to modes 1, . . . , L), which are connected

to the root node by an edge with weight Ps(ℓ(k), j) for

j = 1, . . . , L. The next level of the search tree consists of L2

nodes (L child nodes for each node in the preceding level)

where the parent node corresponding to mode i is connected

to the child node corresponding to mode j by an edge with

weight Ps(i, j). In this way we can define the search tree T
with Np−1 levels and LNp−1 leaf nodes. Each leaf node

nleaf corresponds to one particular realization of ℓ̃(k) ∈
LNp

, which will be denoted in the sequel as ℓ̃real(nleaf).
In our approach, we will not construct T explicitly, but

use a branch-and-bound algorithm to extract the nmax most

probable realizations. Note that if we define3 the weight

of a path n0 → n1 → . . . → nNp−1 in the tree as the

product of the weights of the edges in the path then the

weight of the path expresses the probability of the realization

ℓ̃(k) = ℓ̃real(nNp−1) corresponding to node nNp−1, denoted

by P (nNp−1) := P (ℓ̃(k)|ℓ(k)). In a similar way we can

define the probability P (n) for each node n in the tree, where

the probability P (n0) of the root node equals 1 by definition.

We now propose the following main algorithm consisting

of two main steps:

• Step 1: Select nmax paths of length Np−1 in the search

tree T using a random selection or a greedy approach.

This results in a candidate set of realizations Lred
Np

=

{ℓ̄1, ℓ̄2, . . . , ℓ̄nmax}. Define

πred = min
ℓ̄∈Lred

Np

P (ℓ̄|ℓ(k)) . (21)

• Step 2: Apply a breadth-first search [12] in T , cutting4

a subtree originating in a node n if P (n) ≤ πred, and

updating Lred
Np

whenever a leaf node nleaf is encountered

such that P (nleaf) > πred; in the latter case, the node

ℓ̄ in Lred
Np

with the lowest probability is removed and

replaced by ℓ̃real(nleaf) and πred is updated accordingly

(cf. (21)).

Below we give a more detailed description for the algorithms

of Step 1 (in case greedy search is selected) and of Step 2. It

is important to note that in the algorithms we also keep track

of the probability and the level of the node. In that way we do

not have to construct the search tree explicitly. So whenever

we select a node in either algorithm we immediately compute

its probability and level, and store them along with the node;

so the probability of the nodes considered in the algorithms

is always assumed to be known as well as whether or not

they are leaf nodes (these are characterized by a level equal

to Np−1). In algorithm 1 the cardinality of the set Lred
Np

is

denoted by |Lred
Np
|.

Algorithm 1: Greedy search

3Usually the weight of a path is defined as the sum of edge weights,
but by considering logarithms our definition can be recast into the standard
definition.

4The idea behind this is that any leaf node of this subtree cannot have
a probability that is higher than that of the realizations that are already in
Lred

Np
; so there is no need to consider and explore the subtree any further.

Lred
Np
← ∅

N ← {n0}
while |Lred

Np
| < nmax

nc ← argmaxn∈N P (n)
substitute nc in N by its child nodes

for each n ∈ N
if n is a leaf node

Lred
Np
← Lred

Np
∪ {ℓ̃real(n)}

N ← N \ {n}
if |Lred

Np
| = nmax

exit from while loop

end if

end if

end for

end while

Algorithm 2: Branch-and-bound breadth-first search

d← 0
N ← {n0}
while d < Np−1 and N 6= ∅

substitute each node n ∈ N by its child

nodes

for each n ∈ N
if n is a leaf node and P (n) > πred

replace the node ℓ̄ in Lred
Np

with the

lowest probability by ℓ̃real(n) and

update πred accordingly

end if

if P (n) ≤ πred

N ← N \ {n}
end if

end for

d← d+ 1
end while

The main algorithm presented above results in a set Lred
Np

containing the nmax most probable paths. If necessary, e.g.,

if the running time of the breadth-first search becomes too

long, we could terminate the second algorithm prematurely

or even skip Step 2 of the main algorithm altogether, and

continue the MPC algorithm using the set Lred
Np

obtained thus

far. In the MPC step we will now use optimization over

the reduced set Lred
Np

of realizations instead of optimization

over the full set LNp
. Assume that the reduced set Lred

Np

can be rewritten as Lred
Np

= {ℓ̄1, ℓ̄2, . . . , ℓ̄nmax}. The linear

programming problem with the reduced set is now given by

min
{ũ(k),ti,m}

nyNp
∑

i=1

nmax
∑

m=1

ti,mP (ℓ̄m|ℓ(k))− β

nuNp
∑

i=1

ũi(k) (22)

subject to

ti,m ≥ [C̃(ℓ̄m)]i,l + xl(k − 1)− r̃i(k) , ∀i,m, l (23)

ti,m ≥ [D̃(ℓ̄m)]i,l + ũl(k)− r̃i(k) , ∀i,m, l (24)

ti,m ≥ 0 , ∀i,m (25)

ui(k + j)− ui(k + j − 1) ≥ 0, ∀i, j (26)

µmin ≤ ui(k + j)− ρ k ≤ µmax, ∀i, j (27)

We will now discuss the complexity reduction due to

the scenario algorithm. Consider the linear programming

problem of Theorem 4 for a system with nx states, nu

inputs, ny outputs, L modes, and a prediction horizon Np.

The number of decision variables is equal to

the number of variables t : Np ny M
the number of variables ũ : Np nu

total number : Np (M ny + nu)

and the number of constraints is given by:

constraint (16) : Np ny M nx

constraint (17) : Np ny M nu Np

constraint (18) : Np ny M
constraint (19) : Np nu

constraint (19) : Np nu

total number : Np ny M (nx+nuNp+1)+2Np nu

Note that usually M ny ≫ nu and so we have about

Np ny M (nx+nuNp+1) constraints and Np M ny decision

variables. With M = LNp−1 before reduction and M = nmax

after reduction, the reduction in constraints and decision

variables is linear with nmax/L
Np−1. Using the scenario-

based approach the complexity will be drastically reduced

and can still be very accurate if the limited set of switching

sequences have a cumulative probability that is sufficiently

close to 1.

V. EXAMPLE

Consider the production system of Figure 2. This system

consists of three machines M1, M2, and M3. Three products

(A,B,C) can be made with this system, each with its own

recipe, meaning that the order in the production sequence is

different for every product.

M1

M2

M3

d1 = 2

d2 = 4

d3 = 5

✓
✓
✓
✓✓✼

✲

❙
❙
❙
❙❙ ✲

✲

❅
❅
❅❘
❅

❅
❅■ �

�
�✠
�

�
�✒

u(k) y(k)

A,C

B

A

B

B,C

C

A

C

A,B

Fig. 2. A production system.

For product A the production order is M1-M2-M3, which

means that the raw material is fed to machine M1 where it is

processed. The intermediate product is sent to machine M2

for further processing, and finally the product is finished in

machine M3. Similarly, for product B the processing order

is M2-M1-M3, and for product C the processing order is

M1-M3-M2. We assume that the type of the kth product

(A, B, or C) becomes available just before the start of the

production, so that we know ℓ(k) when computing u(k).

Each machine starts working as soon as possible on each

batch, i.e., as soon as the raw material or the required

intermediate products are available, and as soon as the

machine is idle (i.e., the previous batch has been finished

and has left the machine). We define u(k) as the time instant

at which the system is fed for the kth time, xi(k) as the time

instant at which machine i starts for the kth time, and y(k)
as time instant at which the kth product leaves the system.

We assume that all the internal buffers are large enough, and

no overflow will occur.

We assume the transportation times between the machines

to be negligible, and the processing time of the machines

M1, M2 and M3 are given by d1 = 2, d2 = 4 and d3 = 5,

respectively. The system equations for x1 and x2 for recipe

A are given by

x1(k) = max(x1(k − 1) + d1, u(k)) ,

x2(k) = max(x1(k) + d1, x2(k − 1) + d2)

= max(x1(k − 1) + 2d1, x2(k − 1) + d2, u(k) + d1) ,

x3(k) = max(x2(k) + d2, x3(k − 1) + d3)

= max(x1(k − 1) + 2d1 + d2, x2(k − 1) + 2d2,

x3(k − 1) + d3, u(k) + d1 + d2) ,

y(k) = x3(k) + d3 ,

leading to the systems matrices for recipe A:

A(1) =





d1 ε ε
2d1 d2 ε

2d1 + d2 2d2 d3



 , B(1) =





0
d1

d1 + d2



 ,

C(1) =
[

ε ε d3
]

.

Similarly we derive for recipe B:

A(2) =





d1 2d2 ε
ε d2 ε

2d1 d1 + 2d2 d3



 , B(2) =





d2
0

d1 + d2



 ,

C(2) =
[

ε ε d3
]

,

and for recipe C:

A(3) =





d1 ε ε
2d1 + d3 d2 2d3

2d1 ε d3



 , B(3) =





0
d1 + d3

d1



 ,

C(3) =
[

ε d2 ε
]

.

The switching probability from one recipe to the next one is

assumed to be given by:

P (1, 1) = 0.7 , P (1, 2) = 0.15 , P (1, 3) = 0.15 ,
P (2, 1) = 0.15 , P (2, 2) = 0.7 , P (2, 3) = 0.15 ,
P (3, 1) = 0.15 , P (3, 2) = 0.15 , P (3, 3) = 0.7 ,

which means that if we have a specific recipe in cycle k, then

the probability of having the same recipe for cycle k + 1 is

70%, and the probability of a switching to any other recipe

is 15%. Note that this system is indeed an RSMPL system.

The maximum growth rate of the system is equal to λ =
10. We therefore choose a reference signal given by r(k) =

ρ ·k , where ρ = 11 > λ. The initial state is equal to x(0) =
[

35 2.6 6.5
]T

, and J is given by (10) for Np = 8, and

β = 10−4.

0 5 10 15
−10

0

10

20

30

40

50

0 5 10 15

1

2

3

nmax = 50

nmax = 10

nmax = LNp

k −→

k −→

y
(k
)−

r
(k
)

−
→

ℓ(
k
)

−
→

Fig. 3. (a) Tracking error y(k)−r(k) and (b) switching sequence

We do the experiment for three different values of M :

• nmax = LNp = 6561: This means that we do not use

the scenario-based algorithm, and use the complete set

of possible switching sequences.

• nmax = 50: We consider only the 50 most probable

switching sequences. The cumulative probability of all

selected switching sequences is 83%.

• nmax = 10: We consider only the 10 most probable

switching sequences. The cumulative probability of all

selected switching sequences is 49%.

Figure 3 shows the result for the closed-loop simulation for

the three different values of nmax and the actual switching

sequence is given in Figure 3-b. Figure 3-a gives the tracking

error between the reference signal and the output signal y(k)
for three different cases. For nmax = LNp = 6561 we have

the dotted line (which coincides with the solid line). For the

reduced case with nmax = 50 we observe that the output is

still the same as for Nmax = 6561. If we further reduce the

number of sequences to nmax = 10, a small approximation

error appears. The maximum approximation error is 1. For

all three responses it can be observed that y(k)−r(k) is

initially larger than zero, which is due to the initial state.

The error decreases very rapidly and for k ≥ 10 the error is

always equal to zero, which means that the product is always

delivered in time.

VI. DISCUSSION

In this paper we have considered the control of randomly

switching max-plus-linear systems, a subclass of the discrete

event systems, in which we can switch between different

modes of operation. In each mode the system is described

by max-plus-linear equations with different system matrices

for each mode. The moments of switching are determined

by a stochastic variable. The stabilizing model predictive

control problem can be solved using linear programming

algorithms. The computational complexity has been reduced

by solving the problem using a scenario-based optimization

tree, in which only the most relevant disturbance patterns are

taken into account. The proposed approach is probably not

so effective when a uniform switching probability is given.

In future research we will try to find appropriate tuning

rules for nmax and to derive an estimation of the approxima-

tion error. Further we will study ‘ordinal optimization’ [8],

[9]. Instead of computing the exact objective function, this

method concentrates on finding the most promising control

decisions.

Acknowledgments

Research partially funded by the Dutch Technology Foun-

dation STW project “Model-predictive railway traffic man-

agement” (11025), and by the European 7th Framework Net-

work of Excellence “Highly-complex and networked systems

(HYCON2)”.

REFERENCES

[1] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Synchronization

and Linearity. John Wiley & Sons, New York, 1992. Text can be
downloaded from
http://www-rocq.inria.fr/metalau/cohen/SED/book-online.html.

[2] D. Bernardini and A. Bemporad. Scenario-based model predictive
control of stochastic constrained linear systems. In Proceedings of the

48th IEEE Conference on Decision and Control, pages 6333–6338,
Shanghai, China, December 2009.

[3] E.F. Camacho and C. Bordons. Model Predictive Control in the

Process Industry, Advances in Industrial Control. Springer, London,
1995.

[4] R.A. Cuninghame-Green. Minimax Algebra, volume 166 of Lecture

Notes in Economics and Mathematical Systems. Springer-Verlag,
Berlin, 1979.

[5] B. De Schutter and T. van den Boom. Model predictive control for
max-plus-linear discrete event systems. Automatica, 37(7):1049–1056,
July 2001.

[6] J. Dupačova, G. Consigli, and S. Wallace. Scenarios for multistage
stochastic programs. Annals of Operations Research, 100(1):25–53,
2004.

[7] D. Eppstein. Finding the k shortest paths. SIAM Journal on

Computing, 28(2):652–673, 1998.
[8] Y.C. Ho, C.C. Cassandras, C.-H. Chen, and L. Dai. Ordinal optimiza-

tion and Simulation. Journal of the Operational Research Society,
51(4):490–500, 2000.

[9] Y.C. Ho, R.S. Sreenivas, and P. Vakili. Ordinal optimization of DEDS.
Discrete Event Dynamic Systems, 2:61–88, 1992.

[10] K. Hoyland and S. Wallace. Generating scenario trees for multistage
decision problems. Management Science, 47(2):295–307, 2001.

[11] L.G. Khachiyan. A polynomial algorithm in linear programming.
Soviet Mathematics Doklady, 20(1):191–194, January–February 1979.

[12] D.E. Knuth. The Art of Computer Programming — Volume 1:

Fundamental Algorithms. Addison-Wesley, Boston, Massachusetts,
3rd edition, 1997.

[13] J.M. Maciejowski. Predictive Control with Constraints. Prentice Hall,
Pearson Education Limited, Harlow, UK, 2002.

[14] D. Muñoz de la Peña, A. Bemporad, and T. Alamo. Stochastic
programming applied to model predictive control. In Proceedings of

the 44th IEEE Conference on Decision and Control, pages 1361–1366,
Sevilla, Spain, December 2005.

[15] K.M. Passino and K.L. Burgess. Stability Analysis of Discrete Event

Systems. John Wiley & Sons, Inc., New York, USA, 1998.
[16] T.J.J. van den Boom and B. De Schutter. Properties of MPC for max-

plus-linear systems. European Journal of Control, 8(5):53–62, 2002.
[17] T.J.J. van den Boom and B. De Schutter. Modelling and control

of discrete event systems using switching max-plus-linear systems.
Control Engineering Practice, 14(10):1199–1211, October 2006.

[18] T.J.J. van den Boom and B. De Schutter. Stabilizing controllers
for randomly switching max-plus-linear discrete event systems. In
Proceedings of the European Control Conference 2007, pages 4952–
4959, Kos, Greece, July 2007.

