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Abstract.

A multiobjective model-based predictive control approach is presented for solving a dial-a-ride prob-

lem. The dynamic objective function considers two dimensions: user and operator costs. As those

two components are usually aimed at opposite goals, the problem is formulated and solved through

multiobjective model predictive control.

When a new call asking for service is received, the method first solves a multiobjective optimiza-

tion problem, providing the Pareto optimal set. Note that from this set just one solution has to be

applied to the system. Then, the dispatcher participates in the dynamic routing decisions by express-

ing his/her preferences in a progressively interactive way, seeking the best trade-off solution at each

instant among the Pareto optimal set. The idea is to provide to the dispatcher a more transparent tool

for the decisions. Several criteria, emulating different dispatchers, are proposed in order to system-

atize different ways to use the information provided by the dynamic optimal Pareto front.

An illustrative experiment of the new approach through simulation of the process is presented to

show the potential benefits in the operator cost and in the quality of service perceived by the users.
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1 Introduction

The dynamic pickup and delivery problem (DPDP) considers a set of online requests of service for

passengers traveling from an origin (pickup) to a destination (delivery) served by a fleet of vehicles

initially located at several depots (Desrosiers et al., 1986; Savelsbergh and Sol, 1995). The final output

of such a problem is a set of routes for the fleet, that dynamically change over time and are required

in real-time. Progress in communication and information technologies has allowed researchers to for-

mulate such dynamic problems and to develop efficient algorithms of high computational complexity

to solve them. The dynamic pickup and delivery problem (DPDP) designed to operate dial-a-ride sys-

tems has been intensely studied in the last decades. A recent and complete review of dynamic pickup

and delivery problems can be found in Berbeglia et al. (2009), where general issues as well as solution

strategies are described. They conclude that is necessary to develop more studies on policy analysis

associated with dynamic many-to-many pickup and delivery problems.

A well-defined DPDP should be based on an objective function that includes prediction of future

demands and traffic conditions in current routing decisions. In some previous works (Sáez et al., 2008;

Cortés et al., 2008, 2009) we have proposed an analytical formulation for the DPDP as a model-based

predictive control problem using state space models. The proposed global optimization problem was

large and NP-hard, so, the use of evolutionary algorithms was considered (GA, PSO, and Fuzzy

Clustering). However, in those works the trade-off between users’ level of service and the associated

extra operational costs was completely unknown for the dispatcher. Moreover, some issues regarding

users’ level of service like postponed users (experiencing very long travel or waiting times) were not

considered.

In real life implementations of DPDP the quality of service is very important. In Paquette et al.

(2009), the authors conclude that most dial-a-ride studies are focused on the minimization of opera-

tional costs, and that it is necessary to develop more studies on user policies. We must notice that these

two dimensions represent opposite objectives. On the one hand, the users want to obtain good ser-

vice, implying more direct trips, resulting in lower vehicle occupancy rates and consequently, higher

operational costs to satisfy the same demand, for a fixed fleet. More efficient routing policies from

the operator’s standpoint will reflect higher occupation rates, longer routes, and consequently, longer

waiting and travel time for users. Thus, the question is how to properly balance both components in

the objective function to make proper planning and fleet dispatching decisions. To guide the decision

maker in this context, we propose the use of a multiobjective model-based predictive control approach

for solving the dial-a-ride problem. The dispatcher must express his/her preferences (criterion) in a

progressive way (interactively), seeking the best-compromise solution from the dynamic Pareto set.

The performance of the system will be related with the criterion used. Multiobjective optimization has

been applied to a large number of static vehicle routing problems. For a comprehensive review of mul-

tiobjective vehicle routing problems the interested reader is referred to Jozefowiez et al. (2008). As

far as we know, all the multiobjective applications in vehicle routing problems are evaluated in static

scenarios, one of the aims of this paper being to contribute in the analysis of using multiobjective in

dynamic and stochastic environments.

The methods for multiobjective optimization can be classified into groups. The most common are

the methods based on (a priori) transformation into scalar objective. Those methods are too rigid in the

sense that changes in the preference of the decision-maker cannot easily be considered. Among those

methods we can highlight formulations based on prioritizations (Kerrigan et al., 2000; Kerrigan and

Maciejowski, 2003; Núñez et al., 2009); based on a goal attainment method (Zambrano and Camacho,

2002); and the most typical used in the literature of model predictive control is the weighted-sum

strategy. Recently, Bemporad and Muñoz (2009) provide stability conditions for selecting dynamic
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Pareto optimal solutions, using a weighted-sum based method. The other methods are based on the

generation and selection of Pareto optimal points. The main drawback in those methods is the fact

that to obtain the solution set from the multiobjective problem requires a big computational effort.

We claim that new toolboxes for Evolutionary Computation and other efficient algorithms have been

developed in recent years, so it is possible to determine a good representative pseudo-optimal Pareto

set in a dynamic context. The method used in this paper belongs to this second family of solutions.

We will be “users” of an ad-hoc multiobjective optimization algorithm, the main idea being to show

the details of a suitable tool for dispatchers that allows making decisions in a more transparent way.

The use of MO allows the decision-maker obtaining solutions that are not explored with the typical

mono-objective model predictive control (MPC) scheme. This extra information is a crucial support

for the decision-maker who is finally looking for reasonable options of service policies not only for

users but also for operators.

In the next section the multiobjective model predictive control approach is presented. Next, the

dial-a-ride problem, including the model, the objective functions and MO-HPC methods are discussed.

Then, simulation results are shown and analyzed. Finally conclusions and future work are highlighted.

2 Multiobjective model-based predictive control (MO-MPC)

2.1 Multiobjective model predictive control

Model predictive control (MPC) involves a family of controllers whose main ingredients are: 1) the

use of a predictive model over a prediction horizon, 2) computation of a sequence of future control

actions through the optimization of an objective function, considering operation constraints and de-

sired behavior of the system, 3) the use of a rolling horizon strategy, i.e., the optimization process is

repeated at each sampling instant, and the first action in the obtained control sequence is applied (Ca-

macho and Bordons, 1999). Multiobjective in MPC (MO-MPC) is a generalization of MPC, where

instead of minimizing a single-objective function, we consider more performance indices (Bemporad

and Muñoz, 2009). Consider for example the process modeled by the following non-linear discrete-

time system:

x(k+1) = f (x(k) ,u(k)) , (1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the input vector, and k ∈ N denotes the time step.

In MO-MPC, if the process modeled by (1) has conflicts, i.e., a solution that optimizes one objective

may not optimize others, the following multiobjective problem is solved:

min
U

J (U,xk)

subject to

x(k+ ℓ+1) = f (x(k+ ℓ) ,u(k+ ℓ)) , ℓ= 0,1, . . . ,N −1

x(k) = xk, (2)

x(k+ ℓ) ∈ X, ℓ= 1,2, . . . ,N

u(k+ ℓ) ∈ U, ℓ= 0,1, . . . ,N −1,

where U =
[
uT (k) , . . . ,uT (k+N −1)

]T
is the sequence of future control actions,

J (U,xk) = [J1 (U,xk) , . . . ,Jl (U,xk)]
T is a vector-valued function with the l objectives to minimize,

N is the prediction horizon, x(k+ ℓ) is the ℓ-step-ahead predicted state from the initial state xk. The
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state as well as the inputs are constrained to X and U. The solution of MO-MPC problem is a set of

control action sequences called the Pareto optimal set.

Next we define Pareto optimality. Consider a feasible control sequence

UP =
[
uT

P (k) , . . . ,u
T
P (k+N −1)

]T
. The sequence UP is said to be Pareto optimal if and only if

there does not exist another feasible control action sequence U such that:

1. Ji (U,xk)6 Ji

(
UP,xk

)
, for i = 1, . . . , l.

2. J j (U,xk)< J j

(
UP,xk

)
, for at least one j ∈ {1, . . . , l}.

The Pareto optimal set PS contains all Pareto optimal solutions. The set of all objective func-

tion values corresponding to the Pareto optimal solutions is known as the Pareto optimal front PF =
{

[J1 (U) , . . . ,Jl (U)]T : U ∈ PS

}

.

Among the algorithms to solve this kind of problem, we can mention conventional methods like

the ones based on decomposition, weighting, etc (Haimes et al., 1990). Also, nowadays, there is an

important interest in evolutionary multiobjective optimization algorithms, and many researchers are

working on more efficient algorithms (for example Durillo et al., 2010, just to mention one very recent

work). In this paper, we use an ad-hoc branch-and-bound based algorithm for the simulation results

to measure the benefits of the approach (independently of the algorithm used).

From the set of the optimal control solutions, just the first component u(k) of one of those solutions

has to be applied to the system, so at every instant, the controller (dispatcher in the context of a dial-

a-ride system) has to use a criterion in order to find the control sequence that better suits the current

objectives. In this paper, that decision is obtained after the Pareto set is determined. Then, it is not

possible to choose a priori some weighting factor and to solve a single-objective optimization problem.

The idea is to provide to the dispatcher a more transparent tool for the decisions.

In the context of solving a dial-a-ride problem the MO-MPC is dynamic, meaning that real-time

decisions related to a service policy are made as the system progresses; for example, the dispatcher

could minimize the operational costs J2 keeping a minimum acceptable level of service for users

(through J1) when deciding a vehicle-user assignment. Nevertheless, this tool could be implemented

as a reference to support the dispatcher decision, which offers the flexibility of deciding which crite-

rion is more adequate. In this kind of problems, MO-MPC suits very well, as it helps the dispatcher

to choose a solution to be applied, considering the trade-off between Pareto optimal solutions. Two

criteria that could be used in this context are explained next.

2.2 Dispatcher criteria

Once the MO-MPC problem (2) is solved, there are many ways to choose one solution from the Pareto

set. In this section, we will explain two criteria that could be used, and their advantages.

2.2.1 Criterion based on weighted-sum

The weighted-sum is the method most used for multiobjective optimization (Haimes et al., 1990).

The idea is to transform into a scalar objective the multiobjective optimization. There are three main

problems. First, it requires the choice of the appropriate weighting coefficients (a-priori). Second, not

all Pareto optimal solutions are accessible by appropriate selection of weights. Finally, when there are

multiple solutions most of the optimization algorithm will converge to just one those solutions. We

propose as an option for MO-MPC the use the weighted-sum method after the Pareto set is obtained.
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Figure 1: a) Some Pareto optimal points, b) In discrete systems, a Pareto optimal solution minimizes

a set of scalar linear weighted functions.

This criterion based on weighted-sum consists of the minimization of the scalar objective function

λ T J (U,xk), where the solution U belongs to the Pareto set (2).

Some advantages of the application of this criterion after obtaining the Pareto set are the following:

• Multiple solutions for a given weighting vector are available to the dispatcher. For example,

in Figure 1a, UA and UB are Pareto optimal solutions, where J1 (UA) < J1 (UB), and J2 (UA) >
J2 (UB), but also both solutions minimize λ T J (U,xk).

• When dealing with discrete inputs, a Pareto solution minimizes a set of optimization problems

λ T J (U,xk) with different weights. In Figure 1b, the Pareto optimal solution UB minimizes

for example the optimization problems: λ1
T

J (U,xk), λ2
T

J (U,xk), λ3
T

J (U,xk), etc. With the

complete information of the Pareto set, it is possible to change the control sequence to one of

the consecutive Pareto solutions UA or UC, without guessing the proper weighting factor from a

single-objective optimization.

2.2.2 Criterion based on ε-constraint method

The ε-constraint method permits for generating Pareto optimal solutions by making use of a single-

objective function optimizer that handles constraints, to generate one point of the Pareto front at a

time (Haimes et al., 1990). This method minimizes a primary objective Jp (U) and expresses other

objectives as inequality constraints Ji (U)6 εi, i = 1, . . . , l with i 6= p. An issue for this method is the

suitable selection of ε , for example, if ε is too small, then maybe no feasible solution to be found.

Another issue arises when hard constraints are used, requiring a detailed design and knowledge about

the different operational points of the process.

We propose as an option for MO-MPC the criterion based on the ε-constraint method that will be

used after the Pareto set is obtained. In Figure 2a, given the hard constraint J1 (U) 6 ε1, the Pareto

solution that minimizes J2 (U) is shown. In Figure 2b, there is not a Pareto solution satisfying the hard

constraint, so, the closer solution to that criterion could be selected. With the Pareto set information,

the dispatcher can change the hard constraints and adjust them according to the current conditions of

the systems.

In the next section, we provide the details with regard to the implementation of these techniques

to a dial-a-ride system.
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Figure 2: Criterion based on the ε-constraint method, a) feasible solution is found, b) no Pareto

solution satisfying the constraint.

3 Dynamic pickup and delivery problem

3.1 Process description

Dial-a-ride systems are transit services that provide a share-ride door-to-door service with flexible

routes and schedules. The quality of service of a dial-a-ride is supposed to be in between of public

transit buses and taxis. The typical specifications are the users’ pickup and delivery destinations

and desired pickup or delivery times. We will assume that all the requests are known only after the

dispatcher receives the associated call and that all the users want to be served as soon as possible.

Thus, even if we will not include explicitly hard time windows, to provide a good service we propose

a user-oriented objective function that deals with the problem of undesired assignments to clients, and

keeps the service provided as regular (stable) as possible.

The service demand ηk comprises the information of the request and is characterized by two

positions, pickup pk and delivery dk, the instant of the call occurrence tk, a label rk that identifies

the passenger who is calling, and the number of passengers waiting there Ωk. Also we consider the

expected minimum arrival time trk, which is the best possible time to serve the passenger considering

a straight journey from origin to destination (like a taxi service), and a waiting time obtained with the

closest available vehicle (in terms of capacity) to pick up that passenger.

We assume a fixed and known fleet size F over an urban area A. The specific characteristics of a

request are known only after the associated call is received by the dispatcher. A selected vehicle is then

rerouted in real-time to insert the new request into predefined route of the vehicle while the vehicle

stays in motion. The assignment of the vehicle and the insertion position of the new request into

the previous sequence of tasks associated with such a vehicle are control actions decided in real time

by the dispatcher (controller) based on multiple objective functions, which depend on the variables

related to the state of the vehicles.

The modeling approach is in discrete time; the steps are activated when a relevant event k oc-

curs, that is, the dispatcher receives a call asking for service. Then, at any event k, each vehi-

cle j is assigned to complete a sequence of tasks which includes several points of pickup and de-

livery. Only one of those vehicles will serve the last new request. The set of sequences S (k) =
{

S1 (k) , . . . ,S j (k) , . . . ,SF (k)
}

correspond to the control (manipulated) variable, where the sequence

of stops assigned to vehicle j at instant k is given by S j (k) =
[

s0
j (k) s1

j (k) . . . si
j (k) . . . s

w j(k)
j (k)

]T

.
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si
j (k) contains the information about the ith stop of vehicle j along its route, and w j (k) is the number

of planned stops. A stop is defined by either a pickup or a delivery location. The initial condition

s0
j (k) corresponds to the last point visited by the vehicle. In particular, the sequence of stops assigned

to vehicle j at instant k, S j (k), is given by:

S j (k) =









s0
j (k)

s1
j (k)
...

s
w j(k)
j (k)









=









r0
j (k) P0

j (k) z0
j (k) Ω0

j (k)

r1
j (k) P1

j (k) z1
j (k) Ω1

j (k)
...

...
...

...

r
w j(k)
j (k) P

w j(k)
j (k) z

w j(k)
j (k) Ω

w j(k)
j (k)









(3)

where ri
j (k) identifies the passenger who is making the call (label), Pi

j (k) is the geographic position

in spatial coordinates of stop i assigned to vehicle j, zi
j (k) equals 1 if the stop i is a pickup and equals

0 if it is a delivery, and Ωi
j (k) is the number of passengers associated with request ri

j (k). The vehicle

follows the sequence in order until completing the list of tasks assigned. Note that the optimization

procedure considers all the necessary constraints, such as assigning first the pickup and later the

delivery for a specific set of passengers into the same vehicle, without violating its capacity, etc.

Two sources of stochasticity are considered: the first regarding the unknown future demand en-

tering the system in real-time, and the second coming from the network traffic conditions. In the

present work, the traffic conditions are modeled by means of a commercial distribution of speeds

associated with the vehicles. This distribution considers two dimensions: spatial and temporal. The

real distribution of speeds is assumed to be unknown (denoted by v(t, p,φ(t))) which depends on a

stochastic source phi(t), representing the traffic conditions of the network as they change in time, and

of a position p. We will assume in this work a conceptual network, where the trajectories are defined

as a collection of straight lines that join two consecutive stops. Besides, a speed distribution for the

urban zone represented by a speed model v̂(t, p), is supposed to be known, which could be obtained

from historical speed data. To apply the MO-MPC approach, in the next section a dynamic model is

proposed to represent the routing process.

3.2 Process model

For vehicle j, as in Cortés et al. (2008), the state space variables are the position X j (k), the estimated

departure time vector T̂j (k) and the estimated vehicle load vector L̂ j (k). Let us denote T̂ i
j (k) the

expected departure time of vehicle j from stop i, L̂i
j (k) the expected load of vehicle j when leaving

stop i. The dynamic model for the position of vehicle j is as follows:

X̂ j (k+1)

=







w j(k)−1

∑
i=0

Hi (tk + τ)



Pi
j (k)+

∫ tk+τ

s=T̂ i
j (k)

v̂(s, p(s))

(

Pi+1
j (k)−Pi

j (k)
)

∥
∥
∥Pi+1

j (k)−Pi
j (k)

∥
∥
∥

2

ds



 if T̂
w j(k)
j (k)> tk + τ

P
w j(k)
j (k) if T̂

w j(k)
j (k)6 tk + τ

Hi (t) =

{

1 if T̂ i
j (k)< t 6 T̂ i+1

j (k)

0 otherwise
(4)

the variable time τ is defined as the time between the occurrence of the future probable call at instant

tk + τ and the occurrence of the previous call at tk and can be tuned by means of a sensitivity analysis
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as described in Cortés et al. (2009). The expected stop visited by the vehicle before instant tk +τ is i∗.

The stop i∗ was visited at instant T̂ i∗

j (k). The stop P0
j (k) denotes the position of the vehicle at instant

k. In the model, if the vehicle reaches its last stop w j (k) and no additional tasks are scheduled for that

vehicle, the vehicle will stay at that stop until a new request is assigned to it. For simulation results,

the vehicle will proceed in direction to the closest zone with low availability of vehicles and a high

probability of having a pickup-request.

The predicted departure time vector depends on the speed and can be described by the following

dynamic model:

T̂ i
j (k+1) =







T 0
j (k) i = 0

tk +
i

∑
s=1

κs
j (k) i 6= 0

i = 0,1, . . . ,w j (k)

κs
j (k) =

∫ Ps
j (k)

Ps−1
j (k)

1

v̂(t j (ω) ,ω)
dω (5)

where κ i
j (k) is an estimation of the time interval between stop i − 1 and stop i for the sequence

associated with vehicle j at instant k.

The dynamic model associated with the vehicle load vector depends exclusively on the current

sequence and its previous load. Analytically, we have:

L̂i
j (k+1) =







min
{

L̄ j,L
0
j (k)

}

i = 0

min

{

L̄ j,L
0
j (k)+

i

∑
s=1

(
2zs

j (k)−1
)

Ωs
j (k)

}

i = 1, . . . ,w j (k)
(6)

where zs
j (k) and Ωs

j (k) were defined before in (3) and L̄ j is the capacity of vehicle j. We will assume

later a homogeneous fleet of small vehicle with capacity for four passengers. The proposed vehicle

sequences and state variables satisfy a set of constraints given by the real conditions of the dial-a-ride

problem. Specifically, we must consider constraints of precedence, capacity and consistency in the

solution of the MO-MPC problem to generate only feasible sequences.

3.3 Objective function for the dial-a-ride system

The motivation of this work is to provide to the dispatcher an efficient tool that captures the trade-

off between users and operator costs. Besides, we design an objective function able to carry out the

fact that some users can become particularly annoyed if their service is postponed (either pickup or

delivery). In a proper formulation, a higher cost in the objective function should be considered to

penalize differently very-long waiting or travel times. Next in this section, we formalize these ideas

in an analytical expression.

In this section, we define the objective functions for choosing the best routes and vehicles to serve

the dynamic demand. The optimization variables are the current sequence S (k) that incorporate the

new request ηk, and the hmax future sequences Sh = {S (k+1) , . . . ,S (k+N)} , h = 1, . . . ,hmax, that

incorporate the prediction of future requests (scenarios). Thus, Sk+N
k =

{
S (k) ,S1 . . . ,Shmax

}
comprises

all the control actions to be calculated. The scenario h consists of the sequential occurrence of N −1

estimated future requests η̂h
k+1, η̂

h
k+2, . . . , η̂

h
k+N−1, with a probability ph. This is on top of the actual

currently received request. The scenarios are obtained based on historical-data. In this paper we use a

fuzzy clustering method, as in Sáez et al. (2008).
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A reasonable prediction horizon N is defined, which depends on the intensity of unknown events

that enter the system in real-time and on how good the prediction model is. If the prediction horizon

is larger than one, the controller adds the future behavior of the system into the current decision.

The proposed objective functions quantify the costs over the system of accepting the insertion of a

new request. Such functions normally move towards opposite directions. The first objective function

(J1) that takes into account the users’ cost, includes both waiting and travel time experienced by each

passenger. The second one (J2) is associated with the operational cost of running the vehicles of the

fleet. Analytically, the proposed objective functions for a prediction horizon N, can be written as

follows:

J1 =
N

∑
ℓ=1

F

∑
j=1

hmax(k+t)

∑
h=1

ph

(
JU

j,h (k+ ℓ)− JU
j,h (k+ ℓ−1)

)

J2 =
N

∑
ℓ=1

F

∑
j=1

hmax(k+t)

∑
h=1

ph

(
JO

j,h (k+ ℓ)− JO
j,h (k+ ℓ−1)

)
(7)

where

JO
j,h (k+ ℓ) = cT

(

T̂
w j(k+ℓ)
j (k+ ℓ)− T̂ 0

j (k+ ℓ)
)
∣
∣
∣
∣
h

+ cL

w j(k+ℓ)

∑
i=1

(
Di

j (k+ ℓ)
)
∣
∣
∣
∣
h

(8)

and

JU
j,h (k+ ℓ) = θv

w j(k+ℓ)

∑
i=1







fv

(
ri

j (k+ ℓ)
)(

1− zi
j (k+ ℓ)

)







T̂ i
j (k+ ℓ)− tr

ri
j(k+ℓ)

︸ ︷︷ ︸

re - routing time













∣
∣
∣
∣
∣
∣
∣
∣
h

+

θe

w j(k+ℓ)

∑
i=1







fe

(
ri

j (k+ ℓ)
)

zi
j (k+ ℓ)







T̂ i
j (k+ ℓ)− t

0ri
j(k+ℓ)

︸ ︷︷ ︸

waiting time













∣
∣
∣
∣
∣
∣
∣
∣
h

(9)

The performance of the vehicle routing scheme will depend on how well the objective function

can predict the impact of possible rerouting due to insertions caused by unknown service requests. In

(7), JU
j,h and JO

j,h denote the user and operator costs respectively, associated with the sequence of stops

that vehicle j must follow at certain instant. In equations (7)-(9), k+ ℓ is the instant at which the ℓth

request enters the system, measured from instant k. The number of possible call scenarios is hmax,

ph is the probability of occurrence of the hth scenario. The occurrence probabilities ph associated

with each scenario are parameters in the objective function and must be calculated based on real time

or historical data, or a combination of both. In Sáez et al. (2008) a zoning based for trip patterns

estimation based on Fuzzy Clustering was designed. Expressions (8) and (9) represent the operator

and users cost functions related to vehicle j at instant k+ ℓ, which depend on the previous control

actions and the potential request h which occurs with probability ph; w j (k+ ℓ) is the number of stops

estimated for vehicle j at instant k+ ℓ. To explain the flexibility of the formulation and its economic

consistency, the term related with the extra time experienced by passengers in this service (delivery

time minus the minimum time the user could arrive to its destination) consider a cost θv for each

minute, and the term related to total waiting time a cost θe for each minute. Note that the terms in

the objective functions for user are weighted by the functions fv(·) and fe(·), which include a service

10



policy for users, so the cost of a user that entered the system a long time ago is considered more

important than of another user who has just made the request. We propose the following weighing

functions:

fv

(
ri

j (k+ ℓ)
)
=







1 if T̂ i
j (k+ ℓ)− t

0ri
j(k+ℓ)

6 α
(

trri
j(k+ℓ)− t

0ri
j(k+ℓ)

)

1+ T̂ i
j (k+ ℓ)− t

0ri
j(k+ℓ)

−α
(

trri
j(k+ℓ)− t

0ri
j(k+ℓ)

)

if T̂ i
j (k+ ℓ)− t

0ri
j(k+ℓ)

> α
(

trri
j(k+ℓ)− t

0ri
j(k+ℓ)

)

(10)

Expression (10) implies that if the delivery time T̂ i
j (k+ ℓ) associated with user ri

j (k+ ℓ) becomes

greater than α times its minimum total time
(

trri
j(k+ℓ)− t

0ri
j(k+ℓ)

)

, the weighting function grows lin-

early, resulting in a critical service for such a client. Regarding the waiting time factor,

fe

(
ri

j (k+ ℓ)
)
=







1 if T̂ i
j (k+ ℓ)− t

0ri
j(k+ℓ)

6 T T

1+ T̂ i
j (k+ ℓ)− t

0ri
j(k+ℓ)

−T T if T̂ i
j (k+ ℓ)− t0ri

j(k+ℓ) > T T
(11)

The intuition behind (11) is analogous to (10).

In addition, we will suppose an expression for the vehicle operational cost (8), with a component

depending on the total traveled distance, weighted by a factor cL, and another on the total operational

time, in this case at unitary cost cT . Thus, Di
j(k+ ℓ) represents the distance between stops i− 1 and

i in the sequence of vehicle j. The formulation proposed in this paper considers concepts already

presented in the literature, like the total service time and dissatisfaction in Psaraftis (1980), the oper-

ational cost like in Cortés et al. (2008); being the aim of this paper to present a general framework,

where different objective functions proposed in the literature could be included.

3.4 MO-MPC for a dial-a-ride system

A systematic way of incorporating such a trade-off of both objective functions is through a multi-

objective approach, which results in a general set of solutions, giving the dispatcher the chance to

change the service policies in a more transparent way by looking at the Pareto front. The closed loop

of the dynamic vehicle routing system is shown in Figure 3. The MO-MPC represented by the dis-

patcher makes the routing decisions in real-time based on the information of the system (process) and

the values of the fleet attributes, which allow evaluating the model under different scenarios. Service

demand ηk and traffic conditions φ(t, p) are disturbances in this system.

The following multiobjective problem is solved:

min
Sk+N

k

{J1,J2} (12)

s.t. operational constraints

with J1 and J2 corresponding to the objective functions defined in (7). The solution to this problem

corresponds to a set of control sequences, which form the optimal Pareto set. It is considered that

Si =
{

Si (k) , . . . ,Si (k+N −1)
}

is a feasible control action sequence, in the sense that satisfies all the

operational constraints. The MO-MPC algorithm is divided in four steps.

Step 1. The scenario h consists of the sequential occurrence of N requests ηk, η̂h
k+1, η̂h

k+2,. . . , η̂h
k+N−1.

For each vehicle j ∈ F , for each scenario h, we will solve 2N MO problems considering the cases

11



Figure 3: Closed loop diagram of the MO-MPC for the dynamic dial-a-ride problem.

where vehicle j is the one that serves none, one, up to N of those requests. For example, if N = 2,

for each vehicle we solve four MO problems considering the cases to serve none, to serve ηk, to serve

η̂h
k+1, and to serve ηk and η̂h

k+1. The MO problem in this step is the following:

min
{S j(k),S

h
j (k+1),...,Sh

j (k+N)}

{
N

∑
ℓ=1

(
JU

j,h (k+ ℓ)− JU
j,h (k+ ℓ−1)

)
,

N

∑
ℓ=1

(
JO

j,h (k+ ℓ)− JO
j,h (k+ ℓ−1)

)

}

s.t. operational constraints

In this problem, the operational constraints are capacity, consistency and no-swapping constraint (in-

sertion keeping the previous sequence), so the Pareto set contains just feasible sequences. Note that

some of those MO problems are easy to solve, but the more requests the vehicle serves, the more pos-

sible solutions we will have. In fact, considering the no-swapping constraint, the number of possible

solutions when the N request are served by vehicle j only is 0.5
N−1

∏
i=0

(w j (k)+ i)(w j (k)+ i−1), where

w j (k) is the number of stops of vehicle j at instant k. The MO problems in this step are the most time

consuming, but they can be solved simultaneously and in parallel because they are not related with

each other.

Step 2. Then for a given scenario h, considering the constraint that just one vehicle can serve each

request, we obtain the Pareto set of the following MO problem:

min
{S(k),S1,...,Shmax}

{

∑
j∈F

N

∑
ℓ=1

(
JU

j,h (k+ ℓ)− JU
j,h (k+ ℓ−1)

)
, ∑

j∈F

N

∑
ℓ=1

(
JO

j,h (k+ ℓ)− JO
j,h (k+ ℓ−1)

)

}

The solution of this MO problem is obtained with the Pareto sets from Step 1 by combining the |F |N

possible cases in a way that the current request and each future request are served by just one vehicle.

For example, if we have three vehicles F = {a,b,c}, for N = 2, the cases are a−a, a−b, a−c, b−a,

b−b, b−c, c−a, c−b and c−c, where v1-v2 means that ηk is served by vehicle v1 and η̂h
k+1 is served

by vehicle v2. The MO problem of this step can be solved in parallel.

Step 3. Then, using the Pareto set of all the scenarios h, we solve the following MO problem:

min
Sk+N

k

{

∑
h

∑
j∈F

N

∑
ℓ=1

ph

(
JU

j,h (k+ ℓ)− JU
j,h (k+ ℓ−1)

)
,∑

h

∑
j∈F

N

∑
ℓ=1

ph

(
JO

j,h (k+ ℓ)− JO
j,h (k+ ℓ−1)

)

}
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The solution of this MO problem is obtained using the Pareto sets from Step 2 (can be done in parallel),

by multiplying each Pareto front by the probability of occurrence of the associated scenario ph and

then combining the different cases considering all the scenarios.

Step 4. A relevant step of this approach in the controller’s dispatch decision is the definition of

criteria to select the best control action at each instant under the MO-MPC approach. For example,

once the Pareto front is found, different criteria regarding a minimum allowable level of service can be

dynamically used to take policy dependent routing decisions. In this work, we will evaluate MO-MPC

based on a weighted-sum and an ε-constraint criterion.

In those cases where the policy for users is accomplished for several solutions, the one that is

the closest to the pursued policy will be selected. So, we include soft constraints directly, without

incorporating them into the optimization problem, although they are considered in the choice process

that emulates the dispatcher.

4 Simulation results

In this section we present the simulation tests conducted to show the MO-MPC strategy application.

A period of two hours representative of a labor day (14:00-14:59, 15:00-15:59) is simulated, over an

urban area of approximately 81 km2. A fixed fleet of fifteen vehicles is considered, with a capacity of

four passengers each. We assume that the vehicles travel in a straight line between stops and that the

transport network behaves according to a speed distribution with a mean of 20 [km/h].

Two hundred and fifty calls were generated over the simulation period of two hours following the

spatial and temporal distribution observed from the historical data. Regarding the temporal dimen-

sion, a negative exponential distribution for time intervals between calls with rate 0.5 [call/minute]

for both hours of simulation was assumed. Regarding the spatial distribution, the pickup and delivery

coordinates were generated randomly within each zone. The 15 first calls at the beginning and the 15

last calls at the end of the experiments were deleted from the statistics to avoid limit distortion (warm

up period). A total of 10 replications of each experiment were carried out to obtain the global statis-

tics. Each replication (emulating two hours and 250 on-line decisions) took 20 minutes in average, on

a Intel Core 2 CPU, 2.40 GHz processor.

We suppose that the future calls are unknown for the controller. From historical data, the typical

trip patterns can be extracted by using a systematic methodology. Thus, Cortés et al. (2008) and Sáez

et al. (2008) obtained a speed distribution model as well as the trip patterns, the latter through a fuzzy

zoning method to define the most likely origin-destination configurations.

The objective function is formulated considering the parameters prediction horizon N = 2, θv =
16.7 [Ch$/min], θe = 50 [Ch$/min], cT = 25 [Ch$/min], cL = 350 [Ch$/km], α = 1.5, T T = 5 [min].

We report results of MO-MPC based on a weighted-sum and an ε-constraint criterion. Five different

criterion are used for MO-MPC based weighted sum λ T = [λ1 1−λ1 ], λ1 = 1, 0.75, 0.5, 0.25 and

0 (for the first five rows of Table 1a and 1b). The results using ε-constraint (in the last five rows of

Table 1a and 1b) are associated to the following criteria:

• Criterion 1: Minimum users’ cost component

• Criterion 2: Minimum operational cost component

• Criterion 3: The nearest value to a given user cost (traveled time plus waiting time costs).
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In case of Criterion 3 (the nearest value to a given user cost), we considered three references: 400,

500 and 600 [Ch$] for sub-cases a), b) and c) respectively.

In Table 1a are the results in terms of the user indices effective travel and waiting times per user,

as well as user cost. In Table 1b, the operator indices effective total travel time, distance traveled per

vehicle, and total operator costs are presented. Note from Table 1a and 1b, Criterion 1 and Criterion

2 are equivalent to cases with λ T = [1 0 ] and λ T = [0 1 ].
Tables 1a and 1b show a clear trade-off between opposite components. Besides, small values for

standard deviation imply that the travel and waiting times are more balanced among passengers as a

variable weight for them was included in the objective function specification. Notice the extreme case

λ T = [0 1 ] in favor of the operator results in a very poor service for users, not only around the mean

but also in terms of bounding the standard deviation. With regard to Criterion 3, the resulting mean

user cost over the whole simulation fitted quite well the thresholds defined at each sub-case.

5 Conclusions

This work presents a new approach to solve the dial-a-ride problem under a model predictive control

scheme using dynamic multiobjective optimization. We propose different criteria to obtain control

actions over real-time routing using the dynamic Pareto front. The criteria allow giving priority to a

service policy for users, ensuring a minimization of operational costs under each proposed policy. The

service policies are verified approximately on the average of the replications. Under the implemented

on-line system it is easier and more transparent for the operator to follow service policies under a

multiobjective approach instead of tuning weighting parameters dynamically. The multiobjective ap-

proach allow us to obtain solutions that are directly interpreted as part of the Pareto front instead

of results obtained with single-objective functions, which lack of direct physical interpretation (the

weight factors are tuned but they do not allow applying operational or service policies such as those

proposed here).

This paper shows a potential a real application of a transportation system for point-to-point trans-

port in a real-time setting. Then, we highlight the effort to combine a dynamic transport problem

(dynamic dial-a-ride) optimized in real-time by means of control theory and multiobjective optimiza-

tion. However, the method we use in this paper has one main drawback: obtaining the solution set

of the MO problem requires a significant computational effort, and in a real application context, this

can be a serious issue. Then, the next step is to find an efficient algorithm from the evolutionary com-

putation literature for a real-time implementation of the scheme (such a Genetic algorithms or Partial

Swarm Optimization, for example) and find an application to simulate the system operating in real

world context. From the new toolboxes for Evolutionary Computation and other efficient algorithms

developed in recent years, we think it is possible to determine a good representative pseudo-optimal

Pareto set in a dynamic context. Future work will focus on efficient optimization algorithms.
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Table 1a: MO-MPC, user indices

MO Criterion Travel time [min/pax] Waiting time [min/pax] Mean user

Mean Std Mean Std cost [Ch$]

λ T = [1 0 ] 9.36 3.66 4.52 2.74 382.27

λ T = [0.75 0.25 ] 9.79 4.25 4.47 2.49 386.89

λ T = [0.50 0.50 ] 10.19 4.49 4.60 2.99 399.88

λ T = [−0.25 0.75 ] 10.48 4.75 5.38 3.06 444.12

λ T = [0 1 ] 10.01 7.38 15.44 10.80 939.15

Criterion 1 9.36 3.66 4.52 2.74 382.27

Criterion 2 10.01 7.38 15.44 10.80 939.15

Criterion 3a 10.32 4.75 4.62 2.67 403.17

Criterion 3b 10.76 5.36 5.63 3.58 461.30

Criterion 3c 10.63 6.09 7.25 4.59 540.20

Table 1b: MO-MPC, operator indices

MO Criterion Time Traveled Distance Traveled Mean operator

[min/veh] [km/veh] cost [Ch$]

Mean Std Mean Std

λ T = [1 0 ] 88.16 7.55 24.84 1.86 10898.28

λ T = [0.75 0.25 ] 75.17 11.06 20.61 2.94 9094.22

λ T = [0.50 0.50 ] 67.57 12.78 18.62 3.51 8207.24

λ T = [0.2 5 0.75 ] 61.67 12.57 16.95 3.17 7476.06

λ T = [0 1 ] 43.90 17.94 12.58 5.09 5500.82

Criterion 1 88.16 7.55 24.84 1.86 10898.28

Criterion 2 43.90 17.94 12.58 5.09 5500.82

Criterion 3a 74.99 8.76 20.91 2.19 9193.45

Criterion 3b 69.56 11.52 19.92 3.05 8713.60

Criterion 3c 71.40 10.53 20.39 2.80 8924.53
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