Technical report 10-059

Hybrid model predictive control using time-instant optimization for the Rhine-Meuse Delta

H. van Ekeren, R.R. Negenborn, P.J. van Overloop, and B. De Schutter

If you want to cite this report, please use the following reference instead:

Abstract—In order to provide safety against high sea water levels, in many low-lying countries on the one hand dunes are maintained at a certain safety level and dikes are built, while on the other hand large control structures that can be controlled dynamically are constructed. Currently, these structures are often operated purely locally, without coordination on actions between different structures. Automatically coordinating the actions is particularly difficult, since open water systems are complex, hybrid systems, in the sense that continuous dynamics (e.g., the evolution of the water levels) are mixed with discrete events (e.g., the opening or closing of barriers). In low-lands, this complexity is increased further due to bi-directional water flows resulting from backwater effects and interconnectivity of flows in different parts of river deltas. In this paper, we propose a model predictive control (MPC) approach that is aimed at automatically coordinating the different actions. Hereby, the hybrid nature is explicitly addressed. In order to reduce the computational effort required to solve the hybrid MPC problem we propose to use TIO-MPC, where TIO stands for time-instant optimization. A simulation study illustrates the potential of the proposed controller in comparison with the current setup in the Rhine-Meuse delta in The Netherlands.

I. INTRODUCTION

Floods are one of the most common type of natural disasters that Europe has to face. In the period between 1998 and 2004 there were more than 100 major floods in Europe. Due to the changing climate, in the nearby future, flood prevention will become even more important as sea levels will rise and precipitation will intensify [1].

One of the areas where increased problems are expected is the highly populated Rhine-Meuse delta in The Netherlands, including the large cities of Rotterdam and Dordrecht, and the largest port of Europe (see Figure 1) [1]. To protect the area against floods, storm surge barriers and dikes have been constructed. The barriers each have local control systems consisting of simple if-then-else rules that determine when a barrier should be closed or opened. These local rules do not in the best way utilize the capacity available in the system. We therefore investigate how coordination of the actions of these structures can improve performance.

The storm surge barriers and the water system of the Rhine-Meuse delta can be considered as a hybrid system, in the sense that several barriers are designed to be either

H. van Ekeren and B. De Schutter are with the Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands; e-mail: b.deschutter@tudelft.nl. R.R. Negenborn is with the Department of Marine and Transport Technology, Delft University of Technology, Delft, The Netherlands; e-mail: r.r.negenborn@tudelft.nl. P.J. van Overloop is with the Department of Water Management, Delft University of Technology, Delft, The Netherlands; e-mail: p.j.a.t.m.vanoverloop@tudelft.nl.

Fig. 1: The Rhine-Meuse delta divided into 4 reservoirs.

II. RHINE-MEUSE DELTA

The Rhine-Meuse delta water system consists of a large number of rivers and sea outlets. The boundary conditions in
the East of the water system consist of the rivers Lek, Waal, and Meuse. The boundary conditions in the West consist of the connections of two rivers (Nieuwe Waterweg and Hartelkanaal) and one outlet (Haringvliet) with the North Sea. There are three main barriers: the Maeslant barrier, the Hartel barrier, and the Haringvliet sluices. The first three barriers are designed to be either completely open or completely closed. In the open state the rivers in which these barriers are build can flow freely and ships can pass without any disturbance. In the closed state river flows and navigation are completely blocked. The last barrier consists of 17 gates that can move independently between a maximum and a minimum height. There, ships can pass via a lock.

A. Area model

Below the most important characteristics of the discrete-time model of the Rhine-Meuse delta considered in this paper are given. The description of the full model, including all equations and parameters can be found in [14]. The model presented is an extension of the model in [15].

The water system under consideration is represented by 4 large reservoirs that are interconnected by rivers, see Figures 1 and 2. The states $x_1, x_2, x_3,$ and x_4 represent the water levels in reservoirs 1, 2, 3, and 4, respectively. The change in each of these water levels is determined using a discretized mass balance as follows:

$$x_1(k + 1) = x_1(k) + \frac{T_s}{A_{i1}(u_{1ij}(k))}[-q_{12}(x_1(k), x_2(k))] + \frac{T_s}{A_{i2}}[-q_{14}(x_1(k), x_2(k), x_3(k), x_4(k))]$$

$$x_2(k + 1) = x_2(k) + \frac{T_s}{A_{i2}}[-q_{12}(x_1(k), x_2(k)) + q_{23}(x_2(k), x_3(k)) + q_{24}(x_2(k), x_4(k))]$$

$$x_3(k + 1) = x_3(k) + \frac{T_s}{A_{i3}}[-q_{23}(x_2(k), x_3(k)) + q_{34}(x_3(k), x_4(k))]$$

$$x_4(k + 1) = x_4(k) + \frac{T_s}{A_{i4}}[-q_{24}(x_2(k), x_4(k))]$$

where k is the discrete time step; T_s is the simulation sample time; $A_{i1}, A_{i2}, A_{i3},$ and A_{i4} are the surface areas of reservoir 1, 2, 3, and 4, respectively; $x_1(k), x_2(k), x_3(k),$ and $x_4(k)$ are the water levels of reservoir 1, 2, 3, and 4, respectively; $q_{12}(k), q_{23}(k),$ and $q_{24}(k)$ are flow rates of the Rhine-Meuse river E between reservoirs 1, 2, and 3, respectively; $q_{24}(x_2,k)$ is the average of the water levels at the cross sections where the Rhine-Meuse river E separates the reservoirs 2 and 3. As a result, $A_{i1}, A_{i2}, A_{i3},$ and A_{i4} are nonlinear functions of $x_1, x_2, x_3,$ and x_4, and are variables that depend on the water level in the river that connects a reservoir i with a reservoir j. This river water level is approximated by the average of the water levels x_i and x_j. The water cross sectional area $A_{i1}(x_1(k), x_2(k))$ and the hydraulic radius $R_{ij}(x_1(k), x_2(k))$ are variables that depend on the water level in the river that connects a reservoir i with a reservoir j. This river water level is approximated by the average of the water levels x_i and x_j. The water cross sectional area and the hydraulic radius depend also on the physical structure of the river cross section. The river cross sections are approximated with straight lines. As a result, $A_{i1}(x_1(k), x_2(k))$ and $R_{ij}(x_1(k), x_2(k))$ are nonlinear functions of x_1 and x_2. For more details, see [15].

The flows $q_{row}(x_1(k), h_{hvb}(k), u_{mb}(k))$ and $q_{ahk}(x_1(k), h_{hvb}(k), u_{mb}(k))$ are also determined with (5), but in addition depend on the state of a barrier:

$$q_{row}(x_1(k), h_{hvb}(k), u_{mb}(k)) = u_{mb}(k)f_{Chézy}(x_1(k), h_{hvb}(k))$$

$$q_{ahk}(x_1(k), h_{hvb}(k), u_{mb}(k)) = u_{mb}(k)f_{Chézy}(x_1(k), h_{hvb}(k))$$

where $h_{hvb}(k)$ is the water level of the North Sea at Hoek van Holland, and $u_{mb}(k)$ is the state of the Maeslant barrier, defined as:

$$u_{mb}(k) = \begin{cases} 1 & \text{if the barrier is closed at time } k \\ 0 & \text{otherwise.} \end{cases}$$

The state of the Hartel barrier $u_{hhk}(k)$ is defined similarly. The flow $q_{hsb}(x_3(k), h_{hvb}(k), u_{mb}(k))$ through the Haringvliet sluices depends on the water level of the North Sea near these sluices $h_{hvb}(k)$, the water level $x_3(k)$ in reservoir 3 (because
the Haringvliet is part of reservoir 3), and the height of the gates of the sluices $u_{11}(k)$. The flow is determined by using the equations for free and submerged orifice flow and the equations for free and submerged weir flow, as given in [15].

The influence of the Hollandsche IJssel barrier is modeled via the surface area of reservoir 1 as follows:

$$ A_{11}(u_{11}(k)) = A_{11,\text{normal}} - A_{11,\text{hij}}(1 - u_{11}(k)), \quad (9) $$

where $A_{11,\text{normal}}$ is the surface area of reservoir 1 (m^2) when the Hollandsche IJssel barrier is open ($u_{11}(k) = 1$) and where $A_{11,\text{hij}}$ is the reduction in surface area caused by closure of the Hollandsche IJssel barrier ($u_{11}(k) = 0$). The state of the Hollandsche IJssel barrier $u_{11}(k)$ is defined similarly as the state of the Maeslant barrier in (8).

B. Current control systems

The current control systems for the barriers consist of simple rules. E.g., the decision to close the Maeslant barrier and the Hartel barrier is based on predictions of water levels 24 hours ahead of time in the case that these barriers are open. The goal of the local controllers is to achieve the following objectives [17]:

1) To prevent the water level at Rotterdam to rise above 3.87 mMSL (m above mean sea level) and at Dordrecht to rise above 3.25 mMSL.
2) To prevent water levels in the Hollandsche IJssel to rise above 2.25 mMSL, while preventing saline water to flow into this river.
3) To maintain a minimum water level of 0.00 mMSL at Moerdijk (in the Hollandsche Diep).
4) To maintain a minimum discharge, averaged over a tide, through the Nieuwe Waterweg of 1500 m3/s.
5) To prevent water flowing directly from the North Sea into the Haringvliet.

When the water levels at Rotterdam and Dordrecht stay below their critical value (i.e., the dike height), the whole area is safe, since the most critical (i.e., lowest) dikes are located at these locations [15]. Currently, the Maeslant barrier and the Hartel barrier are used mostly for objective 1; the Hollandsche IJssel barrier for objective 2; and the Haringvliet sluices for objectives 1 and 3–5.

It is noted, however, that the evolution of the water levels when different control actions are applied at the same time, is not taken into account. This may lead to low performance of the local control systems in extreme conditions. The controller proposed in the next section is expected to improve this performance.

III. Time-instant optimization MPC

Instead of having a binary variable1 for each control cycle step as degrees of freedom (as is common, e.g., when using MLD-MPC), time instants are the degrees of freedom. A time

1Note that TIO-MPC is not restricted to binary input variables only, but can also be used for continuous input variables. In contrast to time instant optimization for a binary variable, there are then two (instead of one) continuous variables needed for each time instant: one for the time instant (e.g., t_i) and one for the new input value (e.g., u_i).
where

\[
\begin{align*}
\epsilon_{\text{cum},11}(k) &= \sum_{j=1}^{N} (\max(x_1(k+j) - r_{11}, 0))^2 \\
\epsilon_{\text{cum},12}(k) &= \sum_{j=1}^{N} (\max(x_1(k+j) - r_{12}, 0))^2 \\
\hat{c}_{13}(k) &= \begin{cases} 1 & \text{if } \max(x_1(k)) > r_{12} \\ 0 & \text{otherwise} \end{cases}
\end{align*}
\]

where \(\epsilon_{\text{cum},11}(k)\) and \(\epsilon_{\text{cum},12}(k)\) are the cumulative exceedances for reference levels \(r_{11}\) and \(r_{12}\), respectively. The parameters \(\alpha_1\), \(\alpha_2\), and \(\alpha_3\) are cost weights. The cost function \(J_{\text{c}}(x_2(k))\) is defined in a similar way.

The second part of the objective function (10) consisting of \(J_{\text{mb}}(u_{\text{mb}}(k))\), \(J_{\text{hb}}(u_{\text{hb}}(k))\), and \(J_{\text{hs}}(u_{\text{hs}}(k))\) describes the cost of closing and moving the storm surge barriers. Closure is defined as

\[
\hat{c}_{13}(k) = \begin{cases} 1 & \text{if } \max(x_1(k)) > r_{12} \\ 0 & \text{otherwise} \end{cases}
\]

The TIO-MPC prediction model has time instants as inputs and also regular (conventional) inputs. The state (open or closed) changes of the Maeslant barrier and the state changes of the Hartel barrier are both modeled with four time instants. These time instants represent the moments at which the state of the barriers change: from open to closed or from closed to open. The positions of the gates of the Haringvliet sluices are modeled with one regular input. This results in the following TIO-MPC prediction model of the Rhine-Meuse delta:

\[
\begin{align*}
\bar{x}(k) &= f(\bar{u}(k), \bar{u}_{\text{hs}}(k), x(k)) , \quad (12) \\
\bar{u}_{\text{hs}}(k) &= \left[u_{\text{hs}}(k) \quad u_{\text{hs}}(k+1) \quad \cdots \quad u_{\text{hs}}(k+N-1) \right]^T \\
\bar{u}(k) &= \left[t_1_{\text{mb}}(k) \quad t_2_{\text{mb}}(k) \quad t_3_{\text{mb}}(k) \quad t_4_{\text{mb}}(k) \quad t_{1_{\text{hb}}}(k) \quad t_{2_{\text{hb}}}(k) \quad t_{3_{\text{hb}}}(k) \quad t_{4_{\text{hb}}}(k) \right]^T,
\end{align*}
\]

where \(u_{\text{hs}}(k)\) is the gate position (m) of the Haringvliet sluices at time step \(k\). The time instants \(t_{1_{\text{mb}}}(k)\), \(t_{2_{\text{mb}}}(k)\), \(t_{3_{\text{mb}}}(k)\), and \(t_{4_{\text{mb}}}(k)\) (s) are the moments at which the Maeslant barrier changes its state for the \(k\)th MPC step. Similarly, the time instants \(t_{1_{\text{hb}}}(k)\), \(t_{2_{\text{hb}}}(k)\), \(t_{3_{\text{hb}}}(k)\), and \(t_{4_{\text{hb}}}(k)\) (s) are the moments at which the Hartel barrier changes its state for the \(k\)th MPC step. The inputs of the TIO-MPC model are illustrated in Figure 4. The time instants are possibly beyond the length of the prediction horizon, which makes it possible to have no discrete state changes at all in the prediction horizon. The discrete-time nonlinear reservoir model of the Rhine-Meuse delta requires regular input sequences for the state of the Maeslant barrier and the Hartel barrier. Therefore, a transformation is needed from the time instants into regular input sequences. This transformation is done as follows:

\[
\bar{u}_{\text{mb}}(k) = \left[u_{\text{mb}}(k) \quad u_{\text{mb}}(k+1) \quad \cdots \quad u_{\text{mb}}(k+N-1) \right]^T,
\]

with

\[
\begin{align*}
u_{\text{mb}}(k+j) &= \begin{cases} u_{\text{mb}}(k-1) & \text{if } j \leq k_{1_{\text{mb}}} \\ u_{\text{mb}}(k) & \text{or } k_{2_{\text{mb}}} \leq j \leq k_{3_{\text{mb}}} \\ 1 - u_{\text{mb}}(k-1) & \text{or } j \geq k_{4_{\text{mb}}} \\ u_{\text{mb}}(k) & \text{otherwise} \end{cases}
\end{align*}
\]

for \(j = 0, \ldots, N-1\), where \(\bar{u}_{\text{mb}}(k)\) is the regular input sequence created from the time instants. The integer variables \(k_{1_{\text{mb}}}\), \(k_{2_{\text{mb}}}\), \(k_{3_{\text{mb}}}\), and \(k_{4_{\text{mb}}}\) are the discrete-time rounded equivalents of the continuous variables \(t_{1_{\text{mb}}}(k)\), \(t_{2_{\text{mb}}}(k)\), \(t_{3_{\text{mb}}}(k)\), and \(t_{4_{\text{mb}}}(k)\).

3) Optimization: The TIO-MPC receding horizon optimization problem consists of the model and the objective function that are discussed in the previous paragraphs. The model (12) relates the inputs of the water system to the evolution of the states (water levels) over the prediction...
horizon. The objective function (10) is a function of the inputs and the state evolution. These two relations together form a function that relates the inputs (degrees of freedom) to the value of the objective function:

$$J(\tilde{u}(k), \tilde{u}_{hs}(k)) = f_{opt}(\tilde{u}(k), \tilde{u}_{hs}(k)).$$

In fact, the actual state $x(k)$ of the system and the predicted disturbances $q_{1d}(k+j)$, $q_{2d}(k+j)$, $q_{3d}(k+j)$, $h_{vvh}(k+j)$, and $h_{hs}(k+j)$, for $j = 0, \ldots, N-1$, are also inputs of this function. However, these inputs are not degrees of freedom in the optimization problem. They are constant in the optimization algorithm, subject to the following constraints:

$$0 \leq t_{1,mb}(k) \quad (14)$$
$$t_{1,mb}(k) - t_{min} \leq t_{2,mb}(k) \quad (15)$$
$$t_{2,mb}(k) - t_{min} \leq t_{3,mb}(k) \quad (16)$$
$$t_{3,mb}(k) - t_{min} \leq t_{4,mb}(k) \quad (17)$$
$$t_{4,mb}(k) \leq t_{max} \quad (18)$$
$$0 \leq t_{1,bb} \quad (19)$$
$$t_{1,bb}(k) - t_{min} \leq t_{2,bb}(k) \quad (20)$$
$$t_{2,bb}(k) - t_{min} \leq t_{3,bb}(k) \quad (21)$$
$$t_{3,bb}(k) - t_{min} \leq t_{4,bb}(k) \quad (22)$$
$$t_{4,bb}(k) \leq t_{max} \quad (23)$$
$$u_{hs,\min} \leq u_{hs}(k+j) \leq u_{hs,\max}(k+j) \quad (24)$$

for $j = 0, \ldots, N-1$, with:

$$u_{hs,\max}(k+j) = \begin{cases} u_{hs,\max} & \text{if } x_3(k+j) \geq h_{hs} \\ u_{hs,\min} & \text{otherwise,} \end{cases} \quad (25)$$

where t_{min} (s) is the minimum time between two state changes, t_{max} (s) is the maximum value of $t_{4,mb}$ (k) and $t_{4,bb}(k)$ and is larger than the prediction horizon, $u_{hs,\min}$ and $u_{hs,\max}$ (m) are respectively the minimum and maximum gate positions of the Haringvliet sluices. The relation in (25) is the constraint of a one-directional flow through the Haringvliet sluices. The constraints (14)–(22) are constraints for the Maeslant barrier and the Hartel barrier and describe the order of the time instants.

The cost function is minimized using the nonlinear derivative-free optimization algorithm pattern search. The pattern search algorithm is started i times from i different initial solutions (i.e., multi-start optimization) until the end of the control cycle length. See for more information on pattern search [18].

The TIO-MPC optimization is now as follows:

1) A large set of initial solutions is created.
2) The cost function values $f_{opt}(\tilde{u}(k), \tilde{u}_{hs}(k))$ of the initial solutions of step 1 are calculated.
3) The initial solutions are ranked based on the cost function values calculated in the previous step. An initial solution with a lower cost function value is usually more promising than an initial solution with a higher cost function value.
4) A pattern search optimization is started with the most promising initial solution based on the ranking calculated in step 3. After convergence of the pattern search optimization, a new optimization is started with the next most promising initial solution. This procedure is repeated until time runs out.
5) The best solution calculated in Step 4 is selected as the output of the multi-start pattern search optimization.

IV. SIMULATION EXPERIMENTS

A. Setup

We consider a simulation study in which the nonlinear reservoir model is used as the simulation model. The current local control systems and the TIO-MPC approach are implemented with a prediction horizon of 24 hours (equal to the current practice [17]) and a control cycle length of 10 and 30 minutes, respectively. It is assumed that the controllers have perfect predictions of the boundary conditions (the three river inflows and the two sea water levels) over the prediction horizon. The total simulation time span is 48 hours.

Many scenarios have been investigated to determine the potential of the proposed control system [14]. The scenarios have been created based on historical measurement data of Rijkswaterstaat [19]. This data set consists of historical data of November 7–9, 2007. This also includes the period in which the Maeslant barrier was closed due to storm conditions at sea. Due to space restrictions, here, we show illustrative results from one scenario only.

The considered scenario involves conditions due to a storm surge at sea and a sea level rise of 0.65 m. The flow of the river Rhine at Lobith (which gives an indication of the amount of water flowing into the Rhine Meuse delta) is 1600 m3/s. This results in a maximum sea water level of 3.81 mMSL with relatively low discharges of the three rivers.

B. Result

Figure 5 shows the results of the simulation using the current control systems of the Rhine-Meuse delta. As can be observed, the Maeslant barrier and Hartel barrier are both closed for 20 hours. This long closure in combination with the relatively low inflows of the rivers Lek, Waal, and Meuse keeps the water levels at Rotterdam (y_1) and Dordrecht (y_2) very low. The area is therefore well protected against floods. However, the long closure is very expensive, since ocean vessels are blocked for more than 24 hours (4 hours before closure of the Maeslant barrier no navigation is allowed anymore). The discharge through the Haringvliet sluices is quite low (a volume of 15×10^5 m3), since it is related to the relatively low flow of the river Rhine at Lobith.

Figure 6 shows the results of the simulation when using the TIO-MPC approach. We observe that instead of closing the Maeslant and the Hartel barrier both for a long period, the TIO-MPC approach only closes the Maeslant barrier for two short periods (3 hours in total). The maximum water
levels at Rotterdam and Dordrecht are just above respectively the first reference levels r_{11} and r_{12}. This clearly illustrates the trade-off between exceeding the first reference levels (where damage starts) and input effort (cost on closing the barriers) that the TIO-MPC controller considers. The Haringvliet sluices are maximally open when possible (i.e., when constraint $y_3 > y_{vh}$ is not violated), resulting in a large discharge volume of $705 \times 10^6 \text{m}^3$.

V. CONCLUSIONS & FUTURE RESEARCH

In this paper we have proposed a model predictive control (MPC) approach for water systems represented as hybrid systems (i.e., involving both continuous and discrete dynamics). The approach proposed is based on so-called time-instant optimization (TIO). The idea of TIO-MPC is that the moments at which actions should take place are determined, rather than that for each time step it is determined whether an action should be taken or not (as is typically the case in more conventional predictive control approaches). In particular when considering hybrid MPC problems, involving discrete and continuous variables, this approach can be promising in terms of reduced computational requirements. In a simulation study based on the Rhine-Meuse delta in The Netherlands the potential of the approach has been illustrated, in particular when a trade-off has to be made between input effort and damage costs.

Future research focuses on the computational performance analysis of the proposed approach for future Rhine-Meuse delta setups and coordination among MPC controllers that control different, but interconnected, parts of large water systems.

ACKNOWLEDGMENTS

This research is supported by the VENI project “Intelligent multi-agent control for flexible operation of water infrastructures” (project 11210) of the Dutch Technology Foundation STW, a subdivision of the Netherlands Organisation for Scientific Research (NWO), the BSIK project “Next Generation Infrastructures (NGI),” the Delft Research Center Next Generation Infrastructures, and the European STREP project “Hierarchical and distributed model predictive control (HD-MPC).”

REFERENCES