Technical report 10-061

Stackelberg equilibria for discrete-time dynamic games – Part I: Deterministic games

K. Staňková and B. De Schutter

If you want to cite this report, please use the following reference instead:

*DThis report can also be downloaded via http://pub.deschutter.info/abs/10_061.html
Abstract—We consider a two-person discrete-time dynamic game with the prespecified fixed duration. Each player maximizes her profit over the game horizon, taking decisions of the other player into account. Our goal is to find the Stackelberg equilibria for such a game. The solution approach differs with respect to the information available to individual players. While in the game with open-loop information structure the solution procedure is straightforward and already reported in the literature, the problem with the closed-loop problem information structure is difficult to solve, especially if twice differentiability of the leader’s strategy is not imposed a priori. In this paper we focus on deterministic problems. We review classical optimization methods that can be used to solve the games with open-loop information structure. Additionally, we propose new methods for solving the games with the closed-loop information structure. Application of such methods is shown on specific examples. In the companion paper (Stackelberg Equilibria for Discrete-Time Dynamic Games – Part II: Stochastic Games with Deterministic Information Structure) we will consider a stochastic variant of the problem.

Keywords: discrete-time infinite dynamic games, Stackelberg games, information structure, team problems

I. INTRODUCTION & LITERATURE OVERVIEW

This paper deals with a deterministic variant of a two-person discrete-time infinite dynamic game with a prespecified duration. The game is referred to as infinite, because the decision spaces of the players comprise an infinite number of alternatives. We focus on the noncooperative variant of this game [1], [2], in which the goals of individual players might be conflicting. More specifically, we deal with Stackelberg problems [1]–[6], in which there exists hierarchy between individual players, as opposed to Nash problems [7], [8].

The open-loop Stackelberg solution concept in the infinite discrete-time dynamic games was first treated in [9]. Some other references that discuss the open-loop and the feedback Stackelberg solutions in discrete-time infinite dynamic games are [3], [10], [11]. Applications of this concept in microeconomics can be found in [12]. In this paper we review existing approaches applicable to solve the problem and relate them to other concepts, like dynamic programming [13] or the maximum principle [14].

Derivation of the global closed-loop Stackelberg solution of infinite discrete-time dynamic games remains a challenge. The global closed-loop Stackelberg solution for a specific classes of games with linear state dynamics and quadratic cost functional were found in [15], [16], while it was assumed a priori that such a solution is continuously differentiable. In this paper we concentrate on problems whose solutions may be non-differentiable or even discontinuous and we propose methods solving such problems. More specifically, we focus an indirect approach involving the team maximum of the game, similar to the approach proposed for linear-quadratic problems in [2], [17].

Due to space limitations we will not focus on another interesting problem: finding the solution of the game under feedback information structure [11]. Similarly the extension into the direction of the so-called inverse Stackelberg games [6], [18]–[20] is omitted in this paper, while this extension is discussed in the companion paper.

This paper is composed as follows. In Section II basic notions are introduced. In Section III the open-loop variant of the game is dealt with. In Section IV we study the closed-loop variant of the game. In Section V the conclusions and possibilities for future research are discussed.

II. PRELIMINARIES

A. Basics

Let us consider a two-player Stackelberg game, in which P_1 is the leader and P_2 is the follower. Let $\mathcal{X} = \{1, \ldots, K\}$, $K \in \mathbb{N}$ denote the stages of the game. Let $X \overset{\text{def}}{=} X^{(1)} \times X^{(2)}$ be the state space of the game with nonempty closed real intervals $X^{(1)}$, $X^{(2)}$. The state of the game for the k-th stage is then referred to as $x_k = (x^{(1)}_k, x^{(2)}_k)^T$, with P_1’s state $x^{(1)}_k$ and P_2’s state $x^{(2)}_k$. Let $U^{(1)}_k \subseteq \mathbb{R}$ (for each $k \in \mathcal{X}$) be a closed interval called the P_1’s decision space. Its elements are P_1’s permissible decisions $u^{(1)}_k$ at stage k, announced by P_1 at the beginning of each stage. Let $U^{(2)}_k \subseteq \mathbb{R}$ ($k \in \mathcal{X}$) be the P_2’s decision space. Its elements are P_2’s permissible decisions $u^{(2)}_k$ at stage k. The state of the game evolves according to the equation

$$x_{k+1} = f_k\left(x_k, u^{(1)}_k, u^{(2)}_k\right), \quad k \in \mathcal{X},$$

with the initial state $x_1 \in X$ and the state function $f_k : X \times U^{(1)}_k \times U^{(2)}_k \to X$. Let the information gained and recalled by P_i at stage k of the game be determined by $\eta^{(i)}_k$, an a priori known selection from $\{x^{(1)}_1, \ldots, x^{(1)}_k : x^{(2)}_1, \ldots, x^{(2)}_k\}$. Specifications of $\eta^{(i)}_k$ for all $k \in \mathcal{X}$ characterize the information structure of the game for P_i. Let $N^{(i)}_k \overset{\text{def}}{=} \{\eta^{(i)}_k\}$. Let $\gamma^{(i)}_k$ be a prespecified class of measurable mappings $\gamma^{(i)}_k : \mathcal{N}^{(i)}_k \to U^{(i)}_k$, called P_i’s permissible strategies at stage k. The aggregate mapping $\gamma^{(i)} = (\gamma^{(1)}_1, \gamma^{(2)}_1, \ldots, \gamma^{(i)}_K)$ is P_i's
strategy, and the class $\Gamma(i)$ of all such mappings $\gamma(i)$ so that $\gamma_k(i) \in \Gamma_k(i), k \in K$, is P_i’s strategy set. We will refer to a P_i’s strategy based on the P_i’s strategy as the P_i’s response to the P_j’s strategy.

Definition 2.1: (Information structure) In a two-person discrete time dynamic game, we say that P_i’s $(i \in \{1, 2\})$ information has (for all $k \in K$)

(a) an open-loop structure if $\eta_k(i) = x_1$,

(b) a closed-loop structure if $\eta_k(i) = (x_1, \ldots, x_k)$,

(c) a feedback structure if $\eta_k(i) = x_k$.

In this paper we will consider cases (a) and (b), while case (c) is a subject of the future research.

Let $L(i) : (X \times U_1(1) \times U(2)) \times (X \times U_2(1) \times U_2(2)) \times \cdots \times (X \times U_1(1) \times U(2)) \rightarrow \mathbb{R}$ be called P_i’s profit function. Each player maximizes $L(i)$, taking into account possible actions of the other player.

B. Assumptions on state and profit functions

In order to simplify the analysis, we will mostly assume (unless stated differently), the following: The functions $f_k(\cdot, u_1(k), u_2(k))$, $f_k(x_1, \ldots, x_k)$, and $f_k(\cdot, u_1(k), \cdot)$ are continuously differentiable on \mathbb{R}^2, $U_1(1)$, and $U_2(2)$, respectively. The profit functions are stage-additive, i.e., there exists $g_k(i) : X \times U_1(1) \times U_2(2) \rightarrow \mathbb{R}$, for all $k \in K$, so that

$$L(i)(u_1, u_2) = \sum_{k=1}^{K} g_k(i)(x_k, u_1(k), u_2(k), x_{k+1}), \quad (2)$$

$i \in \{1, 2\}$, and continuously differentiable on $U(1) \times U(2)$. Furthermore, $g_k(i)(x_k, u_1(k), \cdot)$ and $g_k(i)(x_k, u_1(k), \cdot, x_{k+1})$ are continuously differentiable on \mathbb{R}^2 and $U(2)$, respectively.

These assumptions might be too restrictive for real-world applications, but they assure us the existence and with some additional assumptions also uniqueness of the solutions of the problems dealt with in this paper. However, we will discuss how to proceed in more general situations when applicable.

C. Game formulation

An extensive form description of the game contains the set of players, the index set defining the stages of the game, the state space and the decision spaces, the state equation, the observation sets, the state-observation equation, the information structure of the game, the information spaces, the strategy sets, and the profit functionals.

Similarly as it is done in [2] for a general N-person discrete-time game, we can transform the game into a normal-form game. For each fixed initial state x_1 and for each pair $(\gamma_1(i), \gamma_2(i))$, where $\gamma_k(i) \in \Gamma(i), i \in \{1, 2\}$, the extensive form description leads to the unique vector sequence

$$L(i)(u_1(i), u_2(i)) = \sum_{k=1}^{K} g_k(i)(x_k, u_1(i(k), u_2(i), x_{k+1}), \quad (3)$$

Then, substitution of (3) into $L(i)$ and $L(2)$ leads to a pair of functions reflecting the corresponding profits of the players.

This further implies existence of a composite mapping $J(i) : \Gamma(i) \times \Gamma(2) \rightarrow \mathbb{R}$ for each $i \in \{1, 2\}$, which is the strategy-dependent profit function. The permissible strategy spaces $(\Gamma(i), \Gamma(2))$ and the pair $(J_1(i), J_2(i), J(2)(\gamma_1(i), \gamma_2(i)))$ constitute the normal form description of the game for each fixed initial state x_1. Under the normal form description there is no essential difference between infinite discrete-time dynamic games and finite games. This means that techniques used for finding solutions of finite games, such as saddle-point, Nash, and Stackelberg equilibrium solution concepts, introduced originally for finite games, can be used for solving infinite discrete-time dynamic games [2].

III. OPEN-LOOP GAME

In this section we summarize and generalize already known results on Stackelberg equilibria for games with the open-loop information structure, which can be found in [2], [3], [10], [11], [21]. To solve such problems, the classical techniques of optimal control theory, i.e., the maximum principle [14], [22] and dynamic programming [2], [13], [23], can be used. By recursive substitution of (1) into (2), the profit functions can be made dependent only on u_1 and u_2, and x_1, which is known a priori. Then the game can be viewed as a static game.

Definition 3.1: (P_2’s optimal response) The set $R_2(\gamma_1(i)) \subseteq \Gamma(2)$ defined for each $\gamma_1(i) \in \Gamma(i)$ by $R_2(\gamma_1(i)) = \{ \gamma_2(\gamma_1(i)) \in \Gamma(2) : f_2(\cdot, \cdot, \cdot) \geq f_2(\gamma_1(i), \cdot, \cdot), \forall \gamma_2(\gamma_1(i)) \}$ is P_2’s optimal response to a strategy $\gamma_1(i) \in \Gamma(i)$ of P_1.

Definition 3.2: (Stackelberg equilibrium strategy) In a Stackelberg game with P_2 as the leader and P_1 as the follower, a strategy $\gamma_1(i)$ is P_2’s Stackelberg equilibrium strategy, if

$$\min_{\gamma_2(i) \in \Gamma(2)} \max_{\gamma_1(i) \in \Gamma(i)} J(1)(\gamma_1(i), \gamma_2(i)) = \max_{\gamma_1(i) \in \Gamma(i)} \min_{\gamma_2(i) \in \Gamma(2)} J(1)(\gamma_1(i), \gamma_2(i)) \equiv J^*(1).$$

The quantity $J^*(1)$ is P_1’s profit when she plays the Stackelberg strategy.

Definition 3.3: (Stackelberg equilibrium solution) Let $\gamma_1(i) \in \Gamma(i)$ be P_1’s Stackelberg strategy. Then, any $\gamma_2(\cdot) \in R_2(\gamma_1(i))$ is P_2’s optimal strategy that is in equilibrium with $\gamma_1(i)$. The pair $(\gamma_1(i), \gamma_2(\cdot))$ is a Stackelberg game with P_1 as the leader, and $(f_2(\gamma_1(i), \gamma_2(\cdot)), J(2)(\gamma_1(i), \gamma_2(\cdot)))$ represents the corresponding Stackelberg outcomes.

When the conditions stated in Section II-B hold, the solution of the game always exists, but might be nonunique. The following proposition follows directly from Definition 3.2.

Proposition 3.1: If conditions stated in Section II-B hold, the Stackelberg equilibrium of the open-loop discrete dynamic game defined by (1) and (2) is a singleton if $L(2)(u_1, u_2)$ is strictly concave on $U(2)$ for all $u_1 \in U(1)$ and $L(1)(x, u_2)$ is strictly concave on $U(2)$ for all $x \in U(1)$.

Let us focus on the approaches which lead to finding a Stackelberg solution of the game defined by (1) and (2).

Approach 1

The standard way to find the optimal strategy for P_1 is to determine P_2’s optimal response to P_1’s decision by maximizing $L(2)(u_1(i), u_2)$ for every fixed $u_1(i) \in U(1)$ [2]. Denoting
this mapping by \(\mathcal{D} : U^{(1)} \to U^{(2)} \), the optimization problem faced by \(P_1 \) is then maximization of \(L^{(1)}(u^{(1)}, \mathcal{D}(u^{(1)})) \) over \(U^{(1)} \), yielding \(P_1 \)'s Stackelberg strategy in this open-loop game. With an increasing number of stages the dimension of vectors \(u^{(1)}, u^{(2)} \) increases as well. Therefore, such a derivation of the \(P_1 \)'s strategies is not considered applicable if \(K \) is high.

Approach 2

Another option, more applicable for problems with high \(K \), is to first determine \(P_2 \)'s optimal response to every strategy \(\mathbf{y}^{(1)}(x_1) = \mathbf{u}^{(2)} \) of \(P_2 \) to any announced strategy \(u^{(1)} = \mathbf{y}^{(1)}(x_1) \) of \(P_1 \), satisfying

\[
\begin{align*}
\mathbf{x}_{k+1} &= f_k(\mathbf{x}_k, u^{(1)}_k, u^{(2)}_k), \quad \mathbf{x}_1 = x_1, \\
\hat{u}^{(2)}_k &= \arg \max_{u^{(2)}_k \in U^{(2)}} H^{(2)}(\lambda_{k+1}, u^{(1)}_k, u^{(2)}_k, \mathbf{x}_k), \\
\lambda_k &= V_{u^{(2)}} f_k(\mathbf{x}_k, u^{(1)}_k, u^{(2)}_k)^T \\
&\quad \cdot [\lambda_{k+1} + \left(\frac{\partial}{\partial \lambda_{k+1}} g^{(2)}(\mathbf{x}_k, u^{(1)}_k, u^{(2)}_k, \mathbf{x}_{k+1}) \right)^T] \\
&\quad + \left[V_{x_k} g^{(2)}(\mathbf{x}_k, u^{(1)}_k, u^{(2)}_k, \mathbf{x}_{k+1}) \right]^T; \quad \lambda_{k+1} = 0, \\
H^{(2)}(\lambda_{k+1}, u^{(1)}_k, u^{(2)}_k, \mathbf{x}_k) &= g^{(2)}(\mathbf{x}_k, u^{(1)}_k, u^{(2)}_k, f_k(x_k, u^{(1)}_k, u^{(2)}_k)) \\
&\quad + \lambda_{k+1}^T f_k(x_k, u^{(1)}_k, u^{(2)}_k).
\end{align*}
\]

The sequence \(\lambda_1, \ldots, \lambda_{k-1} \) is a sequence of two-dimensional costate vectors. To obtain \(P_1 \)'s optimal Stackelberg strategy, one has to maximize \(L^{(1)}(u^{(1)}, u^{(2)}) \), taking into account \(P_2 \)'s optimal response. Player \(P_1 \) is then faced with the problem

\[
\begin{align*}
\max_{u^{(1)} \in U^{(1)}} L^{(1)}(u^{(1)}, u^{(2)}) & \quad \text{subject to} \\
x_{k+1} &= f_k(x_k, u^{(1)}_k, u^{(2)}_k), \quad x_1 \text{ given}, \\
\lambda_k &= f_k(x_k, u^{(1)}_k, u^{(2)}_k, \lambda_{k+1}), \quad \lambda_{k+1} = 0, \\
\frac{\partial}{\partial u^{(2)}_k} H^{(2)}(\lambda_{k+1}, u^{(1)}_k, u^{(2)}_k, \mathbf{x}_k) &= 0 \quad (k \in \mathcal{X}), \\
\text{where} \quad F_k &\defeq V_{u^{(2)}} f_k(x_k, u^{(1)}_k, u^{(2)}_k)^T; \lambda_{k+1} = 0, \\
&\quad + \left[V_{x_k} g^{(2)}(x_k, u^{(1)}_k, u^{(2)}_k, f_k(x_k, u^{(1)}_k, u^{(2)}_k)) \right]^T.
\end{align*}
\]

Proposition 3.2: If \(\{\mu^{(1)}_k(x_1) = u^{(1)}_k(x_1) \in U^{(1)}_k \}, k \in \mathcal{X} \) denotes an open-loop Stackelberg equilibrium in the dynamic game, there exist finite vector sequences \(\lambda_1, \ldots, \lambda_K \), \(\mu_1, \ldots, \mu_K \), \(v_1, \ldots, v_K \) that satisfy the following relations:

\[
\begin{align*}
x_{k+1}^* &= f_k(x_k^*, u^{(1)}_k^*, u^{(2)}_k^*), \quad x_1^* = x_1, \\
\frac{\partial}{\partial u^{(1)}_k} H^{(1)}(\lambda_k, \mu_k, v_k, p_{k+1}^*, u^{(1)}_k^*, u^{(2)}_k^*, \mathbf{x}_k^*) &= 0, \\
\frac{\partial}{\partial u^{(2)}_k} H^{(1)}(\lambda_k, \mu_k, v_k, p_{k+1}^*, u^{(1)}_k^*, u^{(2)}_k^*, \mathbf{x}_k^*) &= 0, \\
\lambda_k^T &= V_{x_k} H^{(1)}(\lambda_k, \mu_k, v_k, p_{k+1}^*, u^{(1)}_k^*, u^{(2)}_k^*, \mathbf{x}_k^*) = 0, \\
\mu_k^T &= \frac{\partial}{\partial \lambda_{k+1}} H^{(1)}(\lambda_k, \mu_k, v_k, p_{k+1}^*, u^{(1)}_k^*, u^{(2)}_k^*, \mathbf{x}_k^*) = 0, \quad \mu_1 = 0.
\end{align*}
\]

Furthermore, \(\{u^{(2)}_k|k \in \mathcal{X}\} \) is the corresponding unique open-loop Stackelberg strategy of \(P_2 \) and \(\{x^{(2)}_k|k \in \mathcal{X}\} \) is the state trajectory associated with the Stackelberg solution.

Proof. The problem can be transformed into a finite nonlinear programming problem [11]. The proof then follows from application of the dynamic programming principle [2], [23], [24] to such a problem. □

Using Proposition 3.2, a closed-form solution of the open-loop Stackelberg problem can be found recursively.

Remark 3.1: (Closed-loop information structure for \(P_2 \)) It can be shown that if \(P_2 \) has a closed-loop information, her optimal response will be any open-loop representation of the open-loop policy \(\mathbf{u}^{(2)}(\mathbf{x}) \), i.e., any strategy that will generate the same unique state trajectory and that will have the same open-loop value on this trajectory. However, \(P_1 \)'s unique optimal strategy will remain the same, whereas \(P_2 \)'s corresponding optimal response strategy may be nonunique.

Discussion

Proposition 3.1 discusses a very specific situation in which \(L^{(2)}(u^{(1)}, \cdot) \) is strictly concave on \(U^{(2)} \). In such a situation the optimal response of \(P_2 \) to any \(P_1 \)'s decision is unique. Even if \(P_1 \) has multiple sequences of decisions yielding the same profit for her, the decision among them yielding the lowest profit to \(P_2 \) is unique. Strict concavity of \(L^{(1)} \) then yields the unique game solution.

Without assumptions defined in Section II-B the game does not need to have a classical solution, even if the Hamiltonians \(H^{(1)}_k \) and \(H^{(2)}_k \) are smooth. In such situations the problem can be approached by looking for generalized solutions, satisfying the conditions in Proposition 3.2 almost everywhere. Existence results for general Hamilton-Jacobi-Bellman equations have been obtained by several authors, e.g., [25]–[27], with the most general results being given by [28]. Carrying the steps equivalent to the steps introduced in this section to find a classical solution can then be carried out to find the class of generalized solutions. The question of uniqueness of the generalized solution is more complex.

The notion of viscosity solution [29], [30], which may be nondifferentiable and for which uniqueness (and even stability and general existence) theorems are available, should be introduced if we wish to obtain the unique generalized solution.

IV. CLOSED-LOOP GAME

In this section we will first show the way how to find the feedback Stackelberg equilibrium and the problem of
finding the (global) Stackelberg solution of the closed-loop Stackelberg game, the main problem dealt with in this paper.

A. Feedback Stackelberg equilibrium

With the closed-loop information structure the feedback solution of the game can be obtained recursively, using dynamic programming and solving a static Stackelberg game at each stage. Our aim is to obtain the feedback Stackelberg solution valid for all possible initial states \(x_1 \in X \). A pair \((\gamma^{(1)*}, \gamma^{(2)*})\) constitutes a feedback Stackelberg solution if for all appropriate \(x_k \)

\[
\max_{\gamma^{(1)} \in \Gamma^{(1)}} \max_{\gamma^{(2)} \in \Gamma^{(2)}} \Psi^{(1)}_{\gamma^{(1)}}\left(y^{(1)}_{k}, y^{(2)}_{k}, x_k \right) = \Psi^{(1)}_{\gamma^{(1)*}}\left(y^{(1)*}_{k}, y^{(2)*}_{k}, x_k \right)
\]

where \(R^{(2)}(\gamma^{(1)}) \) is a singleton set defined by \(R^{(2)}(\gamma^{(1)}) = \{ \chi \in \Gamma^{(2)} : \Psi^{(1)}_{\gamma^{(1)}}(y^{(1)}_{k}, y^{(2)}_{k}, x_k) = \max_{\gamma^{(2)} \in \Gamma^{(2)}} \Psi^{(2)}_{\gamma^{(1)}}(y^{(1)}_{k}, y^{(2)}_{k}, x_k) \}\). For all \(x_k \in \mathbb{R}^+ \times [0, 1] \), \(\Psi^{(i)}_k(y^{(1)}_{k}, y^{(2)}_{k}, x_k) = \Psi^{(i)}_k(f_k(x_k, y^{(1)}_{k}, y^{(2)}_{k}, \gamma^{(i)})), i \in \{1, 2\} \). \(k \in \mathcal{K} \), and \(\Psi^{(2)} \) can be defined recursively as \(\Psi^{(2)}(y^{(1)}_{i+1}, y^{(2)}_{i+1}, x_{i+1}) = \Psi^{(2)}_{x_{i+1}}(f_{i+1}(x_{i+1}, y^{(1)}_{i+1}, y^{(2)}_{i+1}), y^{(2)}_{i+1}, x_{i+1}) \in R^{(2)}_k(\gamma^{(2)}_{i+1}) \). \(\Psi^{(2)}_{x_{i+1}}(f_{i+1}(x_{i+1}, y^{(1)}_{i+1}, y^{(2)}_{i+1}), y^{(2)}_{i+1}, x_{i+1}) \) is strictly concave on \(U^{(2)}_k(\gamma^{(2)}_{i+1}, \gamma^{(2)*}_{i+1}, x_{i+1}) \) and a singleton set \(R^{(2)} \) the recursive definition of \(\Psi^{(i)}_k \) provides an easily implementable procedure for computation of feedback Stackelberg strategies.

B. (Global) Stackelberg equilibrium

The (global) Stackelberg equilibrium in closed-loop decision problems cannot be found by utilizing standard optimal control techniques, as the reaction set of \(P_2 \) cannot be generally determined in a closed form for all possible strategies of \(P_1 \). To show the difficulties encountered when solving the problem in which \(P_1 \) has access to dynamic information and to motivate the solution approach that we propose, we consider two case studies: In Section IV-B.1 we will deal with a 2-stage game with each \(P_1 \) and \(P_2 \) acting only once. If, additionally, \(P_2 \) acts in the last stage of the game, the problem becomes a more difficult to solve. Therefore, in Section IV-B.2 such a problem will be dealt with. On the basis of these examples we propose the methodology to solve the general closed-loop games (Section IV-C).

1) First motivation problem: Let

\[
L^{(1)} = -3x_2^2 + (u^{(1)}_2)^2 - \alpha (u^{(1)}_1)^2, \quad 1 > \alpha \geq 0,
\]

\[
L^{(2)} = -5x_2^2 - (u^{(2)}_1)^2,
\]

\[
x_2 = x_1 + u^{(2)}_1, \quad x_3 = x_2 + u^{(1)}_2.
\]

We assume that \(P_1, \) acting at stage 2, has access to both \(x_1 \) and \(x_2 \), while \(P_2, \) has access to \(x_1 \) only.

To any strategy \(\gamma^{(1)} \in \Gamma^{(1)} \) announced by \(P_1 \) an optimal reaction of \(P_2 \) equals

\[
\arg \max_{u^{(2)} \in \mathbb{R}} \left(-5 (x_1 + u^{(2)}_1 + \gamma^{(1)}(x_2, x_1))^2 - (u^{(2)}_1)^2 \right).
\]

Writing such a strategy symbolically as \(\gamma^{(2)}(x_1; \gamma^{(1)}) \), the goal of \(P_1 \) is to find

\[
\arg \max_{\gamma^{(1)} \in \Gamma^{(1)}} \left(-3 \gamma^{(2)}(x_1; \gamma^{(1)}) + \gamma^{(1)}(x_1 + \gamma^{(2)}(x_1; \gamma^{(1)), x_1} + x_1)^2 + (\gamma^{(1)}(x_1 + \gamma^{(2)}(x_1; \gamma^{(1)), x_1))^2 - \alpha (\gamma^{(2)}(x_1; \gamma^{(1)})^2 \right).
\]

This is a constrained optimization problem with the constraint in the form of the maximum of a function. If we restricted the permissible strategies of \(P_1 \) to \(C^2 \)-functions of the first argument, we could obtain the first-order and the second-order conditions implicitly determining \(\gamma^{(2)}(x_1; \gamma^{(1)}) \) [31]. However, depending on \(\alpha \), \(P_1 \)’s optimal strategy may be nondifferentiable. Therefore, we are interested in methods not relying on the twice differentiability of \(P_1 \)’s optimal strategy.

The problem can be approached by looking for generalized solutions, satisfying (4) and (5) almost everywhere [28]. However, the class of generalized solutions can be large and choosing the appropriate elements of this class may require nontrivial analysis. The notion of viscosity solution [29], [30] should be introduced if we wish to obtain the unique generalized solution. However, this approach may cause difficulties if there exist multiple classical solutions of the problem [30]. We need to adopt an approach which leads to finding both classical and generalized solutions.

Therefore, in this paper we propose another approach, involving the so-called team maximum

\[
\max_{\gamma^{(1)} \in \Gamma^{(1)}} \max_{\gamma^{(2)} \in \Gamma^{(2)}} f^{(1)}(\gamma^{(1)}, \gamma^{(2)}).
\]

This value is clearly an upper bound on the profit of \(P_1 \). Finding (6) is referred to as the team problem [2], [6]. To find strategies that imply (6) we utilize a dynamic programming approach [13], [23]. The pair of feedback strategies

\[
\gamma^{(1), \dagger}(x_2) = -\frac{3x_2}{2}, \quad \gamma^{(2), \dagger}(x_1) = -\frac{3x_1}{3 - 2\alpha}
\]

provides the unique globally maximizing solution within the class of feedback strategies. The corresponding optimal state trajectory is described by

\[
x_2^\dagger = -\frac{2x_1}{3 - 2\alpha}, \quad x_1^\dagger = -\frac{x_1}{2}.
\]

and the team maximum for \(P_1 \) is

\[
f^{(1)}(\gamma^{(1), \dagger}, \gamma^{(2), \dagger}) = \frac{-3\alpha x_1^2}{3 - 2\alpha}.
\]

If a game extension, in which \(P_1 \) knows \(x_1 \), is considered, \(\gamma^{(1)} \) becomes a nonunique optimal strategy for \(P_1 \), but any representation of this strategy on the state trajectory (8) also constitutes an optimal strategy. More generally, if we denote the class of such strategies by \(\Gamma^{(1), \dagger} \), any pair

\[
\gamma^{(1), \dagger} \in \Gamma^{(1), \dagger}, \quad \gamma^{(2), \dagger}(x_1) = -\frac{3x_1}{3 - 2\alpha}
\]

2If such a solution is nonunique, we take a supremum of all such solutions.
constitutes a team-maximum solution. For each such pair, the state trajectory and the corresponding profit are still given by (8) and (9), respectively.

For (6) to be realized, there should exist an element of \(\Gamma(1), \) which we will denote by \(\gamma(1)^\ast \), which forces \(P_2 \) to choose \(\gamma(2)^\ast \) even though she is maximizing her own profit, i.e., \(\gamma(2)^\ast = \arg\max_{\gamma(2) \in \Gamma(2)} J(\gamma(1)^\ast, \gamma(2)) \). Moreover, the maximum of \(J(\gamma(1)^\ast, \gamma(2)) \) on \(\Gamma(2) \) has to be obtained uniquely at \(\gamma(2)^\ast \). Intuitively, an optimal strategy for \(P_1 \) is the one that implies \(\gamma(1)^\ast \) from (7) if \(P_2 \) plays \(\gamma(2)^\ast \) from (7) and that penalizes \(P_2 \) otherwise. One of such strategies is

\[
\gamma(1)^\ast(x_1, x_2) = \begin{cases}
\rho x_1, & \text{if } \rho x_1 \neq -\frac{2 \alpha}{1 - \alpha}, \\
-\frac{2x_2}{\alpha}, & \text{if } \frac{x_2}{x_1} = -\frac{2 \alpha}{1 - \alpha}.
\end{cases}
\]

(11)

Therefore, (11) constitutes a (discontinuous) Stackelberg strategy for \(P_1 \), with the unique optimal response of \(P_2 \) being \(\gamma(2)^\ast \) from (7). It can be shown that for this game under the closed-loop information structure a Stackelberg solution exists for all \(\alpha \geq 0 \). The Stackelberg strategy of \(P_1 \) is nonunique, but the optimal response of \(P_2 \) is unique.

Lemma 4.1: The Stackelberg solutions of the game from Example IV-B.1 constitute Nash equilibrium solutions.

Proof. A Stackelberg solution satisfies \(J(\gamma(1)^\ast, \gamma(2)^\ast) \geq J(\gamma(1), \gamma(2)) \), \(\forall \gamma(2) \in \Gamma(2) \). The inequality \(J(\gamma(1)^\ast, \gamma(2)^\ast) \geq J(\gamma(1), \gamma(2)^\ast) \), \(\forall \gamma(1) \in \Gamma(1) \) also holds, since the Stackelberg solution is team-optimal in this case.

We can recapitulate the outcomes of the example:

- The Stackelberg profit of \(P_1 \) is equal to her team maximum.
- A Stackelberg solution exists for all \(\alpha > 0 \).
- The Stackelberg strategy of \(P_1 \) is nonunique (depends, in this example, on \(\rho \)), but the optimal response of \(P_2 \) to all those strategies is nonunique (and independent of \(\rho \)).
- Optimal \(P_1 \)'s strategy may be discontinuous.

Team-maximum based approach led to finding a closed-loop solution. This approach can be recursively applied to games with more stages and more complex dynamics, but the related team problem is not always the one determined by (6), especially if \(P_2 \) acts in the last stage of the game. In the following example we show how to deal with such situations.

2) Second motivation problem: Let

\[
L(1) = -3x_2^2 + (u_1(1))^2 - \alpha (u_2(1))^2, \\
L(2) = -5x_2^2 - (u_1(2))^2 - (u_2(2))^2, \\
x_2 = x_1 + u_1(2), \
x_3 = x_2 + u_1(1) + u_2(2).
\]

(12)

We assume that \(P_1 \) acting at stage 2 has a single decision variable \(u_1(2) \), while \(P_2 \) acting in both stages 1 and 3 has decision variables \(u_1(2) \) and \(u_2(2) \). The optimal reaction of \(P_2 \) to any announced strategy \(\gamma(1) \) of \(P_1 \) is \(\gamma(2) = 4 \) \((x_2, \gamma(1)) = \frac{2}{3} (x_2 + \gamma(1)(x_2, x_1)) \). Substituting this expression into \(J(1) \) and \(J(2) \) derived from \(L(1) \) and \(L(2) \), respectively, gives

\[
f(1) = \frac{1}{12} x_2^2 - \frac{1}{6} x_2 \gamma(1)(x_2, x_1) + \frac{11}{12} (\gamma(1)(x_2, x_1))^2 - \alpha (\gamma(2)(x_1))^2, \\
f(2) = \frac{5}{6} x_2^2 - \frac{5}{3} x_2 \gamma(1)(x_2, x_1) - \frac{5}{6} (\gamma(1)(x_2, x_1))^2 - (\gamma(2)(x_1))^2.
\]

The maximum that \(P_1 \) can achieve is then

\[
\max_{\gamma(1) \in \Gamma(1), \gamma(2) \in \Gamma(2)} J(1)(\gamma(1), \gamma(2)).
\]

(13)

By this way we have converted the problem into a different problem in which \(P_1 \) does not act in the last stage, similar to the example in Section IV-B.1, with the corresponding team problem (13). The problem solution in feedback strategies is

\[
\gamma(1)^\ast = \frac{x_2}{11}, \\
\gamma(2)^\ast = -\frac{x_1}{11 \alpha + 11},
\]

(14)

with the corresponding unique trajectory being

\[
x_2^\ast = \frac{11x_1 \alpha}{11 \alpha + 1}, \\
x_3^\ast = \frac{2x_2}{11}.
\]

(15)

The associated team maximum is \(-\frac{x_1 \alpha^2}{11 \alpha + 11} \), which is an upper bound on the \(P_1 \)'s profit and which is lower than the team maximum of the original game (12). We proceed as in Example IV-B.1 and obtain a strategy for \(P_1 \) that forces \(P_2 \) to strategy \(\gamma(2)^\ast \) from (14):

\[
\gamma(1)^\ast(x_1, x_2) = \begin{cases}
\rho x_1, & \text{if } \rho x_1 \neq -\frac{11 \alpha}{11 \alpha + 11}, \\
\frac{x_2}{11}, & \text{if } \frac{x_2}{x_1} = -\frac{11 \alpha}{11 \alpha + 11}.
\end{cases}
\]

(16)

with \(\rho > 0 \). The optimal response of \(P_2 \) to such a strategy is \(\gamma(2)^\ast(x_1) = \frac{x_1}{11 \alpha + 11} \), \(\gamma(2)^\ast(x_1, x_2) = \frac{5}{6} (x_2 + \gamma(1)^\ast(x_2, x_1)) \), bringing to \(P_1 \) profit (13).

It can be shown that for \(\alpha = 0 \) no continuously differentiable Stackelberg equilibrium exists. Moreover, because \(P_2 \) acts at the last stage of the game, there does not exist a Stackelberg solution that would be a Nash equilibrium solution.

C. General approach

Let us now consider a game with closed-loop information structure, dynamics defined by (1), and profit functions (2). Based on the analysis in Sections IV-B.1 and IV-B.2, we propose the following approach:

- If the follower acts in the last stage of the game \(K \), convert the game into the game with the leader acting last, as was shown in Section IV-B.2.
- Find the team maximum of the game for the leader, which determines the upper bound of the leader’s profit.
- Adopt a particular representation of the optimal team strategy of the leader in this team problem. This particular strategy must force the follower to maximize the profit function of the team problem while she is maximizing her own profit function. Such a strategy can be found following the example in Section IV-B.1.
As was it shown in Sections IV-B.1 and IV-B.2, the leader’s strategy may be nonunique and may be discontinuous. However, if there exists a smooth optimal strategy of P_1, then this strategy can be also found using the indirect approach presented in this section. For some problems a P_1’s strategy forcing the follower to maximize the P_1’s profit function cannot be found. This does not need to mean that there is no team-optimal solution. However, if we are unable to find such a solution, we can restrict ourselves to suboptimal solutions of the original game, as it will be shown in the companion paper for the stochastic variant of the game (1)-(2).

V. CONCLUSIONS & FUTURE RESEARCH

We have introduced specific types of discrete-time infinite dynamic games and have proposed methods to find their Stackelberg equilibrium solutions. Such solutions depend on the information structure of the games. We have reviewed already existing methods applicable to solve problems with open-loop information structure. After having studied two specific examples we have proposed an indirect method to solve the game with closed-loop information structure for general problems. This method is applicable especially if the classical solutions of the problem may not exist.

While in this paper we have focused on deterministic problems, in the companion paper we will focus on their stochastic variants.

Future research consists of extending the approaches proposed here to feedback Stackelberg games and inverse Stackelberg problems.

ACKNOWLEDGMENTS

This research has been supported by the European 7th framework STREP project “Hierarchical and distributed model predictive control of large-scale systems (HD-MPC)”, contract number INFSO-ICT-223854, and by the European 7th Framework Network of Excellence “Highly-complex and networked control systems (HYCON2)”. The authors would like to thank dr. Ján Buša from the Department of Mathematics, Faculty of Electrical Engineering & Computer Science, The Technical University of Košice, for his helpful insights.

REFERENCES

[18] G. J. Olșder, “Phenomena in inverse Stackelberg problems,” Mathe-

[28] R. P. Hämäläinen, Generalized solutions of Hamilton-Jacobi equa-

[30] M. Barbi and I. Capuzzo-Dolcetta, Eds., Optimal Control and Vis-

[31] L. P. Lebedev and M. J. Cloud, The Calculus of Variations and Func-