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Abstract: We first discuss conditions for stability for uncertain max-plus-linear systems and for
uncertain switching max-plus-linear systems, where in the uncertainty description the system
matrices live in a union of polyhedra. Based on the newly derived stability conditions, a
stabilizing model predictive controller is derived for both uncertain max-plus-linear systems
and uncertain switching max-plus-linear systems.

Keywords: Discrete event and hybrid systems, max-plus-linear systems, model uncertainty,
model predictive control, robust control

1. INTRODUCTION

The class of discrete event systems (DES) essentially con-
sists of man-made systems that contain a finite number
of resources that are shared by several users all of which
contribute to the achievement of some common goal (Bac-
celli et al., 1992). In general, models that describe the
behavior of a DES are nonlinear in conventional algebra.
However, there is a class of DES that can be described by
a model that is linear in the max-plus algebra. This class
of max-plus-linear (MPL) systems can only characterize
synchronization and no concurrency or choice. In switching
MPL systems the system can switch between different
modes of operation, in which the mode switching depends
on a switching mechanism. In this paper we will consider
the control of both uncertain MPL systems and uncertain
switching MPL systems.

In contrast to conventional linear systems, where noise and
disturbances are usually modeled by including an extra
term in the system equations (i.e., the noise is considered
to be additive), the influence of noise and disturbances
in (switching) MPL systems is not max-plus-additive, but
max-plus-multiplicative. This means that the system ma-
trices will be perturbed and as a consequence the system
properties will change. Ignoring the noise can lead to a bad
tracking behavior or even to an unstable closed loop. A
second important feature is modeling errors. Uncertainty
in the modeling or identification phase leads to errors
in the system matrices. It is clear that both modeling
errors, and noise and disturbances perturb the system by
introducing uncertainty in the system matrices. Sometimes
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it is difficult to distinguish the two from one another, but
usually fast changes in the system matrices will be con-
sidered as noise and disturbances, whereas slow changes
or permanent errors are considered as model mismatch. In
this paper we extend the results of van den Boom and De
Schutter (2002b) and consider MPL systems and switch-
ing MPL systems in a single framework. We distinguish
between two characterizations: static uncertainty, in which
the system is uncertain but the system matrices are con-
stant, and dynamic uncertainty, in which the uncertainty
in the system is affected by bounded noise. We will also
show that for both characterizations we can derive stability
conditions under quite general assumptions.

Model predictive control (MPC) (Camacho and Bordons,
1995; Maciejowski, 2002) is a model-based predictive con-
trol approach that has its origins in the process industry
and that has mainly been developed for linear or non-
linear time-driven systems. Its main ingredients are: a
prediction model, a performance criterion to be optimized
over a given horizon, constraints on inputs and outputs,
and a receding horizon approach. We show that for MPC
of (switching) MPL systems with the given uncertainty
description we can use the results of van den Boom and
De Schutter (2002b).

The uncertainty description in this paper is related to
the interval uncertainty given by Lhommeau et al. (2004);
Corronc et al. (2010). For other classes of DES uncertainty
results can be found in Cardoso et al. (1999); Liu (1993);
Park and Lim (1999); Young and Garg (1995), and the
references therein.

This paper is organized as follows. In Section 2 we give a
concise introduction to the max-plus algebra and (S)MPL
systems with uncertainty. In Section 3 we derive stability
conditions for (S)MPL systems with uncertainty, and in



Section 4 we show that the MPC method derived in van
den Boom and De Schutter (2002b) can be used to control
uncertain (S)MPL systems.

2. MAX-PLUS ALGEBRA AND MPL SYSTEMS

2.1 Max-plus algebra

In this section we give the basic definition of the max-plus
algebra (Baccelli et al., 1992; Cuninghame-Green, 1979).
Define ε = −∞ and Rε = R∪{ε}. The max-plus-algebraic
addition (⊕) and multiplication (⊗) are defined as follows:

x⊕ y = max(x, y) x⊗ y = x+ y

for any x, y ∈ Rε, and

[A⊕B]ij = Aij ⊕Bij = max(Aij , Bij)

[A⊗ C]ij =
n

⊕

k=1

Aik ⊗ Ckj = max
k=1,...,n

(Aik + Ckj)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . The matrix ε

is the max-plus-algebraic zero matrix: [ε]ij = ε for all i, j.

A max-plus diagonal matrix S = diag⊕(s1, . . . , sn) has
elements Sij = ε for i 6= j and diagonal elements Sii = si
for i = 1, . . . , n. The max-plus identity matrix is equal
to E = diag⊕(0, . . . , 0). The max-plus-algebraic matrix

power of a matrix A ∈ R
n×n
ε is defined as follows: A⊗

0
= E

and A⊗
k
= A⊗A⊗

k−1
for k = 1, 2, . . . . If for a max-plus

diagonal matrix S = diag⊕(s1, . . . , sn) all values si are

finite we find that the inverse of S is equal to S⊗
−1

=

diag⊕(−s1, . . . ,−sn). There holds S ⊗ S⊗
−1

= S⊗
−1

⊗
S = E.

Definition 1. Lunze (1997)
The structure matrix P s of a matrix P ∈ R

n×m
ε is an

element of {0, ε}n×m, that is defined as follows: for all
i = 1, . . . , n, and j = 1, . . . ,m, if Pij = ε then P s

ij = ε and
if Pij 6= ε then P s

ij = 0.

Obviously, a structure matrix describes a class of matrices
with the same ε-structure but different finite elements.

Let Smps be the set of functions f defined as:

f(x) = max
i

(αi,1x1 + . . .+ αi,nxn + βi)

with x ∈ R
n
ε and αi,j ∈ R

+ and βi ∈ R. We write
f ∈ Smps(x), if we want to stress that f is a function
of x.

Lemma 2. (van den Boom and De Schutter, 2002b) The
set Smps is closed under the operations ⊕, ⊗, and scalar
multiplication by a nonnegative scalar.

Let A = [ a1 a2 · · · an ], then

vec(A) =









a1
a2
...
an









Finally, let {H1, H2, . . . , Hn} be matrices with an identi-

cal ε-structure. Then the convex closure Co
(

H1, . . . , Hn

)

is the smallest convex set containing H1, . . . , Hn. So

Co
(

H1, . . . , Hn

)

=
{

H
∣

∣

∣
H = λ1H1 + λ2H2 + . . . +

λnHn, 0 ≤ λm ≤ 1,
∑

m λm = 1
}

, where for ε entries we

use the convention:

λ1ε+ λ2ε+ . . .+ λnε = ε, for λm ≥ 0

2.2 MPL systems and uncertainty

In Cuninghame-Green (1979); Baccelli et al. (1992) it has
been shown that DES in which there is synchronization
but no choice can be described by a model of the form

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k) (1)

y(k) = C(k)⊗ x(k) . (2)

Systems that can be described by this model will be called
max-plus-linear (MPL) systems. The index k is called the
event counter. For DES the state x(k) typically contains
the time instants at which the internal events occur for
the kth time, the input u(k) contains the time instants
at which the input events occur for the kth time, and the
output y(k) contains the time instants at which the output
events occur for the kth time.

Assumption A1: The uncertainty is modeled as follows.
Define the matrix

H(k) =
[

A(k) B(k) CT (k)
]

∈ R
n×(n+nu+ny)
ε

and let

H(k) ∈ H = H(1) ∪H(2) ∪ . . . ∪H(L)

where H(ℓ), ℓ = 1, . . . , L are sets of uncertain system
matrices with each set having a specific ε-structure.
The sets H(ℓ), ℓ = 1, . . . , L are assumed to be
polyhedra, defined by

H(ℓ) = Co
(

H(ℓ,1), H(ℓ,2), . . . , H(ℓ,nℓ)
)

where

H(ℓ,m) =
[

A(ℓ,m) B(ℓ,m) (C(ℓ,m))T
]

∈ R
n×(n+nu+ny)
ε

for ℓ = 1, . . . , L, m = 1, . . . , nℓ. Note that all matrices
H =

[

A B CT
]

in the set H(ℓ) have the same struc-

ture matrixHs
ℓ =

[

As
ℓ Bs

ℓ (Cs)Tℓ
]

for all ℓ = 1, . . . , L.

The choice of this uncertainty model is motivated as
follows:

• For ordinary MPL systems with L = 1 all the
uncertain system matrices have the same ε-structure
and the uncertainty is mainly because of variation
in the finite parameters, such as varying processing
times, transportation times, etc. This uncertainty
description was already discussed in van den Boom
and De Schutter (2002b). For L > 1 the ε-structure
of the uncertain system may change as well.

• We can model uncertainty of switching MPL systems
in which the system properties as event order and
synchronization between events may change.

For each k we can find parameters µℓm(k) where 0 ≤
µℓm(k) ≤ 1 such that

H(k) =

L
∑

ℓ=1

nℓ
∑

m=1

µℓm(k)H(ℓ,m)



If H(k) ∈ H(i) then
nℓ
∑

m=1

µℓm(k) =

{

1 for ℓ = i

0 for ℓ 6= i

If H(k) = H ∈ H is constant for all k we talk about static
uncertainty. This static uncertainty then only contains
static model errors.
If H(k) ∈ H may vary for every event k we talk about
dynamic uncertainty. The uncertainty may contain some
noise as well as (dynamic and/or static) model errors.

3. CONDITIONS FOR STABILITY

Just like in van den Boom and De Schutter (2002a), we
adopt the notion of stability for DES from Passino and
Burgess (1998), in which a DES is called stable if all
its buffer levels remain bounded. All the buffer levels in
DES are bounded if the dwelling times of the parts or
batches in the system remain bounded. This implies for an
uncertain (switching) MPL system with a due date signal
r that closed-loop stability is achieved if there exist finite
constants k0, Myr, Myx and Mxu such that

| yi(k)− ri(k) | ≤ Myr, ∀i (3)

| yi(k)− xj(k) | ≤ Myx, ∀i, j (4)

|xj(k)− um(k) | ≤ Mxu, ∀j,m (5)

for all k > k0. Condition (3) means that the delay between
the actual output date y(k) and the due date r(k) remains
bounded, and on the other hand, that the stock time will
remain bounded. Conditions (4) and (5) mean that the
throughput time (i.e. the time between the starting date
u(k) and the output date y(k)) is bounded. For a due date
defined as

r(k) = ρ k + d(k), where |di(k)| ≤ dmax, ∀i, k (6)

where r and d are vectors signals and ρ is a scalar, satis-
fying ρ > 0, this implies finite buffer levels.

Similar to deterministic (switching) MPL systems, stabil-
ity is not an intrinsic feature of the uncertain (switching)
MPL system, but it also depends on the due dates (i.e.,
the reference signal) of the system. In van den Boom and
De Schutter (2002a) we already observed that for MPL
systems, the largest max-plus-algebraic eigenvalue of the
system matrix A gives an upper bound on the asymptotic
slope of the due date sequence. For uncertain (switching)
MPL systems we cannot directly use the largest max-plus-
algebraic eigenvalue, but we use the concept of maximum
growth rate:

Definition 3. Consider an uncertain (switching) MPL sys-
tem satisfying Assumption A1. Define for a given scalar

α the matrices A
(ℓ,m)
α as [A

(ℓ,m)
α ]ij = [A(ℓ,m)]ij − α. The

maximum growth rate λ of the uncertain (switching) MPL
system is the smallest α for which there exists a max-plus
diagonal matrix S = diag⊕(s1, . . . , sn) with finite diagonal
elements si, such that

[ S ⊗A(ℓ,m)
α ⊗ S⊗

−1
]ij ≤ 0, ∀ i, j, ℓ,m (7)

Remark 1: Note that for any uncertain (switching) MPL
system the maximum growth rate λ is finite, or more
precisely:

λ ≤ max
i,j,ℓ,m

[A(ℓ,m)]ij .

This fact is easily verified by noting that for λ′ =
maxi,j,ℓ,m[A(ℓ,m)]ij , and using the max-plus identity ma-
trix S = diag⊕(0, . . . , 0) one has

[ S ⊗A
(ℓ,m)
λ′ ⊗ S⊗

−1
]ij = [A

(ℓ,m)
λ′ ]ij = [A(ℓ,m)]ij − λ′ ≤ 0

for all i, j, ℓ,m. In general the maximum growth rate λ
can be easily computed by solving a linear programming
problem (van den Boom and De Schutter, 2007).

Lemma 4. For an uncertain (switching) max-plus-linear
system with

A(k) =

L
∑

ℓ=1

nℓ
∑

m=1

µℓm A(ℓ,m)

and a matrix S satisfying equation (7) we find that

[ S ⊗Aα(k)⊗ S⊗
−1

]ij ≤ 0, ∀ i, j

This property immediately follows from the fact that

Aα(k) is a convex combination of A
(ℓ,m)
α .

Let the set LN = { [ ℓ1 · · · ℓN ]T | ℓm ∈ {1, . . . , L}, m =
1, . . . , N} represent the set of all possible permutations of
N numbers from the set {1, . . . , L}.

Definition 5. Let the matrix
[

As
ℓ Bs

ℓ (Cs
ℓ)

T
]

be the struc-

ture matrix for the set H(ℓ) for all ℓ ∈ {1, . . . , L}. An
uncertain (switching) MPL system is weakly controllable
if there exists a finite positive integer N such that for all
ℓ ∈ {1, . . . , L} the matrices

ΓN (ℓ)=
[

Bs
ℓ As

ℓ⊗Bs
ℓ . . . (As)

⊗(N−1)
ℓ ⊗Bs

ℓ

]

(8)

are row-finite, i.e. in each row there is at least one entry
larger then ε.
An uncertain (switching) MPL system is strongly control-
lable if there exists a finite positive integer N such that
for all ℓ̃ = [ ℓ1 · · · ℓN ]T ∈ LN the matrices

ΓN (ℓ̃)=
[

Bs
ℓN

As
ℓN

⊗Bs
ℓN−1

As
ℓN

⊗As
ℓN−1

⊗Bs
ℓN−2

· · · As
ℓN

⊗As
ℓN−1

⊗. . .⊗As
ℓ2
⊗Bs

ℓ1

]

(9)

are row-finite, i.e. in each row there is at least one entry
larger then ε.

In the following theorem we prove that if the system is
controllable and the slope of the due-date signal r is not
too steep for the system to follow, and we allow the input
to only vary in a bounded way around the due date signal,
the system is stable.

Theorem 6. Consider the uncertain (switching) MPL sys-
tem (1)-(2) satisfying Assumption A1, with a maximum
growth rate λ and due-date signal (6). Define the matrices

A
(ℓ,m)
ρ with [A

(ℓ,m)
ρ ]ij = [A(ℓ,m)]ij − ρ. Further assume

C(ℓ,m) to be row-finite. Let vmax be any finite positive
number. Now if

(1) ρ ≥ λ (10)

(2) the system is weakly controllable, (11)

then any input signal

u(k) = ρ k + v(k), where |vi(k)| ≤ vmax, ∀i, k, (12)

will stabilize the (switching) MPL system with static
uncertainty.



If the system is also strongly controllable, then any input
signal

u(k) = ρ k + v(k), where |vi(k)| ≤ vmax, ∀i, k, (13)

will stabilize the (switching) MPL system with dynamic
uncertainty.

Proof : First note that condition (10) holds if and only
if there exists a diagonal matrix S with finite entries such
that

[ S ⊗A(ℓ,m)
ρ ⊗ S⊗

−1
]ij ≤ 0, ∀ i, j, ℓ,m .

From this it follows that

[ S ⊗Aρ(k)⊗ S⊗
−1

]ij ≤ 0, ∀ i, j . (14)

where Aρ(k) is such that [Aρ(k)]ij = [A(k)]ij − ρ.

Let S be the diagonal matrix with finite diagonal elements,
such that (10) is satisfied, and define the signals

z(k) = S ⊗ (x(k)− ρ k)

w(k) = y(k)− ρ k

v(k) = u(k)− ρ k

and the matrices

Āρ(k) = S ⊗Aρ(k)⊗ S⊗
−1

B̄(k) = S ⊗B(k)

C̄(k) = C(k)⊗ S⊗
−1

.

To every ρ we can associate a shifted system (van den
Boom et al., 2005)

z(k) = Āρ(k)⊗ z(k − 1)⊕ B̄(k)⊗ v(k) (15)

w(k) = C̄(k)⊗ z(k). (16)

It is easy to verify that if (11) holds, this shifted system
is also weakly controllable. Stability means that all signals
in this system should remain bounded. In other words, we
have to prove that there exist finite values zmax, wmax,
such that

|z(k)| ≤ zmax , |w(k)| ≤ wmax.

Now consider the uncertain (switching) MPL system (15)–
(16) satisfying Assumption A1, for the input signal vi(k) ≤
vmax, ∀i, k. Let zmax(k) = maxi zi(k) and 1 b̄max =
maxi,j,ℓ,m([B̄(ℓ,m)]ij), then by (15) we have

zi(k) = max
(

max
j

([Āρ(k)]ij + zj(k − 1)),

max
j

([B̄(k)]ij + vj(k))
)

≤ max
(

max
j

([Āρ(k)]ij) + zmax(k − 1),

max
i,j,ℓ,m

([B̄(ℓ,m)]ij) + vmax

)

≤ max
(

zmax(k − 1), b̄max + vmax

)

where we use the fact that [Āρ]ij(k) ≤ 0 because of (14).
Hence

zmax(k) ≤ max
(

zmax(k − 1), b̄max + vmax

)

This means that all entries of the shifted state z(k) have
a non-increasing signal zmax(k) as an upper bound.

1 Note that b̄max is finite due to the fact that the shifted system is
weakly controllable.

Now again consider the uncertain (switching) MPL system
(15)–(16) satisfying Assumption A1, for the input signal
vi(k) ≥ −vmax, ∀i, k. Recall that the shifted system is
controllable. This implies that there is an N such that

γi = max
j

(

[

N
⊕

t=1

Āρ(k +m− 1)

⊗ Āρ(k +m− 2)⊗ . . .⊗ Āρ(k +m−N + t+ 1)

⊗ B̄(k +m−N − t)]ij

)

is finite. A lower bound for γi can be found by taking the
α to be the smallest possible finite entry of all the matrices
Āρ(k + m) and β to be the smallest possible finite entry
of all possible matrices B̄(k +m). Then

γmin = min
t=0,...,N

(β + t α) = min(β,N α+ β) ≤ γi

is finite. By successive substitution we find that for any
m ≥ N there holds

[z(k +m)]i= [Āρ(k +m)⊗ z(k+m− 1)⊕

B̄(k +m)⊗ v(k+m)]i

= [Āρ(k +m)⊗ Āρ(k +m− 1)⊗ z(k+m− 2)⊕

B̄(k +m)⊗ v(k+m−N)

Āρ(k +m)⊗ B̄(k +m)⊗ v(k+m−N)]i

= [Āρ(k +m)⊗ Āρ(k +m− 1)⊗ . . .⊗

Āρ(k +m−N+1)⊗ z(k+m−N)]i⊕

[B̄(k +m)⊗ v(k+m)

Āρ(k +m)⊗ B̄(k +m− 1)⊗ v(k+m− 1)⊕

Āρ(k +m)⊗ Āρ(k +m− 1)⊗ . . .⊗

B̄(k +m−N+1)⊗ v(k+m−N + 1)]i

= [Āρ(k +m)⊗ Āρ(k +m− 1)⊗ . . .

⊗ Āρ(k +m−N + 2)⊗ z(k+m−N)]i⊕

[

N
⊕

t=1

Āρ(k +m)⊗ Āρ(k +m− 1)⊗ . . .

⊗ Āρ(k +m−N + t+ 1)⊗ B̄(k +m−N + t)⊗

⊗ v(k+m−N+t)]i

≥ [

N
⊕

t=1

Āρ(k +m− 1)⊗ Āρ(k +m− 2)⊗ . . .

⊗ Āρ(k +m−N + t− 1)⊗ B̄(k +m−N + t)⊗

⊗ v(k+m−N+t)]i

≥ max
j

(

[
N
⊕

t=1

Āρ(k +m− 1)⊗ Āρ(k +m− 2)⊗ . . .

⊗ Āρ(k +m−N + t− 1)⊗ B̄(k +m−N + t)]ij

+ vj(k+m−N+t)
)

≥ γi − vmax

≥ γmin − vmax

We conclude that after N event steps we have a lower
bound for our shifted state z(k). Let c̄max and c̄min be
the largest and the smallest finite values of C̄(ℓ,m), ∀ℓ,m,
respectively. Now from (16) it follows that

wi(k) = max
j

([C̄ρ(k)]i,j + zj(k)])

and so after N event steps w(k) will be bounded by



γmin − vmax + c̄min ≤ wi(k)

≤ max(zmax(k − 1), b̄max + vmax) + c̄max

where zmax(·) is a non-increasing signal.

Define ζ(k) = S ⊗ (r(k) − ρ k) = S ⊗ d(k) and smax =
maxp(sp) and smin = minp(sp). Then |ζi(k)| ≤ ζmax =
smax + dmax. For any k > N , there holds

yi(k)− ri(k) =

= [(S⊗
−1

⊗ w(k)) + ρ k]i − [(S⊗
−1

⊗ ζ(k)) + ρ k]i
= (−si + wi(k) + ρ k)− (−si + ζi(k) + ρ k)

= wi(k)− ζi(k)

≤ max(zmax(0), b̄max + vmax) + c̄max + smax + dmax

= Myr1,

ri(k)− yi(k) = ζi(k)− wi(k)

≤ dmax + smax − γmin + vmax − c̄min

= Myr2,

|yi(k)− ri(k)| = |wi(k)− ζi(k)|

≤ max(Myr1,Myr2) = Myr < ∞,

yi(k)− xj(k) =

= [(S⊗
−1

⊗ w(k)) + ρ k]i − [(S⊗
−1

⊗ z(k)) + ρ k]j
= (−si + wi(k) + ρ k)− (−sj + zj(k) + ρ k)

= wi(k)− zj(k) + (sj − si)

≤ max(zmax(0), b̄max + vmax) + c̄max

− γmin + vmax + smax − smin

= Myx < ∞,

xj(k)− um(k) =

= [(S⊗
−1

⊗ z(k)) + ρ k]j − [(S⊗
−1

⊗ v(k)) + ρ k]m
= (−sj + zj(k) + ρ k)− (−sm + vm(k) + ρ k)

= zj(k)− vm(k) + (sm − sj)

≤ max(zmax(0), b̄max + vmax) + vmax + smax − smin

= Mxu < ∞ ,

In a similar way as for yi(k) − xj(k) and xj(k) − um(k)
we can prove that xj(k) − yi(k) and um(k) − xj(k) are
bounded. This proves stability for the uncertain (switch-
ing) MPL system (1)–(2). ⋄

4. A STABILIZING ROBUST MODEL PREDICTIVE
CONTROLLER

In De Schutter and van den Boom (2001) we have ex-
tended the MPC approach to MPL systems minimizing
the criterion

J(k) =

Np−1
∑

j=0

max(y(k + j)− r(k + j), 0)− λu(k + j)

In the perturbed case we have to solve the worst-case MPC
problem at event step k as follows:

Jwc(k) = max
H(k+1),...,H(k+Np)∈H

J(k,H) (17)

subject to

u(k+j)− u(k+j−1) ≥ 0 for j = 0, . . . , Np−1 (18)

| u(k+j)− ρ (k−j) | ≤ vmax for j = 0, . . . , Np−1 (19)

F (k)ũ(k) ≤ g(k) , (20)

where (17) denotes the worst-case criterion with J(k,H) as
short notation for J(k,H(k+1), . . . , H(k+Np)), (18) guar-

antees a non-decreasing input signal u, (19) guarantees
stability, and (20) denotes additional linear constraints (De
Schutter and van den Boom, 2001; van den Boom and De
Schutter, 2002b) with

ũ(k) =
[

uT (k) uT (k+1) · · · uT (k+Np−1)
]T

.

Define the vector e(k) = vec(H(k)) and let H(k) ∈ H(ℓ(k),
then

e(k) ∈ E(ℓ(k)) = Co(vec(H(ℓ(k),1)), vec(H(ℓ(k),2)),

. . . , vec(H(ℓ(k),nℓ(k))))

Now denote the finite entries of e(k) and E(ℓ(k)) by ef(k)

and E
(ℓ(k))
f , respectively. If we stack all ef(k) we obtain

ẽ(k) =









ef(k)
ef(k+1)

...
ef(k+Np−1)









∈ Ẽ(ℓ̃(k)) =













E
(ℓ(k))
f

E
(ℓ(k+1))
f
...

E
(ℓ(k+Np−1))
f













Let Ẽ
(ℓ̃(k))
v contain the vertices of the polytope Ẽ(ℓ̃(k)).

With this notation the worst-case criterion becomes

Jwc(k) = max
ℓ̃(k)∈LNp

max
ẽ∈Ẽ(ℓ̃(k))

J(k,H(ẽ))

where H(ẽ) denotes that H(k + 1), . . . , H(k + Np) are
parametrized by the entries of ẽ(k).

In van den Boom and De Schutter (2002b) we have
proven that the criterion J(k) is a max-plus-positive-
scaling function (see Section 1) in the variables ũ and ẽ

and that for a given ℓ̃(k) the function

Jwc(k) = max
ẽ∈Ẽ(ℓ̃(k))

J(k,H(ẽ))

can be computed by evaluating the function in the vertices

of Ẽ(ℓ̃(k)), so

Jwc(k) = max
ẽ∈Ẽ

(ℓ̃(k))
v

J(k,H(ẽ))

Furthermore this function is convex in ũ. This means that
the optimization

min
ũ(k)

Jwc(k) = min
ũ(k)

max
ℓ̃(k)∈LNp

max
ẽ∈Ẽ

(ℓ̃(k))
v

J(k,H(ẽ)) (21)

is convex in ũ.

Theorem 7. Consider the uncertain (switching) MPL sys-
tem (1)-(2) satisfying Assumption A1, with a maximum
growth rate λ and due-date signal (6) with ρ ≥ λ. As-
sume the system to be controllable (weakly controllable in
the case of static uncertainty, strongly controllable in the
case of dynamic uncertainty) and let C(ℓ,m) be row-finite
∀ℓ,m. Let vmax be a positive constant. Now the worst-
case (switching) MPL-MPC problem for event step k can
be defined as:

min
ũ(k)

Jwc(k) (22)

subject to (18)–(20). The resulting controller will stabilize
the system.

The proof follows immediately from the results in this
Section and previous Section.

Proposition 8.
Let ℓ̃ = {ℓ1, ℓ2, . . . , ℓm} and ı̃ = {i1, i2, . . . , im}. The



worst-case (switching) MPL-MPC problem of Theorem
7 can be recast into the following linear programming
problem:

min
ũ(k),t(k)

max
ℓ̃,̃ı

Np
∑

j=1

tj,ℓ̃,̃ı(k)− βũj(k) (23)

subject to

tj,ℓ̃,̃ı ≥ [C̃(ℓ̃, ı̃)](j+1)l + xl(k − 1)− r(k + j) , ∀j, l, ℓ̃, ı̃

(24)

tj,ℓ̃,̃ı ≥ [D̃(ℓ̃, ı̃)](j+1)l + ũl(k)− r(k + j) , ∀j, l, ℓ̃, ı̃ (25)

tj,ℓ̃,̃ı ≥ 0 , ∀j,m (26)

u(k + j)− u(k + j − 1) ≥ 0, ∀j (27)

− µmax ≤ u(k + j)− ρ k ≤ µmax, ∀j (28)

F (k) ũ(k) ≤ g(k) (29)

where C̃ and D̃ are defined as follows:

[C̃(ℓ̃, ı̃)]ml =[C(ℓ(m),i(m)) ⊗A(ℓ(m),i(m))

⊗ . . .⊗A(ℓ(1),i(1))]l

[D̃(ℓ̃, ı̃)]ml =



























C(ℓ(m),i(m)) ⊗A(ℓ(m),i(m))

⊗A(ℓ(l),i(l+1)) ⊗B(ℓ(l),i(l)) if m>l

C(ℓ(m),i(m)) ⊗B(ℓ(m),i(m)) if m= l

ε if m<l

Proof : If we define

tj,ℓ̃,̃ı = max(y(k + j)− r(k + j), 0) (30)

with

y(k + j) = [C̃(ℓ̃, ı̃)]j+1 ⊗ x(k − 1)⊕ [D̃(ℓ̃, ı̃)]j+1 ⊗ ũ(k)
(31)

where [C̃(ℓ̃, ı̃)]m and [D̃(ℓ̃, ı̃)]m stand for the mth row of

[C̃(ℓ̃, ı̃)] and [D̃(ℓ̃, ı̃)], respectively, then (30) with (23)
implements (22), and (24),(25),(26) implement (31). ⋄

5. DISCUSSION

In this paper we have considered the control of uncertain
max-plus-linear systems and uncertain switching max-
plus-linear systems. The uncertainty is given in the form of
the union of polytopic sets for the system matrices. These
multiple sets can be used if the ε-structure of the system is
uncertain or may change during operation. The description
can also be used to describe uncertainty in switching max-
plus linear systems. If the system is controllable and the
slope of the due-date signal is larger or equal to than
the maximum growth rate, the system will be stable if
the input signal is in a bounded set. We have derived
a stabilizing model predictive controller for both max-
plus-linear systems as well as for switching max-plus-linear
systems. For both cases the resulting optimization problem
can be solved using linear programming algorithms.

In future research we would like to include constraints
on the outputs, and extend the results to a probabilistic
uncertainty framework. Further we will characterize the
computational complexity of the worst-case MPC prob-

lem, and look for ways to further improve the efficiency by
complexity reduction or by approximation.
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