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An Approximation Approach for Identification of

Stochastic Max-Plus Linear Systems

Samira S. Farahani ∗ Ton van den Boom ∗ Bart De Schutter ∗

∗ Delft Center for Systems and Control, Delft University of Technology, Delft,
The Netherlands (e-mail: {s.safaeifarahani,t.j.j.vandenboom,b.deschutter}@tudelft.nl)

Abstract: Max-plus linear systems belong to a special class of discrete-event systems that consists of
systems with synchronization but no choice. Our focus in this paper is on stochastic max-plus linear
systems, i.e., perturbed systems that are linear in the max-plus algebra. One interesting topic is the
identification of such systems. Previous works report on a method for identifying the parameters of a
state space model for a stochastic max-plus linear system from measured data. However, due to the
structure of such systems, this method results in a complex identification problem. Therefore, the aim
of this paper is to decrease the computational complexity and the computation time of this problem. To
this end, we use an approximation approach that is based on the higher-order raw moments of a random
variable. This method results in a less complex problem that can be solved efficiently using gradient
search techniques.

Keywords: Stochastic discrete event systems, stochastic max-plus linear systems, identification,
approximation, raw moments

1. INTRODUCTION

Discrete-event systems are dynamical event-driven systems in
which the state of the system changes due to the occurrence
of events, in contrast to continuous variable systems where the
progression of time specifies the system state. Discrete-event
systems arise in the context of telecommunication networks,
railway networks, manufacturing systems, parallel computing,
traffic control systems, etc., for which there exist different
modeling frameworks such as queuing theory, (extended) state
machines, formal languages, automata, temporal logic models,
generalized semi-Markov processes, Petri nets, and computer
simulation models (Cassandras and Lafortune, 1999; Ho, 1992;
Peterson, 1981). One of the important classes of discrete-event
systems is the class of the max-plus linear (MPL) systems,
which contains discrete-event systems with synchronization but
no choice. This leads to a description that is linear in max-
plus algebra (Baccelli et al., 1992; Cuninghame-Green, 1979;
Heidergott et al., 2006), and that applies to both deterministic
and stochastic discrete-event systems. In stochastic systems,
processing times and/or transportation times are assumed to be
stochastic quantities. More results on stochastic MPL systems
such as system analysis, control system, etc., can be found in
(Baccelli et al., 1992; Heidergott et al., 2006; Mairesse, 1994;
Olsder et al., 1990; Resing et al., 1990).

To use a model for control purposes, the model parameters
have to be determined. We concentrate on state space identi-
fication for stochastic MPL discrete-event systems. In general,
compared to transfer functions, State space models have certain
advantages: they explicitly take the initial state of the system
into account, they can reveal “hidden” behavior such as unob-
servable, unstable modes, the extension from SISO to MIMO
is more intuitive and elegant for state space models, and the
analysis is often easier. Some examples of state space identifica-
tion methods for deterministic MPL systems are present in (De

Schutter et al., 2002; Schullerus and Krebs, 2001a,b; Schullerus
et al., 2003).

In this paper, we consider the identification of the stochastic
MPL systems. In such systems modeling errors, noise, and/or
disturbances are present, which results in the perturbation of
the system parameters and consequently, the system identifi-
cation has to take the stochastic properties into account. This
problem has been addressed in (van den Boom et al., 2003)
where under quite general conditions the resulting identification
problem can be solved using the gradient search techniques.
However, when the order of the stochastic system increases, the
computational complexity increases drastically and hence the
method proposed in (van den Boom et al., 2003) becomes both
inefficient and time consuming due to the presence of numerical
integration in the cost function.

This paper uses the approach presented in (Farahani et al.,
2010), to approximate the calculation of the integrals using
raw moments of random variables. This method simplifies the
computations considerably and by choosing the appropriate
order p of the raw moments, the approximation error can be
made sufficiently small. Since we can compute these moments
analytically, this approach results in a much faster and more
efficient way to solve the identification problem for stochastic
MPL systems without increasing the computational complexity.

The paper is organized as follows. Section 2 presents a brief
description of the max-plus algebra and stochastic MPL sys-
tems. In Section 3 the identification of stochastic MPL systems
is considered, as presented in (van den Boom et al., 2003). Sec-
tion 4 introduces the proposed approximation method, which
is based on the higher-order raw moments. In this section it is
also shown how this approach reduces the complexity of the
identification problem. Section 5 presents a worked example in
which the new method is applied and the computation time of



the approximation method is compared with the one in (van den
Boom et al., 2003).

2. MAX-PLUS ALGEBRA AND STOCHASTIC
MAX-PLUS LINEAR SYSTEMS

In this section we concisely present the basics of the max-plus
algebra and the class of stochastic max-plus linear systems.
More detailed information can be found in (Baccelli et al.,
1992; Cuninghame-Green, 1979; Heidergott et al., 2006).

2.1 Max-Plus Algebra

In the max-plus algebra, the main operations are maximization
and addition, defined as follows:

x⊕ y = max(x,y)

x⊗ y = x+ y

for x,y ∈ Rε where Rε = R∪{ε} and ε = −∞. Note that the
zero element of the max-plus addition is ε , i.e., x⊕ ε = x, and
the identity element of the max-plus multiplication is e = 0,
i.e., x⊗ e = x. The corresponding max-plus matrix operations
are defined (Baccelli et al., 1992) as

(A⊕B)i j = ai j ⊕bi j = max(ai j,bi j)

(A⊗C)i j =
n
⊕

k=1

aik ⊗ ck j = max
k=1,...,n

(aik + ck j)

for A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . In the sequel of this paper, we

denote the i-th row of matrix A by Ai,· and the j-th column by
A·, j. To avoid ambiguity, wherever we have a multiplication in
conventional algebra, we drop the multiplication sign, while in
the max-plus expressions we always keep the sign ⊗ present.

2.2 Max-Plus-Nonnegative-Scaling Functions

Denote the set of max-plus-nonnegative-scaling functions by
Smpns. It consists of functions f of the form

f (z) = max
i=1,...,m

(τi,1z1 + · · ·+ τi,nzn +ξi)

with variable z ∈ R
n
ε and constant coefficients τi, j ∈ R

+ and
ξi ∈ R, where R

+ is the set of the nonnegative real numbers.
In the sequel, we stress that f is a function of z by writing
f ∈ Smpns(z). As shown by van den Boom and De Schutter
(2004), the set Smpns is closed under the operations ⊕,⊗, and
the scalar multiplication by a nonnegative scalar.

2.3 Stochastic MPL Systems

Discrete event systems with synchronization but no choice can
be modeled as follows (Baccelli et al., 1992; Cuninghame-
Green, 1979):

x(k+1) = A(k)⊗ x(k)⊕B(k)⊗u(k) (1)

= [ A(k) B(k) ]⊗
[

x(k)
u(k)

]

(2)

= Q(k)⊗φ(k) (3)

where x(k) is the state of the system at event step k, and u(k)
is the input of the system or in fact the time instant at which
the internal input event occurs for the k-th time. In a stochastic
system noise and modeling errors lead to perturbation of the
system matrices, A(k) and B(k). Following van den Boom et al.
(2003), we present these uncertainties in a single framework,

using one stochastic vector e(k) with a certain probability
distribution. Note that the entries of the system matrices belong
to Smpns(e(k)) (van den Boom and De Schutter, 2004), i.e.,

A(k) ∈ S n×n
mpns(e(k)), B(k) ∈ S

n×nu
mpns (e(k)). In the sequel, we

denote the uncertain system matrices with matrix Q(k) and the
state and input vector with φ(k) (cf. (3)).

In order to identify the unknown system parameters, we need
to distinguish between the a priori known parameters, i.e., the
parameters that are either constant or determined in advance
such as the transportation time in a production system, and ones
that have to be identified. Therefore, the i-th row of the matrix
Q(k) can be written as:

Qi,·(k) = Ξi,·+θ T ∆(i)+ eT (k)ΛS(i) (4)

where Ξ represents the parameters that are known, θ is a
vector of unknown parameters, e(k) = [e1(k), . . . ,ene(k)]

T is
the stochastic vector, the diagonal matrix Λ = diag(λ1, . . . ,λne)

contains the amplitude of the noise, and ∆(i) and S(i) are
selection matrices for the i-th row with zeros and ones as
entries. In fact the role of the selection matrices is to determine
which elements of the vectors θ and e(k) have to appear in
the i-th row. We assume that the probability density function
of e(k) (denoted by f (e)) and other matrices are known a
priori and the only parameters that have to be identified are
the components of θ and the diagonal elements of Λ, denoted
by λ = [λ1, . . . ,λne ]

T . Therefore, in the identification procedure

we will derive estimates θ̂ and λ̂ of θ and λ , respectively.

3. IDENTIFICATION OF STOCHASTIC MAX-PLUS
LINEAR SYSTEMS

In this paper we perform the identification based on input-
state data. Note that in MPL systems the state contains the
time instants at which the state events occur. Since the state
is observable by assumption, these instants can be measured
easily and so we usually have full-state information. Consider
the input-state sequence {(u(k),x(k)}N

k=1 of a system of the

form (3) and assume that the system parameters θ̂ and λ̂
has to be identified using this sequence. Following van den
Boom et al. (2003) we assume that the input-state sequence is
sufficiently rich 1 to capture all the relevant information about
the system (see also Schullerus and Krebs (2001b); Schullerus
et al. (2003)). We consider the following identification problem
(van den Boom et al., 2003)

(θ ∗,λ ∗) = arg min
(θ̂ ,λ̂ )

J(θ̂ , λ̂ ) (5)

subject to λ̂ > 0

while

J(θ̂ , λ̂ ) =
N−1

∑
k=1

n

∑
i=1

(E[xi(k+1|k)]− xi(k+1))2
(6)

where E[·] denotes the expected value operator and E[xi(k +
1|k)] is the one-step-ahead prediction of xi for event step k+1,

1 Intuitively, this can be characterized as follows. Note that (3) and (4) imply

that each component of x(k+ 1) can be written as a max expression of terms

in which the unknown parameters θ and λ appear. An input signal is then said

to be sufficiently rich if it is such that each of these terms is the maximum

one sufficiently often (this is also related to the idea of persistent excitation in

conventional system identification (Ljung, 1999)).



using the knowledge from event step k. Considering (3) and (4),
we can rewrite the one-step-ahead prediction as

E[xi(k+1|k)] = E
[(

Ξi,·+θ T ∆(i)+ eT (k)ΛS(i)
)

⊗φ(k)
]

and hence, the one-step-ahead prediction error is

η̂i(k+1, θ̂ , λ̂ ) = E[xi(k+1|k)]− xi(k+1)

= E
[

max
j=1,...,m

(

ξi, j + θ̂ T ∆
(i)
·, j + eT (k)Λ̂S

(i)
·, j

+φ j(k)− xi(k+1)
)]

(7)

Now for a specific realization of the noise vector e(k), let:

ηi(k+1, θ̂ , λ̂ ,e(k)) = max
j=1,...,m

(

ξi, j + θ̂ T ∆
(i)
·, j + eT (k)Λ̂S

(i)
·, j

+φ j(k)− xi(k+1)
)

Hence,

η̂i(k+1, θ̂ , λ̂ ) = E[ηi(k+1, θ̂ , λ̂ ,e(k))]

To have a more compact notation, let αi j(k) = ξi, j + φ j(k)−
xi(k + 1), Πi j = ∆

(i)
·, j , and Γi j = diag(S

(i)
1, j, . . . ,S

(i)
ne, j

). Since

eT (k)Λ̂S
(i)
·, j is a scalar and Λ̂ is a diagonal matrix, we have:

eT (k)Λ̂S
(i)
·, j = (S

(i)
·, j)

T Λ̂e(k) = λ̂ T Γi je(k)

Therefore, we can rewrite ηi(k+1, θ̂ , λ̂ ,e(k)) as

ηi(k+1, θ̂ , λ̂ ,e(k)) = max
j=1,...,m

(αi j +ΠT
i jθ̂ + λ̂ T Γi je(k)) (8)

Therefore, the expected value of ηi(k + 1, θ̂ , λ̂ ,e(k)), i.e.,

η̂i(k+1, θ̂ , λ̂ ) can be computed analytically as follows:

η̂i(k+1, θ̂ , λ̂ ) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
ηi(k+1, θ̂ , λ̂ ,e(k)) f (e)de

=
nv

∑
j=1

∫

· · ·
∫

e∈Ωi j(θ̂ ,λ̂ ,k)

(αi j +ΠT
i jθ̂ + λ̂ T Γi je(k)) f (e)de

(9)

where de = de1, . . . ,dene and the sets Ωi j(θ̂ , λ̂ ,k), i = 1, . . . ,n,
j = 1, . . . ,m are defined such that they have non-overlapping

interiors, and that for all e ∈ Ωi j(θ̂ , λ̂ ,k),

ηi(k+1, θ̂ , λ̂ ,e(k)) = αi j +ΠT
i jθ̂ + λ̂ T Γi je(k)

and for any i it holds that
⋃m

j=1 Ωi j(θ̂ , λ̂ ,k) = R
ne , i.e., for all

realizations of e, the j-th term in (8) gives the maximum, and

the sets Ωi j(θ̂ , λ̂ ,k) cover the whole space of R
ne and only

overlap at the boundary of the regions.

4. APPROXIMATION METHOD

Due to the numerical integration presented in (9), the com-
putational complexity of the identification problem grows fast
when the number of stochastic variables increases. Also, in the
extension to multi-step ahead prediction (van den Boom et al.,
2003), the stochastic complexity grows drastically. van den
Boom et al. (2003) suggested to use the piecewise polynomial
probability density functions as an approximation of the real
probability density function. This method leads to a two step
procedure: In the first step all the regions on which each term
in (9) is maximum, has to be specified. In the second step
the integral over these regions has to be calculated. Therefore,
the whole procedure is quite complex and time consuming.
Accordingly, we propose an approximation method, based on
the p-th raw moments of a stochastic variable, as explained in
(Farahani et al., 2010). We consider the p-norm and the ∞-norm

of a random vector y = [y1, . . . ,yn]
T , i.e., ‖y‖p =

(

|y1|p + · · ·+
|yn|p

)1/p
and ‖y‖∞ = max(|y1|, . . . , |yn|) respectively, and the

relation between these two norms (Golub and Van Loan, 1990),
i.e.,

‖y‖∞ ≤ ‖y‖p ≤ n1/p‖y‖∞ (10)

However, in contrast to the definition of p-norm and ∞-norm,
the definition of (8) has no absolute value. Clearly, y ≤ |y| and
y has an unbounded distribution in general. We introduce a
new variable L as an approximate lower bound, i.e., L ≤ y j for
j = 1, . . . ,n. Hence,

max(y1, . . . ,yn) = max(y1 −L, . . . ,yn −L)+L

≤ max(|y1 −L|, . . . , |yn −L|)+L. (11)

Hence, the role of L is to decrease the error of approximating
y−L by |y−L|.
Now assume that the elements of vector y are independent and
identically normally distributed, i.e., y j ∼ N (µ j,σ

2
j ). Accord-

ing to the “3σ -rule”, 99.7% of the observations of a normally
distributed random variable fall within the mean minus 3 times
the standard deviation and the mean plus 3 times the standard
deviation. Therefore, we choose L = min

j=1,...,n
(µ j − 3σ j) as an

approximate lower bound. There is an important theorem that
must be mentioned before we proceed further.

Theorem 1. (Jensen’s Inequality Boyd and Vandenberghe (2004)).
Let x be an integrable real-valued random variable and ϕ a
concave function such that ϕ(x) is integrable. Then: ϕ (E [x])≥
E [ϕ(x)].

Now let x j = y j −L and by considering (10), (11), the Jensen’s
inequality for concave functions, and noting the fact that ex-
pected value is a monotonic operator, we obtain:

E
[

max(x1, . . . ,xn)
]

+L ≤
(

n

∑
j=1

E
[

|x j|p
]

)1/p

+L (12)

Hence, we can use the left-hand side of (12) as an approxima-
tion of the right-hand side. Consequently, we can approximate

the function η̂i(k + 1, θ̂ , λ̂ ) by η̂app,i(θ̂ , λ̂ ) for an appropriate
choice of p where

η̂app,i(θ̂ , λ̂ ) =

(

m

∑
j=1

E
[(

αi j +ΠT
i jθ̂ + λ̂ T Γi je(k)−L

)p]

)1/p

+L (13)

For an even positive integer p = 2q, q ∈ Z
+, E[xp] = E[|x|p].

Therefore in the rest of this paper, we use E[xp] where p is an
even integer larger than or equal to 2.

Following (Farahani et al., 2010), we also assume that the ele-
ments of the stochastic vector e are independent and identically
normally distributed, i.e., eℓ ∼ N (µℓ,σ

2
ℓ ) for ℓ = 1, . . . ,ne.

By using the property of the normal distribution that sum
of the independent normally distributed random variables has
also a normal distribution (Dekking et al., 2005), we conclude

that the random variable ω j = αi j +ΠT
i jθ̂ + λ̂ T Γi je(k)− L in

(13) is also normally distributed with mean µ j = αi j +ΠT
i jθ̂ +

λ̂ T Γi jµe−L and variance σ2
j =∑

ne

ℓ=1(λ̂
T Γi j)

2
ℓσ2

ℓ . Note that L=



min
j=1,...,m

(αi j +ΠT
i jθ̂ + λ̂ T Γi jµe −3σ j) and µe = [µ1, . . . ,µne ]

T is

the mean of the error vector e.

Since we know that the random variable ω j = αi j + ΠT
i jθ̂ +

λ̂ T Γi je(k)− L is normally distributed, we can define its p-th
raw moments. By definition, the p-th raw moment of a nor-
mally distributed random variable x with mean µ and standard
deviation σ can be computed as follows:

E[xp] =
∫ ∞

−∞
xp 1√

2πσ
e−(x−µ)2/(2σ2)dx

which is finite for all integers p ≥ 2. According to (Willink,
2005), this moment has a closed form which can be expressed
as follows:

E
[

xp
]

= σ pi−pHp(iµ/σ) (14)

where

Hp(x)≡ (−1)p exp(x2/2)
dp

dxp
exp(−x2/2)

= p!

p/2

∑
k=0

(−1)kxp−2k

2kk!(p−2k)!

is the p-th order Hermite polynomial, and where the second
equality can be obtained by considering equations (26.2.51)
and (22.3.11) in (Abramowitz and Stegun, 1964). Note that
the right-hand side of (14) is real because Hp(x) contains only
even powers of x if p is even. Therefore, by using (14), we can
rewrite the approximation function (13) as follows:

η̂app,i(θ̂ , λ̂ ) =

(

m

∑
j=1

σ p
j i−pHp(iµ j/σ j)

)1/p

+L.

Furthermore, we can obtain its gradients with respect to θ̂

and λ̂ by considering the recurrence relations for Hermite
polynomials (Abramowitz and Stegun, 1964), i.e.,

Hp+1(x) = xHp(x)− pHp−1(x)

and

H ′
p(x) = pHp−1(x),

Therefore:

∇θ̂ η̂app,i(θ̂ , λ̂ ) =

(

m

∑
j=1

σ p
j i−pHp(iµ j/σ j)

)1/p−1

·
(

m

∑
j=1

βi jσ
p−1
j i−p+1Hp−1(iµ j/σ j)

)

and

∇λ̂ η̂app,i(θ̂ , λ̂ ) =

(

m

∑
j=1

σ p
j i−pHp(iµ j/σ j)

)1/p−1

·
( m

∑
j=1

σ p−2
j i−p

[

γi jσeσ jHp(iµ j/σ j)

+(γi jµeσ j − γi jσeµ j)iHp−1(iµ j/σ j)
]

)

where µ j and σ j are the same as defined before.

As a result, we can approximate J(θ̂ , λ̂ ) in (6) by replacing

η̂i(k+1, θ̂ , λ̂ ) with η̂app,i(θ̂ , λ̂ ) as follows:

Japp(θ̂ , λ̂ ) =
N

∑
k=1

n

∑
i=1

(

η̂app,i(θ̂ , λ̂ )
)2

(15)

with the subgradients

∇θ̂ Japp(θ̂ , λ̂ )=
N

∑
k=1

n

∑
i=1

2η̂app,i(θ̂ , λ̂ )∇θ̂ η̂app,i(θ̂ , λ̂ )

∇λ̂ Japp(θ̂ , λ̂ )=
N

∑
k=1

n

∑
i=1

2η̂app,i(θ̂ , λ̂ )∇λ̂ η̂app,i(θ̂ , λ̂ )

and solve the optimization problem by means of a gradient
search method.

5. EXAMPLE

In this example, we apply the proposed approximation method
to the identification problem of a stochastic max-plus linear
system to check whether it works efficiently and gives reliable
results. Moreover, we can compare the computation time of
this method with the one from the analytic solution in (van den
Boom et al., 2003).

Consider the max-plus-linear system (1) with the following
system matrices

A(k) =

[

θ1(k) θ2(k)
ε ε

]

B(k) =

[

θ3(k)
0

]

where the true parameter vector θ is given by

θ = [ θ1 θ2 θ3 ]
T
= [ 0.05 1 0.5 ]

T

These parameters are perturbed by noise components eℓ(k) that
are independent and have a standard normal distribution, i.e.,
eℓ(k)∼ N (0,1), for ℓ= 1, . . . ,3, and with amplitudes

λ = [ λ1 λ2 λ3 ]
T
= [ 0.3 0.3 0.3 ]

T
.

In this simulation study we simulate the system for 400 event
steps, i.e., for k=1,. . . ,400. A parameter estimation is done with
the input-state data where the input signal is a staircase signal
with an average slope of 1.5, given by

u(k) = 4.5 ·
(

1+ ⌊k/3⌋
)

where ⌊x⌋ denotes the largest integer less than or equal to x. The
input signal u(k) in shown in Figure 1 for k = 1, . . . ,40.

We minimize the approximate cost function (15) based on the
one-step ahead prediction, i.e., we predict the behavior of the
system at the event step k + 1 based on the information that
we have at the event step k. Also we use a gradient-based,
multi-start, optimization method, i.e., sequential quadratic pro-
gramming (SQP) method, considering 15 different initial values
to start the optimization with, reporting the minimum of the
optimal values as the estimated parameter. By means of exper-
iments, we have found that p = 30 gives a good approximation
in this specific example. As a result of the multi-start optimiza-
tion, we obtained the estimated parameter vector

θ̂ = [0.0400 0.9969 0.4946]T
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Fig. 1. The input signal u(k)

and the estimated noise amplitude vector

λ̂ = [0.0970 0.0480 0.0502]T .

The quality of these results is comparable to the ones of (van
den Boom et al., 2003). Note that in this example, due to
presence of the standard normal noise, the influence of the
noise on the system is larger than in the case of (van den
Boom et al., 2003), where the noise has a uniform distribution.
This phenomenon and the error caused by Jensen’s inequality
in the approximation method both lead to a less satisfactory

estimation for the noise amplitude vector, λ̂ .

Another issue that can be discussed here is the computation
time. One of the goals of using the proposed approximation
method (13) was to decrease the computation time. For 400
event steps, the computation time 2 of this example (with the
presence of a normally distributed noise sequence) is 569 s,
which is much less than the time obtained using the method
of (van den Boom et al., 2003), which is 4277 s, for the same
number of event steps. It is important to note that the computa-
tion time that we obtained is for the case that the error vector is
normally distributed while in (van den Boom et al., 2003) the
error vector is uniformly distributed, which is the simplest one
among the distributions due to the constant probability density
function which results in easy integrals, and yet our computa-
tion time is much less than the one in (van den Boom et al.,
2003). If the method of (van den Boom et al., 2003) is applied
to the case with the normally distributed error vector (which
involves multi-dimensional numerical integration over expo-
nential instead of constant functions), the computation time
would be even much higher than 4277 s. Therefore, the new
method increases the time efficiency while still guaranteeing a
similar performance to .

6. CONCLUSIONS

We have proposed the application of an approximation method
based on the p-th raw moment of a random variable to the
identification problem for stochastic max-plus linear systems.
This approximation method decreases the computational com-
plexity considerably (especially for large systems) since the nu-
merical integration involved in the solution of the identification

2 These times were obtained running Matlab 7.5.0 (R2007b) on a 2.33 GHz

Intel Core Duo E655 processor.

problem is approximated by an analytic solution. Although we
assumed that the elements of the noise vector in the system are
normally distributed, this approximation method is applicable
to any distribution that is preserved under the summation and
a closed form of its p-th raw moment exists, such as Poisson
and Gamma distributions (Papoulis, 1991). Moreover, since an
explicit expression for the gradient of the criterion function can
be calculated, the parameter estimation can be done using a
gradient-based optimization method.

One topic for future research is the development of algorithms
for stochastic max-plus linear systems based on input-output
data (instead of input-state data) or with only partial state
information, based on the proposed approximation method.
Another interesting topic is to study the exact effect of Jensen’s
inequality on the estimation of the noise amplitude, and to find
a method to specify the most appropriate moment order p, in
order to obtain a better estimation. Yet another topic would
be to check under which condition the identification method
converges to the true solution, specifically when the proposed
approximation method is applied to it. It is also interesting to
extend the proposed approach to other classes of discrete-event
systems such as max-min-plus systems.
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