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Abstract

In this paper we compare four methods for decentral-

ized Kalman filtering for distributed-parameter systems,

which after spatial and temporal discretization, result in

large-scale linear discrete-time systems. These methods

are: parallel information filter, distributed information fil-

ter, distributed Kalman filter with consensus filter, and dis-

tributed Kalman filter with weighted averaging.

These filters are suitable for sensor networks, where

the sensor nodes perform not only sensing and computa-

tions, but also communicate estimates among each other.

We consider an application of sensor networks to a heat

conduction process. The performance of the decentral-

ized filters is evaluated and compared to the centralized

Kalman filter.

1. Introduction

Current advances in the sensor technology enable the

design of small-scale low-cost sensing devices (sensor

nodes) endowed with embedded computing and commu-

nication capabilities. A number of these sensor nodes can

be connected to each other following a certain topology.

The collection of such connected sensors is called a sen-

sor network.

There are numerous applications of sensor networks,

for instance, in military, health care, or agriculture [1, 11].

An example of the use of sensor networks in the control

field is networked control [8]. The use of wireless sensors

for feedback has also been reported [5].

An attractive feature of sensor networks is their capa-

bility to perform sensing and state estimation in environ-

ments with spatially distributed parameters. In this case,

sensor nodes are placed at specified locations of the envi-

ronment to collect measurements that serve as inputs to

the filter. To this end, decentralized variants of Kalman fil-

ter can be used. Kalman filters form a class of estimators

that minimize the variance of the estimation error.

One approach for using the measurements is treating

them as one measurement matrix. The measurements

from the nodes are then sent to a central processor in

which global estimates are computed. In this case the sen-

sor nodes do not have an active role. This approach is

called centralized Kalman filter.

As opposed to the centralized approach, the estimate

computations can be decentralized to the nodes where

local estimates are computed. The local estimates can

subsequently be transmitted to a central processor to get

global estimates. Alternatively, local estimates are com-

municated between two or more nodes using an algorithm

to get the estimates of the global state. In this case the

sensor nodes have an active role to estimate the states.

There are several decentralized Kalman filter methods

that have been proposed in the literature. The most rep-

resentative methods are: parallel information filter [17],

distributed information filter [14], distributed Kalman fil-

ter with consensus filter [12], and distributed Kalman fil-

ter with weighted averaging [3]. This paper compares the

mentioned methods to estimate the states of a linear dis-

tributed parameter system that has been discretized spa-

tially and temporally resulting in a linear discrete-time

large scale system. Note that the above list of the com-

pared methods is not complete and does not include some

recent methods, like distributed Kalman filter with dif-

fusion strategies [7]. However, that method closely re-

sembles the distributed Kalman filter with consensus fil-

ter [12] and will thus have a similar performance.

A comparison of decentralized Kalman filters has been

done in [15], which focused on the communication-related

performance. In that paper, the comparison involved the

performance of the decentralized Kalman filters with and

without data loss. The paper [15] also discussed the re-

quired communication for each method and concluded

that the performance of the distributed Kalman filter with

weighted averaging is the highest with the lowest com-

munication requirement, but that on the other hand, that

method also suffers most from data loss. In the current

paper, our interest is the performance of the filters related

to large-scale linear systems derived from discretization

of distributed parameter systems. We evaluate the perfor-

mance for a system with a high number of states, not only

in terms of the evolution of the states over time and space,

but also in terms of errors in the steady-state estimation.



The structure of this paper is as follows: after an intro-

duction in Section 1, a brief description of the Kalman fil-

ter and its decentralized variants used for our comparison

are presented in Section 2. Section 3 introduces a 1D heat

conduction process as the benchmark for the comparison

and simulations. Section 4 gives conclusions and points

out some topics for future work.

2. Kalman filter and its decentralized

variants

The Kalman filter is an optimal stochastic discrete-

time state estimator developed by Kalman [10]. Since

then, the theory and applications of Kalman filters has

been treated in different journal papers and books. There

are several ways to derive the Kalman filter that can be

found in the standard textbooks on optimal estimation, see

e.g., [4, 6, 16]. This section presents a brief description

of the Kalman filter and its decentralized methods based

on [3, 12, 14, 16, 17].

Consider the following process modeled as a discrete-

time linear system with measurement equation

x(k) = Fx(k − 1) +Gu(k − 1) + w(k − 1) (1a)

z(k) = Hx(k) + v(k) (1b)

with x(k) ∈ R
n is the state vector, F ∈ R

n×n the state

matrix, G ∈ R
n×m the input matrix, u ∈ R

m the input

vector, z(k) ∈ R
p the measurement vector, H ∈ R

p×n the

measurement matrix, w(k) and v(k) are the process and

measurement noise vector respectively. The process and

measurement noise are assumed to be zero-mean Gaussian

white noise which have the following properties

E{w(k)} = 0 E
{

w(k)wT(k)
}

= Q

E{v(k)} = 0 E
{

v(k)vT(k)
}

= R

where E{·} is the expectation operator, the superscript T

denotes matrix transpose operation, Q and R are respec-

tively the covariance matrix of the process and measure-

ment noise.

2.1 Centralized Kalman filter

The Kalman filter equations consist of two parts: time

update equations and measurement update equations. The

following time update equations compute estimates at

time step k based on the process model and the previous

estimates to get a priori estimates:

x̂−(k) = F x̂+(k − 1) +Gu(k − 1)

P−(k) = FP+(k − 1)FT +Q
(2)

where P (k) is the estimation error covariance matrix, and

the superscripts “−” and “+” respectively indicate the a

priori and a posteriori estimates and the error covariance

matrix. This step is also referred to as the prediction step.

Once the measurements at time step k are available, the

measurement update corrects the a priori estimates to get

a posteriori estimates:

K(k) = P−(k)HT[HP−(k)HT +R]−1

x̂+(k) = x̂−(k) +K(k)[z(k)−Hx̂−(k)]

P+(k) =
[

(P−(k))−1 +HTR−1H
]−1

(3)

where K(k) is the Kalman gain matrix. The initial con-

ditions are x̂+(0) = x0 and P+(0) = P0, where x0 and

P0 are respectively the initial guesses of the estimate and

estimation error covariance matrix.

The Kalman filter in (2) and (3) is called centralized

Kalman filter. It is because the measurements are treated

in one measurement matrix. The estimates from the cen-

tralized Kalman filter are called global estimates.

Besides the form in (2)–(3), there is another form of

the Kalman filter that uses the inverse of the estimation

error covariance matrix that is called information matrix,

denoted by I and defined as I = P−1. The filter that

use this information matrix is called the information filter.

The a priori estimate equations of the information filter

are equal to (2). The measurement update computations

are the following:

∆s(k) = HTR−1z(k)

∆I = HTR−1H

x̂+(k) = x̂−(k) + ∆s(k)

I+(k) = I−(k) + ∆I

(4)

where ∆s and ∆I are respectively the information vector

and matrix update. The information filter avoids the need

of matrix inverse computation which is, from a numerical

point of view, preferably avoided.

In the application of the decentralized Kalman filter

with sensor networks for distributed parameter systems,

each node i has a capability to compute its own estimates

x̂i(k) and the corresponding estimation error covariance

matrix Pi(k). The estimate and/or the error covariance

matrix are communicated to other nodes based on the net-

work topology. In our case, consider a sensor network

consisting of N sensor nodes. The nodes are connected

to each other, following a specified network topology. In

the network, nodes i and j are neighbors if there is a di-

rect link between them. The set of neighbors of node i,

and including node i itself is denoted by the set Ni. We

assume each node has an identical process model (1a) and

the corresponding process noise Q, but a different mea-

surement matrix. Since each node measures one or more

state components of the system and since no state compo-

nent is measured by two or more nodes, we can assume

that each local measurement matrix Hi is one block row

of the global measurement matrix H . In other words, the

global measurement matrix H is the stack of all local mea-

surement matrices Hi

H =







Hi

...

HN






.



So the local measurement in node i is expressed as

zi(k) = Hixi(k) + vi(k) . (5)

It is assumed that measurement noise between node i and

j is uncorrelated, or Rij = E
{

vi(k)v
T
j (k)

}

= 0 for i 6= j.

In this paper, measurement updates and the resulting

estimates in each node are called local updates and local

estimates respectively.

2.2. Parallel information filter (PIF)

The parallel information filter computes local a poste-

riori estimates x̂+

i (k) and the corresponding estimation

error covariance matrix P+

i in parallel in each node.

Then x̂+

i (k) and P+

i (k) are sent to a central proces-

sor in which the estimates are combined to get the global

estimate x̂(k) [17]. The time and measurement update

equations for node i are

• The local time update:

x̂−
i (k) = F x̂+

i (k − 1) +Gu(k − 1)

P−
i (k) = FP+

i (k − 1)FT +Q
(6)

• The local measurement:

Ki(k) = P−
i (k)HT

i R
−1

i

x̂+

i (k) = x̂−
i (k) +Ki(k)[zi(k)−Hix̂

−
i (k)]

(

P+

i (k)
)−1

=
(

P−
i (k)

)−1
+HT

i R
−1

i Hi

(7)

In the central processor, estimates from all nodes are

combined into one estimate. It is desired that the estimate

is as certain as possible, or in other words, an estimate

with a low uncertainty is preferable. In case of estimates

and uncertainties from N measurements, where the mea-

surement of node i is independent to that of node j for

i 6= j, estimates with lower uncertainty should be given

larger weights. With such consideration, the weight for

each measurement can be calculated as [17]

ωi(k) =

(

tr
{

P+

i (k)
})−1

∑N

i=1

(

tr
{

P+

i (k)
})−1

(8)

Once the weights have been determined, the global a pos-

teriori estimate and its estimate error covariance matrix

can be expressed as follows

P−1(k) =

N
∑

i=1

ωi(k)
(

P+

i (k)
)−1

(9a)

x̂(k) =
N
∑

i=1

ωi(k)P (k)
(

P+

i (k)
)−1

x̂+

i (k) (9b)

This method relies on the central processor to get the

global estimates. Hence, it is necessary that all sensor

nodes are neighbors of the central processor to assure that

all local measurements can be combined into global ones.

2.3. Distributed information filter (DIF)

The decentralized information filter was proposed by

Rao and Durrant-Whyte [14] to eliminate the need of a

central processor in the decentralized Kalman filter. Us-

ing a central processor creates a hierarchy in the network.

Furthermore, the network is highly dependent on the cen-

tral processor. Eliminating the central processor makes

that all nodes are at the same level and moreover removes

dependency on a single component.

The key idea of this method is expressed in the relation

between information vectors and matrix updates, respec-

tively, for the global estimates of the centralized method

and local estimates in each node i

∆s(k) = HTR−1z(k) =

N
∑

i=1

HT
i R

−1

i zi(k)

∆I = HTR−1H =

N
∑

i=1

HT
i R

−1

i Hi .

(10)

Local updates are computed in each node and sent to the

neighboring nodes. Node i adds all information updates

from its neighbors to its own updates and then computes

the updated estimates and estimation error covariance ma-

trix. Estimates after the communications of the nodes are

called communication update estimates.

The time and measurement update equations for node

i are

• The local time update equations:

x̂−
i (k) = F x̂+

i (k − 1) +Gu(k − 1)

P−
i (k) = FP+

i (k − 1)FT +Q
(11)

• The information vector and matrix update

∆si(k) = HT
i R

−1

i zi(k), ∆Ii = HT
i R

−1

i Hi

• The communication update

x̂+

i (k) = P+

i (k)

[

(P−
i (k))−1x̂−

i (k)

+
∑

j∈Ni

∆sj(k)

]

(P+

i (k))−1 = (P−
i (k))−1 +

∑

j∈Ni

∆Ij

(12)

This method decentralizes the computations of global

estimates to every node without the need of a central pro-

cessor. If all nodes are fully connected, then (10) shows

that the performance of this method is equal to that of the

centralized Kalman filter. Note that we include inputs in

(11), which is not considered in [14].

2.4. Distributed Kalman filter with consensus filter

(DKFCF)

The distributed Kalman filter with consensus filter is

proposed by Olfati-Saber [12]. The main feature of this



method is the use of the consensus algorithm to obtain

the communication update estimates. The consensus al-

gorithm at node i is performed as follows: for each con-

sensus step, node i receives estimates from its neighbors.

Node i subtracts its estimate from the estimate of each of

its neighbors, weights the result with factor γ and adds the

obtained value to its estimate.

Another feature of this method is availability of stabil-

ity analysis. Olfati-Saber et al. in [13] presented stability

analysis of the consensus algorithm using algebraic graph

theory.

The time and measurement update equations for node

i are

• The local time update equations:

x̂−
i (k) = F x̂i(k − 1) +Gu(k − 1)

P−
i (k) = FP+

i (k − 1)FT +Q
(13)

• The information vector and matrix update

∆si(k) = HT
i R

−1

i zi(k), ∆Ii = HT
i R

−1

i Hi

• The measurement update

x̂+

i (k) = P+

i (k)

[

(P−
i (k))−1x̂−

i (k)

+
∑

j∈Ni

∆sj(k)

]

(P+

i (k))−1 = (P−
i (k))−1 +

∑

j∈Ni

∆Ij

(14)

• Consensus step, iterated S times

x̂+

i,ℓ(k) = x̂+

i,ℓ−1
(k)

+ γ
∑

j∈Ni

(

x̂+

j,ℓ−1
(k)− x̂+

i,ℓ−1
(k)

)

(15)

for ℓ = 1, . . . , S where S is the number of iterations.

Up to the consensus step, this method is identical to the

distributed information filter.

2.5. Distributed Kalman filter with weighted averaging

(DKFWA)

The distributed Kalman filter with weighted averaging

has been proposed in [2,3]. A feature of this method is the

reduction of computation and communication load. The

reduction is because the nodes only compute and send the

estimates, without the error estimation covariance matrix.

Different from the previous methods, this method con-

sists of two parts: on-line and off-line. The on-line part

computes and communicates estimates. In the off-line

part, Kalman gains and weights are computed for each

node. In this method, the Kalman gain and the weight W

are computed once and used during the entire operation.

The idea of this method is as follows: node i receives

estimates from its neighbors and weights them with a

weight matrix W . Then the weighted estimates are added

to the estimate of node i.

The on-line steps of the distributed Kalman filter with

weighted averaging at node i are as follows

• The time update equation

x̂l−
i (k) = F x̂l+

i (k − 1) +Gu(k − 1) (16)

where x̂l
i(k) denotes the local estimates at node i

• The measurement update equation

x̂l+

i (k) = x̂l−
i (k) +Ki[z(k)−Hix̂

l−
i (k)] (17)

• The information exchange equation

x̂+

i (k) =
∑

j∈Ni

Wij x̂
l+

j (k) (18)

where Wij is the weight of the estimate of node j

that is used to compute the global estimates in node

i. The value of Wij is zero if node i is not connected

to node j.

The off-line computations are performed to minimize

the trace of estimation error covariance matrix P+(k)
which is defined as

P+(k) = E
{

(x(k)− x̂+(k))(x(k)− x̂+(k))T
}

for x(k) =
[

x1(k)
T · · · xN (k)T

]T
and x̂+(k) =

[

x̂+
1 (k)

T · · · x̂+

N (k)T
]T

. Using (18) and

∑

j∈Ni

Wij = I (19)

to get unbiased estimates, we obtain the following relation

P+(k) = W (x(k)− x̂l+(k))(x(k)− x̂l+(k))TWT

= WP l+(k)WT (20)

The covariance P l+(k) in the last equation can be written

as

P l+(k) =
(

I K̃
)

Φ(k)
(

I K̃
)T

(21)

with

Φ(k) =

(

I

−H̃

)

P−(k)

(

I

−H̃

)T

+

(

0 0
0 R

)

and
K̃ = blockdiag(K1, . . . ,KN )

H̃ = blockdiag(H1, . . . , HN ) .

It should be noted that for this method, it is possible to

have a non-diagonal measurement covariance matrix R.

In order to get an optimal filter, it is necessary to find

the values of W and K̃ that minimize (21). Instead of di-

rect minimization of (21), the Kalman gain K and weight



Table 1: Characteristics comparison of the different filters

C
K

F

P
IF

D
IF

D
K

F
C

F

D
K

F
W

A

Central processing yes yes no no no

Connectivity full full full partial partial

Communication single single single multi single

Global estimates yes yes no no no

W are computed by solving the following optimization

problem:

min
K̃,W

tr
{

W
(

I K̃
)

Φ
(

I K̃
)T

WT
}

(22)

s.t. Wij = 0 if node i and j are not connected and (19)

The obtained gain K̃ and weight W are employed in the

on-line computation of the states. Details on how to solve

the optimization problem (22) are given in [3].

Basically, this method is a consensus filter but with

only one information exchange. The motivation for com-

munication limitation is that communication in sensor net-

works draws more power than computations.

The characteristics comparison of the Kalman filter

methods presented in this section is shown in Table 1.

3. The 1D conduction process model and sim-

ulations

The Kalman filters presented in the preceding section

are simulated to estimate states of heat conduction process

of a rod without input, or in other words, the cooling pro-

cess from an initial temperature. This process is an exam-

ple of distributed parameter systems that is modeled as a

first-order time-derivative, second-order spatial-derivative

PDE and specified boundary conditions. Therefore the

conduction process has the elements needed to compare

different methods of decentralized Kalman filters for dis-

tributed parameter systems.

Consider a rod with length L and cross-section radius r.

The density, heat capacity, and thermal conductivity of the

material are denoted by ρ, Cp and κ respectively. Using

energy balance equations [9], we can get the following

partial differential equation

∂T

∂t
=

1

ρCp

[

κ
∂2T

∂x2
+

hPe

AT

(Te − T )

]

(23a)

T (0, t) = T (L, t) = Tb (23b)

T (x, 0) = T0 (23c)

where T is the temperature of the rod, Te the tempera-

ture of the environment, h the heat transfer coefficient

of surface of the rod, x the spatial coordinate of length,

Pe = 2πr the perimeter of the rod, and AT = πr2 the area

of the longitudinal section. Equations (23b) and (23c) are

the boundary conditions and initial condition respectively.

The rod’s parameters are listed in Table 2.

The simulation of the Kalman filters requires discretiza-

tion of (23a) in space and time. For the spatial discretiza-

tion, the central approximation of the second order deriva-

tive was employed:

∂2u

∂x2
≈

ui+1 − 2ui + ui−1

(∆x)2
(24)

where ∆x is the spatial discretization interval. The spatial

discretization results in a grid and it is shown at Figure 1.

In the figure, the grid index increases from the left to the

right. The distance between each grid is ∆x. Applying

(24) to (23a) and simplify the results with respect to the

grid point index, (23a) becomes an ordinary partial differ-

ential equation as follows

dTi

dt
= CxTi−1 − (2Cx + CPeh)Ti

+ CxTi+1 + CPehTe

(25)

with i the node index that corresponds to the grid point

index and

Cx =
κ

ρCp∆2
x

; CPeh =
hPe

ρCpAT

For a grid with n grid points on the rod, we have n

ODEs from (25), each of which corresponds to a grid

point. These ODEs can be expressed as a state space

equation ẋ = Ax + Bu with x =
[

T1 · · · Tn

]T
,

u =
[

Te Tb

]T
at boundaries and u = Te at the other

grid points. The environment temperature Te is 25 ◦C =
298.15K. The state equation is discretized temporally Eu-

ler approximation to get a discrete-time linear equation.

A number of N sensor nodes are located on the specified

grid points and each node i measures the specific temper-

ature Ti.

We will perform two simulations to compare the de-

centralized Kalman filter methods. The first simulation

observes the estimation error performance of the decen-

tralized methods. The goal of the second simulation is

to observe the consistency of the decentralized methods.

These two simulations are sufficient to assess to perfor-

mance of the decentralized Kalman filters.

x

1 2 3 −2 −1 nn n

Figure 1: Grid points numbering on the rod

3.1 Simulation 1: estimation error performance

In this simulation, the estimation error performance of

the decentralized Kalman filters is compared to the central-

ized one. The simulation parameters are shown in Table

3. The simulation final time is 5000 s and the sensor node

locations are at grid points 2, 104, and 200. In addition,



Table 2: Rod parameters

Parameters Values Units

ρ 8700 kg m−3

κ 400 W m−1 K−1

Cp 385 J kg−1 K−1

h 10 W m−1 K−1

Te 298.15 K

Table 3: Simulation parameters

Parameters Values Units

L 4 m

n 201 –

T0 50 K

x0 80 –

Tb 298.15 K

σ2
v 0.04 –

N 3 –

for the DKFCF the number of consensus iterations is 20

and γ = 0.05. All sensor nodes are fully connected.

The simulation results are shown in Figure 2 where

“pt.” in the legend stands for “point”. The first plot shows

the estimates from the CKF in which the true states are

plotted in thick grey lines. The other plots, (b)–(e), dis-

play the difference between the CKF and the decentral-

ized methods for ∆est = x̂ckf − x̂d. The subscript d in x̂d

stands for “decentralized”. The plotted estimates of the

CKF show that the convergence rate of the estimates de-

pend on the spatial distance to the sensor. For instance,

estimates of grid point 2 is converge faster than those of

grid points 30 and 75. However, the estimates of grid point

2 is noisy due to the measurement noise.

To compare the decentralized methods to the CKF, Fig-

ure 2 shows that the performance of the DIF and DKFCF

are identical. Furthermore, both methods have the small-

est difference to the CKF. If the sensor nodes are fully con-

nected, as in this simulation, the DKFCF is identical to the

DIF but with an additional consensus step. The consensus

step in the DKFCF costs more communication but does

not deliver better estimates due to the full connectivity of

the nodes.

The central processor in the PIF basically performs

weighted summations to the local estimates based on the

estimates’ uncertainties. This summing process is not

equivalent to the centralized treatment of the measure-

ments in the CKF nor the other more sophisticated meth-

ods.

The lower performance of the DKFWA compared to

the DIF or DKFCF is expected. The adaptive Kalman gain

adapts better to the measurement noise than the fixed gain.

Merging with weighted estimates from the neighbors is

not enough to fill the gap.

3.2 Simulation 2: steady-state estimation perfor-

mance

In this simulation, we investigate the steady-state es-

timates of the filters to assess the consistency of the fil-

ters. The simulations are performed by running the sim-

ulation from initial temperature until final time 15000 s.

The means and variances of the steady-state estimates are

computed and plotted in Figure 3. The sensor node loca-

tions are at grid 62, 104, and 146. The other simulation

parameters are shown also in Table 3.

Figure 3 shows the mean of the estimates in blue cir-

cles and the variance of the estimates in blue bars and the

mean variance of the measurement in grey. The figure

shows that estimates from states that are between two sen-

sors are better. The variance of the estimates for states lo-

cated before the left-most and after the right-most sensor

increase as the distance to the sensor increases. The re-

sults show that the spatial distance between the grid point

for which the temperature is estimated and the sensor loca-

tion influences the accuracy of the steady-state estimates.

For the decentralized methods, the DIF and DKFCF

give the closest estimates to those of the CKF, while the

DKFWA gives the farthest estimates. As already men-

tioned for Simulation 1, the full connectivity of the nodes

results in the equivalence of the CKF and DIF. The re-

sult of the PIF is better than the DKFWA. The increase

of the estimates’ variance of the PIF and the DKFWA is

also higher compared to CKF and the other two distributed

methods. For the PIF this can be explained as follows: the

PIF sums up the estimates, and consequently, their uncer-

tainty. As the uncertainty of estimates increases, the total

uncertainty also increases.

4. Conclusion and future work

This paper has presented the comparison of the cen-

tralized Kalman filter and some of its variants to a spa-

tially and temporally discretized linear distributed param-

eter system. In general, the performance of the decentral-

ized Kalman filters cannot be better than the centralized

method. The performance of the decentralized methods

can be equal to the centralized method provided certain

conditions are satisfied. One of them is the full connectiv-

ity of the sensor nodes. This situation has been considered

in the simulation for the distributed information filter and

distributed Kalman filter with consensus filter. The paral-

lel information filter and the distributed Kalman filter with

weighted averaging suffer from their approach limitations,

e.g., summing up estimates and their uncertainties for the

parallel information filter and reducing computation and

communication load for the distributed Kalman filter with

weighted averaging.

In our comparison, we use linear estimators to a pro-

cess model that is obtained from a linear partial differen-

tial equation. As most systems are intrinsically nonlin-

ear, these linear estimators are not be able to estimate the

states of nonlinear systems well. Furthermore, for non-



linear systems, extensions of the Kalman filter have been

developed, such as the extended and unscented Kalman fil-

ters. Besides filters, there are nonlinear robust observers,

e.g., fuzzy robust observers that can also be used in non-

linear and stochastic systems. In our future work, we will

compare and assess distributed version of these filters and

observers. Comparison of the linear filters for real setups

will also be done in the future.
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(a) Centralized Kalman filter (CKF)
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(b) Parallel information filter (PIF)
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(c) Distributed information filter (DIF)
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(d) DKF with consensus filter (DKFCF)
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(e) DKF with weighted averaging (DKFWA)

Figure 2: Estimation of the decentralized Kalman filters

compared to the centralized one
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(a) Centralized Kalman filter (CKF)
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(b) Parallel information filter (PIF)
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(c) Distributed information filter (DIF)
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(d) DKF with consensus filter (DKFCF)
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Figure 3: Steady state estimation of the centralized and

decentralized Kalman filters


