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Variable Speed Limits for Green Mobility

S. K. Zegeye, B. De Schutter, J. Hellendoorn, and E. A. Breunesse

Abstract— Due to increasing environmental concerns the
focus of traffic management and control is shifting towards
optimizing the traffic control measures to also reduce traffic
emissions and fuel consumption. In this context we propose
a model-based predictive traffic control approach for the bal-
anced reduction of travel times, emissions, and fuel consumption
for freeway networks, where not only the local emissions are
taken into account but also the dispersion of the emissions
to various target zones near the freeways. The core of the
approach is a new efficient model for describing the area-wide
dispersion of the emissions that is much faster than the models
we have proposed in earlier papers. We present a detailed
description of the new so-called expanding grid-based model
and we embed it in a model-based predictive traffic control
approach using variable speed limits.

I. INTRODUCTION

This paper proposes a traffic control approach for reducing

the emissions both locally on the freeway as well as their

dispersion to one or more so-called target zones. In addition,

the approach we propose can also be used to reduce fuel

consumption, and as such contributes to a more sustainable

and greener mobility through active traffic management and

control.

Reducing the amount of emitted gases of the traffic flow

will improve the overall emission levels. However, since

dispersion of the emissions is also dependent on the wind,

temperature, rainfall, and terrain of the neighborhood of the

freeway, the dispersion of the emissions can be distributed

unevenly. This means that certain areas can face higher

emission levels. E.g., public areas could face higher emission

levels despite the reduced total emission levels at the network

level, because other factors such as wind and temperature

can locally affect the concentration of the emitted gases.

Therefore, it is not smart to control the emissions for the

whole freeway at all times, but it is better to focus on

the parts of the freeway that affect the target zones and

on the time windows in which the corresponding emissions

originate. This could be done by predicting the evolution of

the emissions and their dispersion towards the target zones.

So a predictive control approach is required.

It is well-known that in general improved traffic flows

can have severe consequences on the emission levels [1].

On the other hand, focusing exclusively on reduction of

emissions (or fuel consumption) will in general have a

negative effect on other performance measures, such as
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travel times or throughput [2]. Therefore, a control approach

is required that can provide a balanced trade-off between

various performance objectives. In this context and also due

to the need for taking into account the predicted future

effects of current control actions, we advocate the use of

model-based predictive control (MPC) [3]. Although MPC

has originated in the process industry, it has been extended

to several other fields, including traffic management [4]–[9].

Despite the fact that conventional MPC has proven to be

a potentially very effective traffic control strategy in [4]–[9],

it is not tractable in practice due to its heavy computational

demands. Therefore, we adopt an alternative approach in this

paper, called parametrized MPC. Parametrized MPC starts

from parametrized (feedback) control laws and optimizes the

parameters of these control laws instead of the control input

sequences. Since the number of parameters to be optimized

is in general much smaller than the number of control inputs,

parametrized MPC requires much lower computation times

than conventional MPC.

An important element in MPC are the prediction models.

As MPC is an on-line optimization-based control strategy,

it requires running the prediction models repeatedly at each

control step. Hence, these models have to provide a balanced

trade-off between computation speed and accuracy. For mod-

eling of traffic flows and of emissions several efficient models

have been developed [10]–[12]. However, for describing the

evolution of emissions in the more remote neighborhood of

the freeways (i.e., the dispersion of emissions) models that

well fit into the MPC framework are still being developed.

In [13], [14] we have developed a basic dispersion model

based on the use of point sources for use in an MPC

framework. This model was later on extended [15] to include

variable wind speed and variable wind direction, and to

allow spatially more uniformly distributed emission sources.

However, these models do not deal properly with low wind

speed situations, and they are computationally intensive. In

this paper we therefore propose a new dispersion model that

addresses these shortcomings and that is therefore excellently

suited for use in MPC approach for traffic control. In

combination with parametrized MPC this yields a control

approach that is very fast and that provides almost the same

performance as conventional MPC.

II. TRAFFIC FLOW AND EMISSION MODELS

Since the MPC approach we adopt requires models, we

first provide a concise recapitulation of the traffic flow

and emission models we consider for this paper, viz. the

METANET traffic flow model and the VT-macro emissions



and fuel consumption model. Note, however, that the pro-

posed approach is generic and that other prediction models

can also be used, provided they are sufficiently fast and

provided that they capture the essential characteristics of the

traffic flow and of the emissions.

A. METANET

The METANET model [10], [11] is a second-order macro-

scopic traffic flow model that describes the traffic behavior

using aggregate variables, such as average traffic flow (q),

density (ρ), and space-mean speed (v). The METANET

model represents a traffic network model as a graph with

nodes (corresponding to mainstream origins, on-ramps, off-

ramps, merges, splits, lane drops) and links (corresponding

to homogeneous stretches of freeway) connecting the nodes.

Links are further divided into segments of length 500–

1000 m. The traffic dynamics in segment i of link m are1

qm,i(k) = λmρm,i(k)vm,i(k) (1)

ρm,i(k+1) = ρm,i(k)+
T

Lmλm

[qm,i−1(k)−qm,i(k)] (2)

vm,i(k+1) = vm,i(k)+
T

τ
[V [ρm,i(k)]− vm,i(k)]

+
T vm,i(k) [vm,i−1(k)− vm,i(k)]

Lm

−
T η [ρm,i+1(k)−ρm,i(k)]

τLm (ρm,i(k)+κ)
(3)

V [ρm,i(k)] = min

{

(αm +1)um,i(k),

vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcr,m

)am
]}

(4)

with qm,i(k), ρm,i(k), and vm,i(k) respectively the flow, den-

sity, space-mean speed in segment i of link m at simulation

step k, um,i(k) the variable speed limit in segment i of

link m at simulation step k, vfree,m the free-flow speed, αm

the compliance factor of the drivers, Lm the length of the

segments of link m, λm the number of lanes of link m, and

T the simulation time step size. Furthermore, ρcr,m is the

critical density, and τ , η , κ , am are model parameters.

For origins a queue model is used. The evolution of the

queue length wo at the origin o is modeled as

wo(k+1) = wo(k)+T (do(k)−qo(k))

where do and qo denote respectively the demand and outflow

of origin o. The outflow qo is given by2

qo(k) = min

[

do(k)+
wo(k)

T
, Co

(

ρjam,m −ρm,1(k)

ρjam,m −ρcr,m

)]

,

with ρjam,m the maximum density of link m, and Co the

capacity of the origin o. Refinements and extensions of the

above model are discussed in [5], [10], [11].

1The desired speed V [ρm,i(k)] in (4) is taken from [5].
2For a metered on-ramp, an extra term ro(k)Co (with ro(k) ∈ [0 1] the

ramp metering rate) is added as argument of the min operator.

B. VT-macro

The VT-macro model [12] is a macroscopic emission

model and fuel consumption that is based on the microscopic

model VT-micro [16] and that is in particular developed for

the METANET traffic flow model. In the VT-macro model

a distinction is made between the temporal and spatial-

temporal accelerations and number of vehicles subject to it.

The temporal acceleration and the corresponding number of

vehicles for (or better, staying in) segment i of link m at time

step k are given by

am,i(k) =
vm,i(k)− vm,i(k−1)

T

nm,i(k) = Lmλmρm,i(k)−T λmvm,i−1(k−1)ρm,i−1(k−1).

The spatial-temporal acceleration is different for different

freeway geometries. For brevity, we only consider spatial-

temporal accelerations of links here. The spatial-temporal

acceleration and the number of vehicles going from segment

i to segment i+1 of a link m at time step k are given by

am,i,i+1(k) =
vm,i+1(k)− vm,i(k−1)

T

nm,i,i+1(k) = T qm,i(k−1).

Similar equations can be derived for on-ramps, off-ramp, and

junctions (see [12] for details).

Using the temporal and spatial-temporal components of

the space-mean speed, acceleration, and number of vehicles,

the VT-macro model is expressed as

Jy,m,i(k) = nm,i(k)exp
(

ST(vm,i(k−1))Py S(am,i(k))
)

+nm,i,i+1(k)exp
(

ST(vm,i(k))Py S(am,i,i+1(k))
)

where Jy,m,i(k) [kg/s] is the estimate or prediction of the

emission (for y ∈ {CO, NOx, HC}) or fuel consumption (for

y = FC) variable for segment i of link m during the time

period [kT,(k+1)T ], and where the S operator yields a vector

defined as S(x) = [1 x x2 x3]T for a scalar input argument

x. The values of the parameter matrices Py can be found in

[16]. Moreover, from the fuel consumption JFC,m,i(k) one can

compute the CO2 emissions value JCO2,m,i(k) [12], [17].

III. EXPANDING GRID-BASED DISPERSION MODEL

Dispersion of vehicular emissions is affected by several

factors, including the speed of the vehicles, the weather

conditions, and the geometry and topology of the freeway

area. Apart from the topology, in the vicinity of the freeway

the speeds of the vehicles mainly influence the dispersion

of the emissions [18], while in the region far from the road,

the dispersion of the emissions is primarily dependent on the

wind and the temperature of the atmosphere [18].

Now we propose a new dispersion model that addresses

several of the shortcomings of the point-source model and

its extension we introduced in [13]–[15]. In particular, the

new model addresses the computational complexity issues

of the basic point-source model, and it also incorporates the

effect of varying wind speed, wind direction, and temperature

on the dispersion of the emissions. Note that we focus on



the 2D effects of the dispersion as we are interested in

the emission levels at ground level; the dispersion into the

vertical direction is modeled via an “evaporation” factor γ .

A. Main idea

In the point-source model [13], [14] and its extension

[15] the dispersion of the emissions is modeled under the

assumption that the emission wavefronts are straight lines

and diverge within so-called dispersion cones, with a dis-

persion angle that is dependent on the speed of the wind.

For no-wind conditions, the dispersion angle is modeled

correctly, but the dispersion itself is not. Indeed, if the wind

speed is zero, then the emissions do not move in those

models, which means that then there is no dispersion of

the emissions over the horizontal 2D plane, which does not

correspond to reality at all. This problem could be solved by

adding a term that is dependent on the temperature and the

inherent dispersion factors of the emissions. But, since the

point-source dispersion model and its extension are based

on the assumption that the emission wavefronts move as

straight lines, which is valid under higher wind speeds, the

added term will result in emissions moving into one direction

only without dispersing sideways. Hence, another modeling

approach is required.

If one would consider the dispersion wavefront to be a

curve instead of a straight line, under no-wind conditions

this curve would be a circle with a radius that increases

according to the expansion factor of the emissions. It is

this analysis that led to the development of the expanding

grid-based dispersion model. For this model, under no-wind

conditions and with no other external disturbances emissions

will correctly expand in all directions.

B. Expanding grid-based model

First, we grid the region around the freeway into squares

of equal dimensions. The center of each cell is considered

as a representative of the emissions in that cell. Although

the cells in this expanding grid-based dispersion modeling

approach are squares, and the expansion using curved dis-

persion wavefronts would result in distorted squares, we will

represent these distorted squares by regular squares in order

to get a fast and efficient approximate dispersion model.

Let the wind speed at time step k be denoted by Vw(k)
and let the angle of the wind w.r.t the x-axis be denoted

by φ(k) (with positive angles in the clockwise direction).

Moreover, we denote the expansion factor of the emissions

of the grid at time step k cells by ϖ(k) per unit time in

each direction. Hence, when the wind speed is zero, at time

step k the emissions in the cell Cic, jc expand as illustrated

by the light-blue shaded region in Fig. 1(a), resulting in an

expanded square with equal sides of length (1+T ϖ(k))L,

where L is the length of the sides of the grid cells.

When the wind speed is non-zero, the expanded emission

square of cell Cic, jc is displaced in the wind direction as

depicted in Fig. 1(b). We use the center point of the expanded

emission square to represent the displacement of the square.

The corner points of the expanded emission square can be

xic−1 xic xic+1 xic+2

y jc−1

y jc

y jc+1

y jc+2

x

y L
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Expanded emission cell
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Fig. 1. Expansion of emissions from a cell under windy and no wind
conditions.

determined from the coordinates of the displaced center point

and the expansion factor.

Let us now determine the emission level in cell Cic, jc .

It is important to note that for the expanding grid-based

model it is possible to explicitly describe the equation of

the intersections between the expanded emission squares

and the original grid cells with simple equations that are

moreover valid for all cells. This is a major difference with

the point-source model and its extension, which use much

more complex expression that also depend on the spatial

coordinates of the emission sources.

So, let us suppose the level of the emission y at time step

k in cell Cic, jc is Jy,ic, jc(k), then at the end of the time period

[kT, (k+1)T ) the emission level in the cell becomes

Jy,ic, jc(k+1) = Jsrc,y,ic, jc(k)

+
(

1− γ(k)
)

∑
(uc,vc)∈N (ic, jc)

α
(uc,vc)
(ic, jc)

(k)

(1+T ϖ(k))2L2
Jy,uc,vc(k) (5)

where Jsrc,y,ic, jc(k) is the emissions generated by the traffic

(and other sources) within cell Cic, jc in the period [kT,(k+

1)T ), α
(uc,vc)
(ic, jc)

(k) is the area of the part of the expanded

emission square of neighboring cell Cuc,vc that intersects the

cell Cic, jc at time step k, N (ic, jc) is the set of neighboring

cells of cell Cic, jc and cell Cic, jc it self, and γ(k) is the vertical

dispersion factor. Using simple geometrical arguments it can

be shown that the expressions for α
(uc,vc)
(ic, jc)

(k) are3

α
(ic−1, jc−1)
(ic, jc)

(k) = max{0,b2(k)} ·max{0,b1(k)}

α
(ic, jc−1)
(ic, jc)

(k) =(L−max{0,−b0(k),−b1(k)}) ·max{0,b2(k)}

α
(ic+1, jc−1)
(ic, jc)

(k) = max{0,b0(k)} ·max{0,b2(k)}

α
(ic−1, jc)
(ic, jc)

(k) =max{0,b1(k)} · (L−max{0,−b2(k),−b3(k)})

α
(ic, jc)
(ic, jc)

(k) = (L−max{0,−b0(k),−b1(k)})

· (L−max{0,−b2(k),−b3(k)})

3We assume here that the expanded emission squares only cover the
immediate neighbors of cell Cic, jc and/or cell Cic, jc itself, but no other cells.
In case other cells are also covered (this may happen if the wind speed Vw(k)
or the expansion factor ϖ(k) are large), similar formulas for an extended
neighborhood set N (ic, jc) can be derived.



α
(ic+1, jc)
(ic, jc)

(k) =max{0,b0(k)} · (L−max{0,−b2(k),−b3(k)})

α
(ic−1, jc+1)
(ic, jc)

(k) = max{0,b3(k)} ·max{0,b1(k)}

α
(ic, jc+1)
(ic, jc)

(k) =(L−max{0,−b0(k),−b1(k)}) ·max{0,b3(k)}

α
(ic+1, jc+1)
(ic, jc)

(k) = max{0,b0(k)} ·max{0,b3(k)}

where

b0(k) =
LT ϖ(k)

2
+TVw(k)cos(ϕ(k))

b1(k) =
LT ϖ(k)

2
−TVw(k)cos(ϕ(k))

b2(k) =
T ϖ(k)

2
+TVw(k)sin(ϕ(k))

b3(k) =
LT ϖ(k)

2
−TVw(k)sin(ϕ(k)).

Note that the computation of the above intersections gives

the same result for all the cells in the grid. This means that

the computation has to be done only for one cell at each

simulation time step k.

The total emission level at the target zone Zt is therefore

computed by summing up the fraction of the emissions

contributed by each cell that intersects the target zone Zt .

Hence, at time step k it is given by

Dy,t(k) = ∑
(ic, jc)∈Tint,t

area(Ctarget,t
⋂

Cic, jc)

Aic, jc

Jy,ic, jc(k)

where Ctarget,t is the cell (or more general, polytope) descrip-

tion of the target zone Zt and Tint,t is the set of all cells in

the grid that have common area with the target zone Zt .

IV. PARAMETRIZED MPC FOR GREEN MOBILITY

A. General concept of MPC

Conventional MPC [3] uses a model of a system to predict

the evolution of the state of the system for a sequence

of control inputs using the current state of the system as

the initial condition. Based on the predicted states of the

system, the controller determines the value of a given cost

function and optimizes the sequence of control inputs over

the prediction horizon to minimize the cost function. Next,

only the first control input of the optimal sequence is applied

to the system until the next control time step, after which the

controller repeats the above process all over again using a

moving horizon principle.

B. MPC performance measure

We consider a multi-objective performance criterion that

accommodates the total time spent (TTS), total emission

(TE), and the total maximum dispersion level (TMDL) of

emissions, as well as variations in time and space of the

control signal. Let Tc be the control step size4. At control

4For the sake of simplicity we assume that the control step size Tc and
the simulation step size T are related by Tc = MT , for some positive integer
M. Therefore, at time instant t = kcTc = kT the control step counter kc is
an integer divisor of the simulation step counter k. They are then related by
k(kc) = Mkc.

step kc, the multi-objective function is defined as a weighted

sum of the constituents and it is given by

J(kc) = ζ1
TTS(kc)

TTSn
+ζ2

TE(kc)

TEn
+ζ3

TMDL(kc)

TMDLn
+ζ4∆(kc)

(6)

where

TTS(kc) = T

M(kc+Np)−1

∑
k=Mkc

(

∑
(m,i)∈Iall

λmLmρm,i(k)+∑
o∈Oall

wo(k)

)

,

TE(kc) = ∑
y∈Y

µy

TEy(kc)

TEn,y
, TMDL(kc) = ∑

y∈Y

µy

TDy(kc)

TDn,y
,

∆(kc) =
M(kc+Np)−1

∑
k=Mkc

{

∑
s∈Sall

αs

(

us(k)−us(k−1)
)2

+ ∑
(s1,s2)∈Pall

αcs

(

us1
(k)−us2

(k)
)2

+ ∑
r∈Rall

αr

(

ur(k)−ur(k−1)
)2

}

,

with TEy(kc) =
M(kc+Np)−1

∑
k=Mkc

∑
(m,i)∈Iall

Jy,m,i(k),

TDy(kc) = ∑
t∈Tall

max
k=Mkc,...,M(kc+Np)−1

Dy,t(k)

where Np is the prediction horizon, ζi ≥ 0 for i = 1,2,3,4,

and µy ≥ 0 are the weights, Y = {CO, NOx, HC, FC, CO2},

Oall is the set of all origins in the traffic network, Iall

is the set of all segments of links in the traffic network,

Sall is the set of all speed limits, Pall is the set of

all consecutive speed limits, Tall is the set of all target

zones, and αr = (#(Rall)Np)
−1, αs = (#(Sall)Npv2

step)
−1, and

αcs = (#(Pall)Npv2
step)

−1 are normalization factors with vstep

denoting a nominal maximum change of speed limit between

different segments and time steps, and #(·) denoting the

set cardinality. Moreover, the subscript ‘n’ denotes nominal

values of TTS, TE, TEy, TMDL, and TDy.

C. Parametrized MPC for traffic control

Many traffic control researchers have shown that MPC can

improve the performance of road networks [4]–[9]. Nonethe-

less, as a consequence of its high computation demands,

conventional MPC using advanced traffic models has not

yet found its way to practice5. One way to reduce the

computation time of the MPC controller is to parametrize

the control inputs using a control law with a limited number

of parameters [21]–[24]. In general, this will reduce the

computation time significantly.

We have proposed such an approach in the context of MPC

for traffic control in [14]. To illustrate this idea, we now

5One could consider strategies like SCOOT [19] and UTOPIA/SPOT [20]
to be MPC, but they only use very simple models.
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Fig. 2. A 12 km three lane freeway stretch considered for this study. Each
cell in the grid is 200 m by 200 m.

present this approach for the case of variable speed limits6.

Note however that the parametrization is just an illustration

of the control approach, but that the control approach is

generic and that it can also be used with other control laws

and other control measures (such as, e.g., ramp metering).

The control law for the variable speed limits can be defined

as follows [14]

usl,m,i(kc + j+1) = θ0,mvfree,m +θ1,m
vm,i+1(kc)− vm,i(kc)

vm,i+1(kc)+κv

+θ2,m
ρm,i+1(kc)−ρm,i(kc)

ρm,i+1(kc)+κρ

for j = 0,1, . . . ,Np−1, where κv and κρ are fixed parameters

introduced to prevent division by 0.

The proposed parametrization has only 3 parameters per

link m (one could also vary θ·,m over the prediction horizon

and/or consider the same parameters for all links) to be

optimized in the parametrized MPC control strategy. This

means that the speed limit controller can reduce the compu-

tation time if it is used with a freeway that has more than

three independent variable speed limits or more than three

prediction horizon steps (since there are at least 3×Np speed

limit variables over the prediction horizon)7.

D. Overall MPC problem

If we consider the minimization of the control objective

J(kc) over the set of all parameter values θ subject to the

model equations, the parametrized control laws, and the

operational constraints, we get in general a nonlinear non-

convex optimization problem. This problem can be solved

using global or multi-start local optimization methods [25]

such as multi-start sequential quadratic programming, pattern

search, genetic algorithms, or simulated annealing.

V. CASE STUDY

We consider a 12 km freeway stretch that has three lanes.

The freeway is divided into 12 segments with each of length

6For the sake of compactness, we will mainly focus on variable speed
limit control in the exposition. However, the proposed approach can straight-
forwardly be extended to include other control measures too, such as ramp
metering, mainstream metering, etc. E.g., in the case study of Section V we
consider both variable speed limits and ramp metering.

7Using a similar reasoning we can define the parametrization of the ramp
metering controller to be ur,m,i(kc + j + 1) = ur,m,i(kc + j) + θ3,m

(

ρcr,m −
ρm,i(kc + j)

)

/ρcr,m for j = 0,1, . . . ,Np −1 [14]

TABLE I

PERFORMANCE OF PARAMETRIZED MPC FOR THE DIFFERENT CONTROL

OBJECTIVES. THE PERCENTAGE VALUES INDICATE THE RELATIVE

CHANGE WITH RESPECT TO THE UNCONTROLLED SCENARIO.

Performance measure

Objective TTS [veh·h] TE [kg] TMDL [µg]

Uncontrolled 1362.1 127.5 9896.3

TTS 875.8 (-35.7%) 141.5 (+11.0%) 12896.0 (+30.3%)

TE 1611.4 (+18.3%) 66.2 (-48.1%) 4819.6 (-51.3%)

TMDL 1604.6 (+17.8%) 66.4 (-47.9%) 4831.5 (-51.2%)

10TTS+TE+TMDL 1525.6 (+12.0%) 70.6 (-44.6%) 5517.4 (-44.3%)

1 km and equipped with a variable speed limit. The 6th

segment of the freeway has a metered on-ramp (see Fig. 2).

Moreover, we consider a target zone that is 1 km away from

the middle of the segment with the on-ramp (see Fig. 2). The

target zone has an area of 400 m×400 m. A time-varying

traffic demand both at the mainstream origin and the on-

ramp origin is considered. The neighborhood of the freeway

is considered to be flat with no obstructions and is subject to

varying wind speed and wind direction. For this case study,

we consider the wind speed Vw(k) and wind direction ϕ(k)
to be Vw(k) = 8+2sin(0.005πk+π/6)sin(0.01πk) [m/s] and

ϕ(k) = 2π
5
+ π

4
cos(0.004πk) [radians].

We mesh the neighborhood of the freeway into a grid

of square cells of dimension 200 m as shown in Fig. 2.

This means that there are 12 000 m/200 m=60 cells along the

freeway stretch and 5 cells from the center of the freeway

to the center of the target zone. This means that at least

5×60=300 emission-dispersion states have to be updated

every simulation time step. The simulation period is 1 h with

a simulation time step of T = 10 s.

As a performance measure of the parametrized MPC

controllers, we use the multi-objective function defined in

(6). In all these combinations ζ4 = 0.01, because we want to

give less emphasis on the variation of the control inputs.

We select µCO = µHC = µNOx = 1, the µCO2
= µFC = 0.

The values of ζ1, ζ2, and ζ3 are varied depending on

the emphasis we want to induce to the controller perfor-

mance. In particular we consider four different combinations:

[ζ1 ζ2 ζ3]∈ {[100], [010], [001], [1011]}. Moreover, we take

the prediction horizon Np = 15 min, the control horizon

Nc = 10 min, and the control time step Tc = 2 min. To solve

the MPC optimization problem, we use multi-start sequential

quadratic programming (SQP) with 8 initial points.

The results of the simulation for the different scenarios are

presented in Table I. The first column lists the objective con-

sidered in each scenario and the remaining columns list the

values of the performance measures (TTS denoting the total

time spent, TE denoting the total emissions, and TMDL the

total maximum dispersion level at the target zone). Negative

percentage values indicate the increment of the performance

measures with respect to the uncontrolled scenario (since

we want to minimize the performance measures, negative

percentages correspond to desired situations), while positive

percentages indicate an increment.

When the objective of the controller is set to reduce the



TTS only, the controller reduces the TTS by about 36% while

the TE and the TMDL increase by 11% and 30% respectively

(see Table I). On the contrary, if the focus of the controller

is set to improve the emissions (TE) or the total maximum

dispersion level at the target zone (TMDL), the TTS worsens

by almost 18% and the TE and TMDL are improved by more

than 47% and 51% respectively. The last scenario considers

a multi-objective criterion that considers a weighted sum of

TTS, TE, and TMDL, which allows to obtain a balanced

trade-off between the various control objectives. In this case,

the TTS is impacted by about 6% less than in the case where

the focus is only on minimizing emissions or the dispersion

level at the target zone.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a new cell-based emissions dispersion

model that is very fast and that is excellently suited for use

in on-line model-based traffic control approaches such as

MPC. In addition, we have adopted a parametrized MPC

approach, in which parameters of feedback control laws

are optimized, in contrast to input sequences as is done in

conventional MPC. As a result parametrized MPC is much

faster than conventional MPC. The resulting MPC approach

allows to obtain a balanced multi-criterion trade-off between

reduction of travel times, emissions, and fuel consumption.

The approach has been illustrated using a simple case study

involving variable speed limits and ramp metering.

Future research topics include a more detailed assessment

of the new dispersion model, including a comparison with

microscopic, more detailed, but much slower dispersion

models, the chemistry involved, additional case studies, and

extension to other control measures. Moreover, comparison

of the proposed approach with existing TMCs and imple-

mentation issues of the approach.
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