
Delft University of Technology
Delft Center for Systems and Control

Technical report 11-043

Kalman filter-based distributed predictive
control of large-scale multi-rate systems:

Application to power networks∗

S. Roshany-Yamchi, M. Cychowski, R.R. Negenborn, B. De Schutter,
K. Delaney, and J. Connell

If you want to cite this report, please use the following reference instead:
S. Roshany-Yamchi, M. Cychowski, R.R. Negenborn, B. De Schutter, K. Delaney, and
J. Connell, “Kalman filter-based distributed predictive control of large-scale multi-
rate systems: Application to power networks,” IEEE Transactions on Control Systems
Technology, vol. 21, no. 1, pp. 27–39, Jan. 2013. doi:10.1109/TCST.2011.2172444

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/11_043.html

https://doi.org/10.1109/TCST.2011.2172444
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/11_043.html


1

Kalman Filter-Based Distributed Predictive Control

of Large-Scale Multi-Rate Systems: Application to

Power Networks
Samira Roshany-Yamchi, Student Member, IEEE, Marcin Cychowski, Member, IEEE, Rudy R. Negenborn,

Bart De Schutter, Senior Member, IEEE, Kieran Delaney, Joe Connell, Member, IEEE,

Abstract—In this paper, a novel distributed Kalman Filter
(KF) algorithm along with a distributed Model Predictive Control
(MPC) scheme for large-scale multi-rate systems is proposed. The
decomposed multi-rate system consists of smaller subsystems with
linear dynamics that are coupled via states. These subsystems are
multi-rate systems in the sense that either output measurements
or input updates are not available at certain sampling times.
Such systems can arise, e.g., when the number of sensors is
smaller than the number of variables to be controlled, or when
measurements of outputs cannot be completed simultaneously
because of practical limitations. The multi-rate nature gives
rise to lack of information, which will cause uncertainty in the
system’s performance. To circumvent this problem, we propose
a distributed KF-based MPC scheme, in which multiple control
and estimation agents each determine actions for their own parts
of the system. Via communication, the agents can in a cooperative
way take one another’s actions into account. The main task of the
proposed distributed KF is to compensate for the information loss
due to the multi-rate nature of the systems by providing optimal
estimation of the missing information. A demanding two-area
power network example is used to demonstrate the effectiveness
of the proposed method.

Index Terms—Kalman Filter, Large-scale systems, Multi-rate
systems, Model Predictive Control, Nash game.

I. INTRODUCTION

LARGE-scale distributed systems are present in many en-

gineering application domains including process plants,

road traffic networks, water and sewer networks, power dis-

tribution systems, wind farms, or wireless sensor/actuator net-

works [1]–[7]. The complexity of these systems is defined by

their multi-agent nature and multi-actor character, their multi-

level structure, their multi-objective optimization challenges,

and by the adaptivity of their agents and actors to changes in

their environment. For these reasons, the operation and control

of large-scale systems that meet the desired economic, safety,

and performance requirements is a challenging task. Strategies

based on centralized control often require high computational

effort and are regarded by practitioners as impractical.

Recently, considerable attention has been devoted to control

and estimation problems in large-scale systems and numer-
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ous distributed control [2], [8]–[12] and estimation [13]–[15]

methods have been proposed. In a distributed control structure,

the whole system is decomposed into a number of small

subsystems. Each subsystem is controlled by a so-called agent,

which solves its own, local control and estimation problem.

State estimators can be employed to compute important states

of the system that are often difficult to measure, using partly

available measurement. The structure of a state estimator

involves a dynamical model of the system, which is simulated

in parallel to the real system using the same inputs and

initial conditions as the real system. Then the simulation error,

defined as the difference between the real measurements and

the simulated ones, is used as feedback in the simulated

model for correction. This error comes into play as the

initial conditions are often not known exactly, the process is

subject to disturbances, or model-plant mismatch exists. In

such cases, if no feedback is used, there is no guarantee that

the predictions are close or equal to the real states.

The computational effort required to implement the con-

ventional centralized estimation algorithms (e.g. Kalman filters

(KF) [16]) for large-scale systems can be prohibitive for many

on-line applications. Several decentralized and distributed es-

timation schemes for large-scale systems have been proposed

[3], [6], [17]–[19] to make the estimation problem computa-

tionally efficient.

This paper proposes a novel control and estimation method

for multi-rate sampled linear systems that employs a dis-

tributed Model Predictive Control (MPC) strategy (a controller

that utilizes an explicit process model as to optimize pre-

dicted future performance of the system while taking into

account process operating, safety and physical constraints)

in combination with a distributed KF. In multi-rate systems,

either the measurements are available less frequently or the

control actions are made at a lower rate. Such systems can

be encountered in many industrial applications [20]–[24]. In

the process industry, for instance, quality variables such as

product concentration or average molecular weight distribution

in a polymerization process, can be evaluated/updated at

much slower rates compared to other process measurements.

On the other hand, in certain biomedical applications [22]

the input injection rate is inherently slower than the output

measurement, e.g. in drug infusion systems, the drug injection

to the patient occurs less frequently than the body symptom’s

measurements such as blood pressure, body temperature, etc.

Several works on predictive control and estimation for
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multi-rate systems have appeared recently. The relevance and

importance of multi-rate processes has been investigated for

the centralized Generalized Predictive Control (GPC) frame-

work in [25], [26]. In [27], the author considers a stochastic

multi-rate control problem and uses a centralized generalized

minimum-variance approach to solve the problem.

In [18], a distributed KF for single-rate sampled systems

has been developed in which local measurements are used

to estimate the relevant system states. This information is

then used by a distributed MPC controller. Considering com-

munication among local estimators and controllers provides

a performance improvement in comparison with completely

decentralized controllers. A distributed control system based

on independent MPC and KF schemes has been developed in

[19] for fault-tolerant applications. In this work, the intercon-

nected subsystems exchange information in a cooperative way.

In [28], authors presented three Moving Horizon Estimation

(MHE) methods for discrete-time partitioned single-rate linear

systems, in which the systems were decomposed into coupled

subsystems with non-overlapping states. The presented meth-

ods have the capability of exploiting physical constraints on

states and noise in the estimation process.

In [20], [29], a state-space based multi-rate MPC scheme

has been developed for a centralized case in which a central-

ized KF is used to estimate the missing variables in inter-

sampling times. We propose a new distributed MPC control

strategy for large-scale systems with multi-rateness in its

subsystems. This means that each of the subsystems is multi-

rate in inputs and/or outputs. The multi-rate control method

that we propose allows control moves to be made using state

estimates from a distributed KF. A comprehensive simulation

study involving a two-area power network example is used to

evaluate the efficiency of the proposed method with respect

to other estimation and control methodologies available in the

literature.

The main contribution of this paper is the development of a

generalized framework that covers both aspects of distributed

control and estimation of multi-rate large-scale systems. Our

focus in this paper is to develop a generic framework based

on Nash game theory, for large-scale multi-rate systems with

linear dynamics that are coupled via states.

This paper is organized as follows. In Section II, a distributed

multi-rate model predictive control algorithm is discussed.

In Section III, a distributed Kalman Filter is formulated to

estimate the states in a multi-rate system. Section IV, has been

devoted to applying the proposed method on a case study that

is a two-area power system, followed by simulation results and

analysis the performance of the proposed method in Section V.

Section VI, concludes with some remarks and hints for future

research.

II. DISTRIBUTED MULTI-RATE MPC

A. State-Space Model

Consider distributed MPC for systems with linear dynamics

whose centralized nominal model is decomposed into m

subsystems. Let t be the discrete-time index for the system

under control. The following model can be written for a

distributed system with state coupling:

xi(t+ 1) = Aiixi(t) +Bi∆ui(t)

+Divi(t) +

m∑

j=1
j 6=i

Aijxj(t), (1)

yi(t) = Cixi(t) + zi(t), (2)

where for each subsystem i, xi, ui, yi denote the state,

input, and output variables, respectively, vi, zi are the state

and measurement noise disturbances, respectively, and Aii,

Bi, Aij , Di and Ci are the system matrices of appropriate

dimensions. Also, ∆ui(t) is the increment of the input signal,

defined as ∆ui(t) = ui(t) − ui(t − 1). Note that the model

presented in (1)–(2) is an augmented model [30]. The variable

∆ui(t) is the multi-rate input signal that is injected into the

subsystems at each sampling time. As it can be seen in (1) sub-

systems are coupled through states only. We follow a strategy

similar to [20] to implement multi-rate measurement and input

calculation mechanisms for synchronous and asynchronous

agents (see Fig. 1).

Agent 1

Agent 2

(a)

Agent 1

Agent 2

(b)

Agent 1

Agent 2

(c)

Fig. 1. Schematic of a two-agent (a) single-rate system, (b) synchronous
multi-rate system, and (c) asynchronous multi-rate system.

In a multi-rate output setting, the output vector yi(t) of

subsystem i can be measured every Tyi
time units, where

Tyi
> 0. At those sampling time instants at which the

measurements are not available, the distributed KF proposed

in the next section provides the optimal estimation of the

missing measurements. Define the switching function γij , for

j = 1, 2, . . . , qi with qi being the number of outputs of

subsystem i, as follows:

γij (t) =

{
1 if t = τyj

Tyj
, for some integer τyj

0 otherwise,

(3)

The following measured output vector ϕϕϕi(t) can now be

defined:

ϕϕϕi(t) = ΥΥΥi(t)yi(t), (4)

where

ΥΥΥi(t) = diag[γi1(t), γi2(t), . . . , γiq (t)]. (5)



3

In a multi-rate input setting, the input vector ui(t) of subsys-

tem i is updated every Tui
time units, where Tui

> 0. As

the input updating happens occasionally, updating the state-

space model, which requires the input computation at each

sampling time, may lead us to faulty estimation. This problem

can be solved by substituting the estimated states obtained by

the proposed distributed KF. Introduce a switching function

µij for j = 1, 2, . . . , li with li being the number of inputs of

subsystem i. Define the inputs holding mechanism as:

µij (t) =

{
1 if t = τuj

Tuj
, for some integer τuj

0 otherwise,

(6)

The following input matrix ΨΨΨi(t) for subsystem i can be

defined:

ΨΨΨi(t) = diag[µi1(t), µi2(t), . . . , µil(t)]. (7)

Now a new control variable ϑϑϑi(t) is introduced to implement

the input administering mechanism:

∆ui(t) = ΨΨΨi(t)ϑϑϑi(t). (8)

After substituting (8) into (1) and substituting (2) into (4) we

obtain:

xi(t+ 1) = Aiixi(t) +BiΨΨΨi(t)ϑϑϑi(t) +Divi(t)

+
m∑

j=1
j 6=i

Aijxj(t), (9)

As in multi-rate systems output measurements are made at

specific sampling times, the output sampling mechanism needs

to be included in the system’s model. To do that both sides of

(2) are multiplied by the output sampling parameter ΥΥΥi(t):

ΥΥΥi(t)yi(t) = ΥΥΥi(t)Cixi(t) +ΥΥΥi(t)zi(t). (10)

The left-hand side of (10) can be replaced by (4), therefore:

ϕϕϕi(t) = ΥΥΥi(t)Cixi(t) +ΥΥΥi(t)zi(t). (11)

Equations (9) and (11) describe the linear state space model

of the distributed multi-rate system for i = 1, 2, . . . ,m with

m the number of subsystems. In the following section, a

distributed MPC problem will be formulated.

B. Control Methodology

In the distributed control structure, state coupling among

subsystems is considered as given by (9). Each subsystem

is controlled by a so-called agent. The agents communicate

with one another to accomplish a global objective. Each

agent i shares both its decided input trajectory provided by

the local MPC controller θθθi(t) and also its estimated state

trajectory x̂i(t) provided by the local Kalman filter, with the

neighboring agents (see Fig. 2). One type of distributed MPC

is based on Nash optimality [8], [9]. In this approach, the

agents communicate with one another, but they do not take

a cooperative decision. This means that agents do not have

knowledge about other agents’ objectives and they use the

optimal values provided by the neighboring agents to make

their optimal decision. An initial guess for each agent is first

given based on the solution found at the last sampling time.

The agents then iterate to resolve their local optimization prob-

lem simultaneously and obtain their locally optimal solution

[9]. Then each agent checks if its terminal iteration condition

satisfies a user-defined threshold. This implies that the agents

do not share information about the utility of each decision.

Agreement (Nash equilibrium) between the agents has been

reached when neither of the agents can improve its solution. In

other words, in Nash-based MPC each agent transmits current

state and input trajectory information to all interconnected

subsystems’ MPCs. Competing agents have no knowledge of

each others cost functions. From a game theoretic perspective,

the equilibrium of such a strategy, if it exists, is called a

noncooperative equilibrium or Nash equilibrium [7]. The main

advantage of this scheme is that the on-line optimization of

a large-scale problem can be converted into several small-

scale subproblems, thus reducing the computational complex-

ity significantly while keeping satisfactory performance in the

presence of noise and disturbances [31]. Similar strategies

have been proposed in [32]. An open-loop Nash equilibrium

solution has been studied in [33]. In [34] Nash equilibrium

solutions has been proposed for stochastic dynamic games.

In this paper we develop a Nash-based MPC for distributed

multi-rate systems.

Consider a linear system consisting of m subsystems and m

Subsystem 

1

Agent 1

Distributed System

Subsystem 

i

Subsystem 

m

MPC 1
Kalman 

Filter 1

Agent i

MPC i
Kalman 

Filter i

Agent m

MPC m
Kalman 

Filter m

control 

updates
measurements

control 

updates
measurements

control 

updates
measurements

Fig. 2. Distributed MPC control and distributed KF estimation structure.

control agents. In Nash-based distributed MPC each control

agent calculates the manipulated variable ϑϑϑi(t) by minimizing

its local cost function as follows:

min
ϑϑϑi(t),...,ϑϑϑi(t+Nc−1)

Ji(t) =

Np∑

k=1

‖yi(t+ k)− y0
i (t+ k)‖2Qi

+

Nc−1∑

k=0

‖ϑϑϑi(t+ k)‖2Ri
, (12)

subject to

ϑϑϑi,min ≤ ϑϑϑi(t+ k) ≤ ϑϑϑi,max, k = 0, 1, ..., Nc−1, (13)

Ḡiyi(t+ k) ≤ 0 k = 1, 2, ..., Np, (14)

xi(t+ k + 1) = Aiixi(t+ k) +BiΨΨΨi(t+ k)ϑϑϑi(t+ k)

+Divi(t+ k) +

m∑

j=1
j 6=i

Aijxj(t+ k), k = 0, 1, ..., Np−1,

(15)
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where Ḡi is a constant matrix and Ḡiyi represents a set of

inequality constraints on the states. Also, ϑϑϑi(t + k) = 0, for

k = Nc, . . . , Np − 1. The variables ϑϑϑi,min and ϑϑϑi,max are the

lower and upper bounds for the inputs, respectively, Qi ≥ 0
and Ri > 0 denote the weighting matrices, and Np and Nc

are the prediction and control horizons, respectively. The set-

point is denoted by y0
i and notation ‖y‖Q defines the weighted

Euclidean norm, i.e. ‖y‖2Q = yTQy. In order to solve the

problem in (12)–(15), first we substitute (9) into (2). Based

on the obtained state-space model the future state variables

are then calculated sequentially using the set of future control

variables θθθi(t). The matrices thus obtained can be written in

a compact form given by,

Yi(t) = Fixi(t) +φφφii(t)θθθi(t)

+ ΓΓΓ iζζζi(t) +

m∑

j=1
j 6=i

Xj(t)φφφij(t), (16)

with

Yi(t) = [yT
i (t+ 1) yT

i (t+ 2) . . .yT
i (t+Np)]

T, (17)

θθθi(t) = [ϑϑϑTi (t) ϑϑϑTi (t+ 1) . . .ϑϑϑTi (t+Nc − 1)]T, (18)

Xj(t) = [xT
j (t) xT

j (t+ 1) . . .xT
j (t+Np − 1)]T, (19)

ζζζi(t) = [vT
i (t) vT

i (t+ 1) . . .vT
i (t+Nc − 1)]T, (20)

Fi = [(CiAii)
T (CiA

2
ii)

T . . . (CiA
Np

ii )T]T, (21)

φφφii(t) =




CiBiΨΨΨi(t) 0 . . . 0

CiAiiBiΨΨΨi(t)
...

. . .
...

...
...

... 0

CiA
Np−1

ii BiΨΨΨi(t) . . . . . . CiA
Np−Nc

ii BiΨΨΨi(t+Nc − 1)




,

(22)

ΓΓΓ i =




CiDi 0 . . . 0

CiAiiDi CiDi

. . .
...

...
...

... 0

CiA
Np−1
ii Di CiA

Np−2
i Di . . . CiA

Np−Nc

ii Di



,

(23)

φφφij(t) =




CiAij 0 . . . 0

CiAiiAij

...
. . .

...
...

...
... 0

CiA
Np−1
ii Aij . . . . . . CiA

Np−Nc

ii Aij



.

(24)

In (20), we assumed that the process noise is zero from

t+Nc − 1 on: vi(t+ k) = 0 for k = Nc, ..., Np − 1.

In practice, the current state of each subsystem xi(t) and

also the current state of the neighboring subsystems xj(t)
are usually not available from measurements in a multi-rate

system and a state observer needs to be used to reconstruct

the full state vector. In this case, we replace xi(t) and xj(t)

by their estimates x̂i(t) and x̂j(t), resulting in:

Ŷi(t) = Fix̂i(t) +φφφii(t)θθθi(t)

+ ΓΓΓ iζζζi(t) +
m∑

j=1
j 6=i

X̂j(t)φφφij(t), (25)

where X̂j(t) = [x̂T
j (t) x̂T

j (t + 1) . . . x̂T
j (t + Np − 1)]T is

the vector of estimated states over the prediction horizon of

the neighboring subsystems and is provided by the multi-

rate estimator that will be introduced in the next section. If

Y0
i (t) = [y0 T

i (t+1) y0 T
i (t+2) . . .y0 T

i (t+Np)]
T, the local

optimization problem (12) for agent i can be reformulated as:

min
θθθi(t)

Ji(x̂i(t), X̂ j 6=i
j=1...m

(t),θθθi(t))

= ‖Ŷi(t)−Y0
i (t)‖

2
Q̄i

+ ‖θθθi(t)‖
2
R̄i

, (26)

subject to θθθi,min ≤ θθθi(t) ≤ θθθi,max, (27)

GiŶi(t) ≤ 0, (28)

x̂i(t+ k + 1) = Aiix̂i(t+ k) +BiΨΨΨi(t+ k)θθθi(t+ k)

+Divi(t+ k) +

m∑

j=1
j 6=i

Aij x̂j(t+ k), k = 0, 1, ..., Np−1,

(29)

where Gi is a matrix reflecting the constraints with its

number of rows equal to the number of constraints and

number of columns equal to the dimension of Yi. Also,

Q̄i = diag[Qi, . . . ,Qi] and R̄i = diag[Ri, . . . ,Ri] are the

block-diagonal output and input weight matrices, respectively.

The lower and upper bounds for the input sequence θθθi(t) are

denoted by θθθi,min and θθθi,max, respectively. It can be shown

[30] that problem (26)–(29) is equivalent to a quadratic

programming problem, which can be solved efficiently and

reliably using standard off-the-shelf solvers.

The optimization problem (26)–(29) is solved iteratively

using Nash-based MPC. The Nash-based MPC algorithm

for solving the control problem proceeds by allowing each

subsystem to optimize its objective function using its own

control decision ϑϑϑi(t) assuming that neighboring subsystem

solutions ϑϑϑj(t) are known. Let ϑϑϑni (t) define the computed

control input for subsystem i at iteration n, (n ≥ 0). At each

sampling time step each agent makes an initial guess of its

decision variables over the control horizon and broadcasts that

to the neighboring agents:

θθθni (t) = [(ϑϑϑni (t))
T (ϑϑϑni (t+ 1))T . . . (ϑϑϑni (t+Nc − 1))T]T,

(30)

Then, each agent solves its optimization problem (26)–(29)

and gets its optimal solution θθθn+1
i (t). Next, all the agents

compare the new solution θθθn+1
i (t) with the solution obtained

at the previous iteration θθθni (t) and check the convergence

condition:

||θθθn+1
i (t)− θθθni (t)|| ≤ ǫǫǫ, (31)

in which ǫǫǫ is the error accuracy. When (31) is satisfied, the

Nash optimal solution has been achieved. Then each agent
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does not change its decision θθθni (t) anymore because it has

achieved an equilibrium point of the coupling decision process

[31]. The iterations then stop, as otherwise the local cost

function Ji(t) will degrade.

Reformulating the objective function in (26) in terms of

θθθi(t) to make the problem applicable for quadratic program-

ming (QP) [30] leads us to:

Ji(t) =
1

2
θθθTi (t)

[
2φφφT

ii(t)Q̄iφφφii(t) + 2R̄i

]
θθθi(t)

+ 2Π̂T
i Q̄iφφφii(t)θθθi(t), (32)

where Π̂i =

[
Fix̂i(t) +ΓΓΓiζζζi(t) +

∑m
j=1

j 6=i

X̂j(t)φφφij(t)−Y
0

i (t)

]
,

is a constant for the optimization problem based on the
Nash iterative setting. To solve the optimization problem of
minimizing (32) subject to the constraints defined in (27)–
(29), the following change needs to be applied. Since in the

presented cost function in (32), the variable Ŷi(t) has been
eliminated, the constraint in (28) should be replaced in terms
of θθθi(t),

Gi



Fix̂i(t) +φφφii(t)θθθi(t) +ΓΓΓiζζζi(t) +

m∑

j=1

j 6=i

X̂j(t)φφφij(t)



 ≤ 0.

(33)

Considering the definition of Π̂i, (33) can be written as:

Gi

[
φφφii(t)θθθi(t) + Π̂i +Y0

i (t)
]
≤ 0. (34)

Now, (27) and (34) can be combined as:


φii(t)

I

−I


θθθi(t) ≤



−Π̂i −Y0

i (t)
θθθi,max

−θθθi,min


 . (35)

Hence, in general the optimization problem in (32) can be

solved subject to the overall constraints defined by (35).

On the other hand from the augmented model in (9), the

variable θθθi is the increment of the real input, therefore we

need to transform the constraints on the rate of the inputs to

the constraints on the inputs themselves. To do so, consider

(8), in which we have:

ΨΨΨi(t) = 0 → ∆ui(t) = 0, (36)

ΨΨΨi(t) = 1 → ∆ui(t) = θθθi(t). (37)

Considering (37), the constraints in (27) can be written as:

∆ui,min ≤ ∆ui(t) ≤ ∆ui,max. (38)

Now, consider (38) over the control horizon,:

−∆Ui(t) ≤ −∆Ui,min, (39)

∆Ui(t) ≤ ∆Ui,max, (40)

where ∆Ui(t) =
[
∆u

T

i (t),∆u
T

i (t+ 1), · · · ,∆u
T

i (t+Nc − 1)
]T

,

and ∆Ui,min and ∆Ui,max are column vectors with Nc

elements of ∆ui,min and ∆ui,max, respectively.

Equations (39) and (40) in a compact form can be expressed

as: [
−I

I

]
∆Ui(t) ≤

[
−∆Ui,min

∆Ui,max

]
. (41)

Considering the notation ui(t) = ui(t− 1) +∆ui(t), we can
write:





ui(t)
ui(t+ 1)

...
ui(t+Nc − 1)



 =





I

I

...
I



ui(t− 1)

+





I 0 0 · · · 0
I I 0 · · · 0
...

...
...

... 0
I I I · · · I









∆ui(t)
∆ui(t+ 1)

...
∆ui(t+Nc − 1)



 .

(42)

Rewriting (41) and (42) in a compact matrix form, with CCC1

and CCC2 corresponding to the appropriate matrices, then the

constraints for the control inputs are imposed as:

− (CCC1ui(t− 1) +CCC2∆Ui(t)) ≤ −Ui,min, (43)

(CCC1ui(t− 1) +CCC2∆Ui(t)) ≤ Ui,max. (44)

Using (43) and (44) the constraints on the input increment can

be transformed to the constraints on the input itself and vice

versa [35].

III. DISTRIBUTED MULTI-RATE KALMAN FILTER

A. Problem Statement

Distributed Kalman filtering [3], [17]–[19] involves state

estimation using a set of local Kalman filters that communicate

with all other agents. However, in multi-rate state estimation

an additional issue needs to be considered which is the multi-

rateness of the system. The main issue that is addressed by

our proposed method is to introduce a novel state estimation

approach for multi-rate linear discrete-time systems in which

measurements are only available at certain sampling times.

B. Distributed Multi-Rate Estimation

Consider the linear multi-rate model in (1)-(2). The goal

here is to use the available measurements ϕϕϕi to estimate

the state of the system xi. Consider the process noise vi(t)
for subsystem i to be discrete-time white noise signal. The

following covariance matrix can hence be defined:

E
[
vi(t)v

T
i (t)

]
= SSSpi

(t), (45)

where E[·] denotes the expectation of the argument, and SSSpi
(t)

represents the covariance matrix of the process noise. Consider

the measurement noise zi(t) in (11) to be discrete-time zero

mean white noise. The following covariance matrix for the

measurement noise SSSmi
(t) can be defined similarly:

E
[
zi(t)z

T
i (t)

]
= SSSmi

(t). (46)

The equations for the proposed KF are divided into two parts:

estimation (prediction) equations and measurement update

equations.
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1) Prediction: In the proposed distributed Kalman Filter for

the multi-rate system, each local Kalman Filter should estimate

xi(t) such that the covariance of xi(t)− x̂i(t) is minimized,

when x̂i(t) is the estimate of xi(t). Let the one step-ahead

prediction be expressed as follows:

x̂i(t+ 1|t) = Aiix̂i(t|t− 1) +Bii∆ui(t)

+

m∑

j=1
j 6=i

Aij x̂j(t|t− 1), (47)

where the index (t|t − 1) refers to the information at

sampling time t given knowledge of the process prior to

sampling time t. The variable x̂j indicates the estimated states

of agent j. In this way, exchanging information among agents

are done through provided neighboring agents estimation x̂j .

The distributed multi-rate Kalman filter equation with Li

and Lj as Kalman Gains for subsystem i and subsystems

j(j 6=i), can be expressed as:

x̂i(t+ 1|t) = Aiix̂i(t|t− 1) +Bii∆ui(t)

+ Li(t) [ϕϕϕi(t)−ΥΥΥi(t)Ci(t)x̂i(t|t− 1)]

+

m∑

j=1
j 6=i

Aij x̂j(t|t− 1)

+ Lj(t) [ϕϕϕj(t)−ΥΥΥj(t)Cj(t)x̂j(t|t− 1)] , (48)

Equation (48) is used to compute the vector of estimated states

over the prediction horizon for each agent X̂j(t). As it can

be seen from (48), each agent computes its estimated states

by using its neighboring agents’ estimated states x̂j(t|t− 1),
which have been provided at the prior time step . In other

words, local Kalman filters share their estimated states and

also their Kalman gain with their neighboring agents. Let the

Si(t|t − 1) be the predicted estimate covariance at sampling

time t given observations up to, and including at time t − 1
then we have:

Si(t|t− 1) = Aiix̂i(t− 1|t− 1)AT
ii +DiSpi

(t)DT
i

+

m∑

j=1
j 6=i

Aij x̂j(t− 1|t− 1)AT
ij . (49)

These predicted state estimates x̂i(t|t − 1) and covariance

estimates Si(t|t − 1) are in fact an estimation at the current

sampling time and they do not include observation informa-

tion from the current sampling time. In the update phase,

the current prediction is combined with current observation

information to refine the state estimation.

2) Measurement Update: Define the innovation or measure-

ment residual for each subsystem i as,

Λi(t) = yi(t)−Ci(t)x̂i(t|t− 1). (50)

For a multi-rate system the estimated state is introduced by

replacing yi(t) with ϕϕϕi(t) in (11). Note that all Ci matrices are

replaced by ΥΥΥi(t)Ci. Applying this, (50) can be represented

as,

ΥΥΥi(t)Λi(t) = ϕϕϕi(t)−ΥΥΥi(t)Ci(t)x̂i(t|t− 1). (51)

The modified innovation covariance is then defined as follows:

ΩΩΩi(t) = ΥΥΥi(t)CiSi(t|t− 1)CT
i ΥΥΥi(t) +ΥΥΥi(t)Smi

(t)ΥΥΥi(t)

+ [Iq×q −ΥΥΥi(t)]. (52)

In order to guarantee that ΩΩΩi(t) is non-singular at any time

instant, the extra term [Iq×q −ΥΥΥi(t)] has been added to (52),

in which Iq×q is the identity matrix of size q by q [20]. The

matrix ΩΩΩi(t) is block diagonal and the matrix [Iq×q −ΥΥΥi(t)]
only adds non-zero terms to the scalar diagonal elements of

ΩΩΩi(t) during the output sampling mechanism when there are

no measurements available (the output sampling mechanism

described by ΥΥΥi(t) is zero). Therefore, adding [Iq×q −ΥΥΥi(t)]
to (52) in no way affects the estimator.

Introducing the Kalman Gain for the multi-rate system as:

Li(t) = AiiSi(t|t− 1)CT
i ΥΥΥi(t)ΩΩΩ

−1
i (t), (53)

we proceed to update the estimation error covariance con-

sidering (9) and (47) as:

ei(t+ 1|t) = xi(t+ 1|t)− x̂i(t+ 1|t). (54)

By substituting (11) into (51) and then proceeding by substi-

tuting it along with (9) and (47) into (54) we obtain:

Si(t+ 1|t) = cov [ei(t+ 1|t)]

= cov[(Aii − Li(t)ΥΥΥi(t)Ci)ei(t|t− 1)

+Divi(t)− Li(t)ΥΥΥi(t)zi(t) +

m∑

j=1
j 6=i

Aij x̂j(t|t− 1)].

(55)

Expanding the terms and also considering the properties of the

vector covariance [29] we get:

Si(t+ 1|t) = AiiSi(t|t− 1)AT
ii − 2Li(t)ΥΥΥi(t)CiSi(t|t− 1)AT

ii

+ Li(t)ΩΩΩi(t)L
T
i (t) +DiSpi

(t)DT
i

+

m∑

j=1
j 6=i

AijSj(t|t− 1)AT
ij . (56)

Minimizing the error covariance with respect to Kalman gain

Li(t) yields:

∂Si(t+ 1|t)

∂Li(t)
=

∂

∂Li(t)
[AiiSi(t|t− 1)AT

ii

− 2Li(t)ΥΥΥi(t)CiSi(t|t− 1)AT
ii

+ Li(t)ΩΩΩi(t)L
T
i (t) +DiSpi

(t)DT
i

+
m∑

j=1
j 6=i

AijSj(t|t− 1)AT
ij ] = 0. (57)

It should be noted that (56) is the algebraic Riccati equation

and from (57) the minimum is attained if and only if [16]:

−2AiiSi(t|t− 1)CT
i ΥΥΥi(t) + 2Li(t)ΩΩΩi(t) = 0. (58)

The Kalman filter gain for each subsystem i can be found by

solving (52), (53), (56) and (58) iteratively backwards in time.
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IV. CASE STUDY

A power system example with two control areas inter-

connected through a tie line [7] is considered to illustrate

the performance of the proposed method. We have selected

this example because it is a well-known benchmark that

has already been used to study distributed MPC algorithms

[36], [7], so it is familiar to the readers. On the one hand

the presented example is simple enough to demonstrate our

proposed method while on the other hand, it is nontrivial.

Most interconnected power systems rely on automatic gen-

eration control (AGC) for controlling system frequency and

tie-line interchange [7]. These objectives are achieved by

regulating the real power output of generators throughout the

system. To cope with the expansive nature of power systems,

various limits must be taken into account, including restric-

tions on the amount and rate of generator power deviation.

AGC therefore provides a very relevant example for illustrating

the performance of distributed multi-rate predictive control

and estimation in a power network setting. For the purpose

of AGC, power systems are decomposed into control areas,

with tie lines providing interconnections between the areas

[7]. Each area typically consists of numerous generators and

loads. It is common, though, for all generators in an area to

be lumped as a single equivalent generator, and likewise for

loads. This approach is adopted in the considered case study

[7].

A. Two-Area Power System Model and Control Structure

The following nominal normalized state-space continuous-

time model for each area i is considered [7]:

d∆wi

dt
= −

1

Ma
i

(Di∆wi +∆P
ij
tie −∆Pmechi

+∆PLi
),

(59)

d∆Pmechi

dt
= −

1

TCHi

(∆Pmechi
−∆Pvi

), (60)

d∆Pvi

dt
= −

1

TGi

(∆Pvi
−∆Prefi +

1

Rf
i

∆wi), (61)

where the definitions of the power system variables and

parameters are provided in Table I. The notation ∆ is used

to indicate the deviation from steady state. For example, ∆w

represents the deviation in the angular frequency from its

nominal operating value (50 Hz.).

The tie-line power flow between areas i and j is expressed

as:

d∆P
ij
tie

dt
= Tij(∆wi −∆wj), (62)

∆P
ji
tie = −∆P

ij
tie. (63)

Since the model is used in the predictive controller synthesis,

the load variable ∆PLi
for each area i, as a disturbance input,

is assumed constant during predictions, i.e.

d∆PLi

dt
= 0, i = 1, 2. (64)

Each subsystem is connected via state coupling ∆P 12
tie . The

output (controlled variable) for area 1 is the frequency devi-

ation ∆w1 and the output for area 2 is the deviation in the

TABLE I
BASIC POWER SYSTEM DEFINITION

Parameter Description

w Angular frequency
Ma Angular momentum
D Ratio of change in load to change in frequency

TCH Charging time constant
TG Governor time constant

Rf Ratio of change in frequency to change in unit output
Tij Tie-line stiffness coefficient between areas i and j

Pmech Mechanical power
PL Non-frequency sensitive load
Pv Steam valve position
Pref Load reference set-point

P
ij

tie
Tie-line power flow between areas i and j

TABLE II
PARAMETERS OF THE TWO-AREA POWER SYSTEM MODEL

Parameter Area 1 Area 2

Di 2 2.75

Rf
i 0.03 0.07

Ma
i 3.5 4.0

TCHi
50 10

TGi
40 25

tie-line power flow between the two control areas (∆P 12
tie). By

examining the power system model (60), it is clear that, if

∆ω1 → 0 and ∆P 12
tie → 0 then ∆ω2 → 0.

Discretizing the process (59)-(64) with a sampling interval

of Ts = 1s leads to the discrete-time state-space model (1)-(2)

with

xi = [∆ωi ∆Pmechi
∆Pvi

∆PLi
∆P

ij
tie]

T, (65)

ui = ∆Prefi , (66)

y1 = ∆ω1, y2 = ∆P 12
tie . (67)

and where matrices Aii, Aij , Bi, Ci can be easily constructed

from (59)-(64). The model parameters are given in Table II.

The tie-line stiffness coefficient between area, 1 and 2 is given

by T12 = 7.54.

In Fig. 3, the block diagram of the distributed MPC control

structure for the considered power system example is shown.

Each control area i consists of a MPC controller that is used

to generate optimal load reference set-point ∆Prefi based on

optimal estimated system states computed by the KF.

B. Design of Distributed KF and MPC

The design process for the distributed KF consists of the

selection of noise covariance matrices SSSpi
and SSSmi

for each

subsystem i. Needless to say, the estimation quality depends

on how accurately these matrices reflect the actual noise

conditions in a real system. In this paper, it is assumed that the

process and measurement noise signals for both control areas

are white noise sequences with covariances SSSp1
= SSSp2

=
SSSm1

= SSSm2
= 10−5. Since the only measurements available

in the system are frequency deviations ∆ω1 and ∆ω2 as well

as load reference set-points ∆Pref1 and ∆Pref2 (see Fig. 3),

the remaining system states in (65) will be reconstructed by

the proposed distributed KF as described in Section III.

The design process for the distributed MPC controller in

(12)-(15) consists of the selection of the prediction horizon and
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Fig. 3. Block diagram of the two-area interconnected power system control structure.

control horizons Np and Nc, respectively as well as the output

and input weighting matrices Qi and Ri for each control area

i such that the desired level of closed-loop performance is

achieved. To aid the comparison with other distributed MPC

control strategies [7], the prediction and control horizons are

chosen as Np = 20 and Nc = 15, as suggested in [7].

The input and output weighting matrices for the distributed

MPC control problem for both subsystems are chosen as Ri =
I and Qi = 5I, respectively. A larger output weight relative to

the input weight means that it is more important to penalize the

frequency and tie-line power imbalance than the load reference

deviation from the steady-state value.

While the primary goal of the distributed MPC controller is

to provide good frequency and power regulation, the control

system must respect the physical and safety limitations of the

power system variables during operation. In this paper, the

load reference set-point variables in each area are constrained

as follows:

−0.3 ≤ ∆Prefi ≤ 0.3, i = 1, 2, (68)

where the input as defined in (66) is the deviation of the

absolute value of Prefi with respect to the steady-state value

∆Prefi . Note that the presented constraints in (68) are con-

straints on the input itself which is ∆Prefi , and not on the rate

of ∆Prefi . Therefore in order to apply the proposed algorithm

on this example we need to transform the presented constraints

in (68) for the rate of ∆Prefi using (43)–(44).

In the following section, the performance of the proposed

distributed multi-rate KF-based MPC control system will

be evaluated and compared with the distributed MPC with

centralized and decentralized multi-rate Kalman filters.

V. SIMULATION RESULTS

A. Operation Scenarios

Four scenarios are studied to demonstrate the performance

of the proposed method. In the two first scenarios, the output

and input for the synchronous agents are studied. Then two

scenarios consider the asynchronous agents (see Fig. 1 for

the definition of asynchronous and asynchronous agents). In

the synchronous scenarios each agent is a multi-rate agent

which has different input and output sampling rate, however

all agents have the same sampling rate in their inputs and

outputs as the other agents. In the first considered synchronous

scenario, the inputs have a faster sampling rate than the outputs

(Tu1
= 1, Tu2

= 1, Ty1
= 6, Ty2

= 6) and in the second

synchronous scenario, a slower input sampling rate has been

assumed (Tu1
= 3, Tu2

= 3, Ty1
= 1, Ty2

= 1).

In the asynchronous scenarios, in addition to agents having

different internal sampling rates for their inputs and outputs,

these sampling rates will be different for each agent in the

system. In the first considered asynchronous case, the inputs

have a faster sampling rate than the outputs (Tu1
= 2, Tu2

=
3, Ty1

= 4, Ty2
= 9) and in the second asynchronous scenario,

a slower input sampling rate (Tu1
= 4, Tu2

= 3, Ty1
=

1, Ty2
= 2) will be considered .

The following performance measure is used to compute the

cost of each method as a mean over the complete simulation

period Tf :

PM =
1

Tf

Tf∑

t=1

m∑

i,j=1
j 6=i

J∗
i (x̂i(t), X̂j(t),θθθi(t)), (69)

The discrepancy of different methods (distributed MPC with

distributed multi-rate KF and decentralized multi-rate KF) with

respect to centralized MPC with centralized KF is computed

as:

∆PM =
PM(method) − PM(centralized)

PM(centralized)
100%. (70)

In all simulation cases, a 15% load disturbance in Area 2

is applied at t = 5s. In order to evaluate the noise filtering

properties of the proposed KF algorithm, all measurements
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TABLE III
PERFORMANCE COMPARISON AND ANALYSIS FOR synchronous AGENTS.

Method Sampling [s] PM ∆PM

Tu1 Tu2 Ty1 Ty2

Centralized KF 1 1 6 6 0.1129 0
Proposed DKF 1 1 6 6 0.1174 3.98

Decentralized KF 1 1 6 6 0.2014 78.39

Centralized KF 3 3 1 1 0.4935 0
Proposed DKF 3 3 1 1 0.5092 3.18

Decentralized KF 3 3 1 1 0.8385 69.90

TABLE IV
PERFORMANCE COMPARISON AND ANALYSIS FOR asynchronous AGENTS.

Method Sampling [s] PM ∆PM

Tu1 Tu2 Ty1 Ty2

Centralized KF 2 3 4 9 0.2810 0
Proposed DKF 2 3 4 9 0.3059 8.86

Decentralized KF 2 3 4 9 0.6245 122.24

Centralized KF 4 3 1 2 0.7521 0
Proposed DKF 4 3 1 2 0.7935 5.50

Decentralized DKF 4 3 1 2 0.8901 18.34

and state variables are perturbed with uniformly distributed

random signals of magnitude 10−7.

B. Synchronous Agent Case

In Fig. 4, the simulation results corresponding to the case

where the input sampling rate for both agents (power areas) is

6 times faster than the output sampling rate, are presented. It

can be observed that the performance of the proposed multi-

rate KF method is close to that of the single-rate (perfect)

case; the total simulated performance loss ∆PM is 3.98% in

comparison to 78.39% in the fully decentralized KF case (see

Table III). This means that the multi-rate KF algorithm is more

effective in compensating for the information loss due to the

infrequent output measurements. Notice that the constraints

on the load reference set-point variables imposed in (68) are

respected at all times during operation of the controller.

In the second scenario, the input sampling rate is considered

to be 3 times slower than the output measurement rate. In

Fig. 5, the transient responses of the proposed KF-based MPC

control system are depicted. Comparing the results to those

in Fig. 4 it is clear that the infrequent input sampling has a

greater influence on the closed-loop performance. While the

transient behavior in frequency deviation in Area 1 is similar

in both cases, the tie-line power flow between the two areas

is significantly affected when a slower update rate for inputs

∆Pref1 and ∆Pref2 is considered. This effect is also evident

from the transient response of the load reference set-point

(input) for Area 1 (Fig. 5(c)); the response is more oscillatory

and takes significantly more time to settle. Table III reports that

the proposed multi-rate KF method yields smaller deviation

from the centralized KF (∆PM = 3.18%) in comparison with

the decentralized KF (∆PM = 69.90%).

C. Asynchronous Agent Scenario

In this section, the two control areas have been considered

to be asynchronous in the sense that the input sampling rates

are (i) different for both areas and (ii) faster than the output

sampling rates. From the results shown in Fig. 6, it can be seen

that the frequency deviation ∆ω1 in Area 1 and the tie-line

power flow ∆P 12
tie show smaller deviation from the steady-state

for the proposed multi-rate KF compared to the decentralized

case. This can be confirmed from the performance metrics

reported in Table IV demonstrating that the proposed method

results in a lower discrepancy with respect to the centralized

KF (∆PM = 8.86%) in comparison with the decentralized

KF (∆PM = 122.24%).

In Fig. 7, the asynchronous control areas having a slower

input update rate with respect to the output sampling rate

have been studied. Similarly as in the synchronous agent case

(Fig. 5), a considerable loss in the closed-loop performance

can be noticed. Nevertheless, the system output responses

corresponding to the proposed KF method converge slightly

faster than for the decentralized KF. Evaluating the perfor-

mance measure in (69)-(70) for each method, one can find (see

Table IV) that the proposed method yields a lower discrepancy

with respect to the centralized KF (∆PM = 5.50%) in

comparison with the decentralized KF (∆PM = 18.34%).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a new Kalman filter-based distributed model

predictive control algorithm has been proposed for multi-

rate large-scale systems. The proposed framework consists of

two main parts, control and estimation. In the control part,

a distributed MPC via a Nash game has been studied for

multi-rate sampled-data systems and in the estimation part

a distributed Kalman Filter (KF) has been proposed to pro-

vide the state values for inter-sampling times. The algorithm

provides a reliable control and estimation and compensation

mechanism for the information loss due to the multi-rate

nature of the systems using the proposed distributed KF. In

a simulation study involving a two-area power system the

proposed method has been compared with a single-rate KF

(in plots), centralized KF (in tables) scheme and also with a

decentralized multi-rate KF demonstrating significant levels

of performance improvement. Several simulation scenarios

including slow and fast input sampling as well as slow and

fast output sampling in both synchronous and asynchronous

arrangements have been considered showing feasibility and

high effectiveness.

In the presented method, each agent has knowledge of its own

dynamics and also is aware of the neighboring agents’ com-

puted inputs. The presented method uses a communication-

based optimization based on a Nash Equilibrium, which is

non-cooperative and could be unstable [36]. The best achiev-

able performance is characterized by a Pareto set, which

represents the set of optimal trade-offs among the competing

controller objectives. To cover this drawback more research

needs to be done on cooperative MPC algorithms for multi-rate

systems. Further research is also needed to prove convergence

and stability issues of the proposed method. Another open

problem is the development of efficient distributed multi-rate

control and estimation approaches that are robust to system

parameter variation and model uncertainty.
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Fig. 4. Closed-loop responses of synchronous agents with faster input / slower output sampling rates using single-rate KF in red (solid); proposed distributed
MPC with multi-rate KF in blue (dashed); distributed MPC with multi-rate decentralized KF in green (dash-dotted).
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Fig. 5. Closed-loop responses of synchronous agents with faster output / slower input sampling rates using single-rate KF in red (solid); proposed distributed
MPC with multi-rate KF in blue (dashed); distributed MPC with multi-rate decentralized KF in green (dash-dotted).
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Fig. 6. Closed-loop responses of asynchronous agents with slower output / faster input sampling rates using single-rate KF in red (solid); proposed distributed
MPC with multi-rate KF in blue (dashed); distributed MPC with multi-rate decentralized KF in green (dash-dotted).
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Fig. 7. Closed-loop responses of asynchronous agents with faster output / slower input sampling rates using single-rate KF in red (solid); proposed distributed
MPC with multi-rate KF in blue (dashed); distributed MPC with multi-rate decentralized KF in green (dash-dotted).
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